
An Infrastructure for Scalable Parallel Multidimensional Analysis

Sanjay Goil Alok Choudhary
Department of Electrical & Computer Engineering

Northwestern University,
Technological Institute,

2145 Sheridan Road, Evanston, IL-60208
fsgoil,choudhar g@ece.nwu.edu

Abstract

Multidimensional Analysis in On-Line Analytical Pro-
cessing (OLAP), and Scientific and statistical databases
(SSDB) use operations requiring summary information on
multi-dimensional data sets. Most common are aggregate
operations along one or more dimensions of numerical data
values and/or on hierarchies defined on them. Simultaneous
calculation of multi-dimensional aggregates are provided
by theData Cubeoperator, used to calculate and store sum-
mary information on a number of dimensions. This is com-
puted only partially if the number of dimensions is large
since a few dimensions are typical for analysis over sum-
mary information. Queries may either be answered from a
materialized cube or calculated on the fly.

The multi-dimensionality of the underlying problem can
be represented both in relational and multi-dimensional
databases, the latter being a better fit when query perfor-
mance is the criteria for judgement. Relational databases
are scalable in size for OLAP and multidimensional anal-
ysis and efforts are on to make their performance accept-
able. On the other hand multi-dimensional databases have
proven to provide good performance for such queries, al-
though they are not very scalable. In this paper we ad-
dress scalability in multi-dimensional systems for analysis
in SSDB and OLAP applications. We describe our sys-
tem PARSIMONY - Parallel and Scalable Infrastructure for
Multidimensional Online analytical processing. Sparsity of
data sets is handled by usingchunksto store data as a
sparse set using a Bit encoded sparse structure. Chunks
provide a multi-dimensional index structure for efficient di-
mension oriented data accesses much the same as multi-
dimensional arrays do. Operations within chunks and be-
tween chunks are a combination of relational and multi-
dimensional operations depending on whether the chunk is
sparse or dense.

Performance results for high dimensional data sets on
a distributed memory parallel machine (IBM SP-2) show
good speedup and scalability.

1 Introduction

On-Line Analytical processing (OLAP) and multi-
dimensional analysis is used for decision support systems
and statistical inferencing to find interesting information
from large databases. Multidimensional databases are suit-
able for OLAP and data mining since these applications re-
quire dimension oriented operations on data. Traditional
multidimensional databases store data in multidimensional
arrays on which analytical operations are performed. Mul-
tidimensional arrays are good to store dense data, but most
datasets are sparse in practice for which other efficient stor-
age schemes are required.

It is important to weigh the trade-offs involved in reduc-
ing the storage space versus the increase in access time for
each sparse data structure, in comparison to multidimen-
sional arrays. These trade-offs are dependent on many pa-
rameters some of which are (1) number of dimensions, (2)
sizes of dimensions and (3) degree of sparsity of the data.
Complex operations such as required for OLAP can be very
expensive in terms of data access time if efficient data struc-
tures are not used.

Sparse data structures such as the R-tree and its vari-
ants have been used for OLAP [9]. Range queries with a
lot of unspecified dimensions are expensive because many
paths have to be traversed in the tree to calculate aggre-
gates. Chunking has been used in [12] with dense and
sparse chunks. Sparse chunks store an Offset-Value pair for
the data present. Dimensional operations on these require
materializing the sparse chunk into a multi-dimensional ar-
ray and performing array operations on it. For a high num-
ber of dimensions this might not be possible since the ma-
terialized chunk may not fit in memory. A split storage is
described in [1], where the dimensions are split into sparse
and dense subsets. The sparse dimensions use a sparse in-
dex structure to index into the dense blocks of data stored
as multi-dimensional arrays. Further, none of these address
parallelism and scalability to large data sets in a high num-
ber of dimensions.

We compare the storage and operational efficiency in
OLAP and multi-dimensional analysis of various sparse

1

data storage schemes in [2]. A novel data structure using bit
encodings for dimension indices called Bit-Encoded Sparse
Structure (BESS) is used to store sparse data in chunks,
which supports fast OLAP query operations on sparse data
using bit operations without the need for exploding the
sparse data into a multidimensional array. This allows for
high dimensionality and large dimension sizes.

In this paper we present a parallel and scalable OLAP
and data mining framework for large data sets. Parallel data
cube construction for large data sets and a large number
of dimensions using both dense and sparse storage struc-
tures is presented. Sparsity is handled by using compressed
chunksusing a bit encoded sparse structure (BESS). Data
is read from a relational data warehouse which provides
a set of tuples in the desired number of dimensions. [4]
presents data partitioning, andsort-basedloading of chunks
in thebasecube (which is an-dimensional structure at level
n of the data cube) from which data cube is computed.
OLAP queries can now be answered from the precompu-
tations available in the data cube. We have also used the
summary information available in data cubes for calculating
support and confidence measures in data mining of associa-
tion rules. Further, decision-tree based classification is per-
formed by using the multidimensional model to calculate
split points efficiently. We do not discuss data mining in this
paper. Details can be found in [3]. We believe, our paral-
lel framework for multidimensional analysis and OLAP can
also be used in scientific and statistical databases [7, 10] to
deliver scalability and performance in execution of analysis
tasks.

The rest of the paper is organized as follows. Section 2
describes OLAP using the data cube operator and associated
queries. Section 3 presents multi-dimensional storage using
chunks and BESS for sparse data. Section 4 presents steps
in the computation of the data cube on a parallel machine
and the overall design. Section 5 describes the algorithms,
techniques and optimizations in the parallel building of the
simultaneous multi-dimensional aggregates and the factors
affecting performance. Section 6 presents performance re-
sults for cube building and and analysis for communication
and I/O for it. Section 7 concludes the paper.

2 Data Cubes and OLAP

OLAP is used to summarize, consolidate, view, apply
formulae to, and synthesize data according to multiple di-
mensions. OLAP technology can lower information system
costs and help end-users work more independently, saving
time and costly resources. OLAP has been used in appli-
cations such as financial modeling (budgeting, planning),
sales forecasting, customer and product profitability excep-
tion reporting, resource allocation and capacity planning,
variance analysis, promotion planning, and market share
analysis [8].

Traditionally, a relational approach (relational OLAP)
has been taken to build such systems. Relational databases
are used to build and query these systems. A complex ana-
lytical query is cumbersome to express in SQL and it might
not be efficient to execute. Alternatively, multi-dimensional
database techniques (multi-dimensional OLAP) have been
applied to decision-support applications. Data is stored in
multi-dimensional structures which is a more natural way to
express the multi-dimensionality of the enterprise data and
is more suited for analysis. A “cell” in multi-dimensional
space represents a tuple, with the attributes of the tuple iden-
tifying the location of the tuple in the multi-dimensional
space and themeasurevalues represent the content of the
cell.

Data can be organized into a data cube by calculating all
possible combinations of GROUP-BYs [5]. This operation
is useful for answering OLAP queries which use aggrega-
tion on different combinations of attributes. For a data set
with n attributes this leads to2n GROUP-BY calculations.
A data cube treats each of thek; 0 � k < n aggregation
attributes as a dimension ink-space.

Data Cube operators generalize the histogram, cross-
tabulation, roll-up, drill-down and sub-total constructs. Fig-
ure 1 shows a lattice structure for the data cube with 5 di-
mensions. At a leveli; 0 � i � n of the lattice, there
areC(n; i) sub-cubes (aggregates) with exactlyi dimen-
sions, where the functionC gives the all combinations hav-
ing i distinct dimensions fromn dimensions. A total ofPn

i=0 C(n; i) = 2n sub-cubes are present in the data cube
including the base cube. Optimizations of calculating the
aggregates in the sub-cubes can be performed using the lat-
tice structure augmented by the various computations and
communication costs to generate a DAG of cube orderings
which minimize the cost. This is discussed in a later section.

Level

ABC ABD ABE ADE BCD BCE BDE CDE

AB AC AD AE BC BD BE CD CE DE

A B D E

ABCDE

ABCD ABCE ABDE ACDE

ALL

C

ACEACD

BCDE

3

4

2

1

0

5

Figure 1. Lattice for cube operator

OLAP queries can in many cases be answered by the ag-
gregates in the data cube. Most operations in a data analysis
scenario require a multidimensional view of data.Pivoting

involves rotating the cube to change the dimensional orien-
tation,Slicing-dicing involves selecting some subset of the
cube,Roll-up is an aggregation that can be done at differ-
ent levels of hierarchy, andDrill-down traverses the hier-
archy from lower to higher levels of detail. Summarizing
these operations, we observe that OLAP requires access to
data along a particular dimension or a combination of di-
mensions. The set of operations required for OLAP and
data mining should be efficiently supported by the sparse
data structure for good performance. The basic operations
include retrieving a random cell element, retrieval of val-
ues along a dimension or a combination of dimensions, re-
stricting a range for dimensions in the retrieval, aggregation
or some statistical operation for values along a dimension,
and multi-dimensional aggregation/consolidation for a hier-
archy on dimensions.

Most data dimensions have hierarchies defined on them.
Typical OLAP queries probe summaries of data at dif-
ferent levels of the hierarchy. Consolidation is a widely
used method to provide roll-up and drill-down functions in
OLAP systems. Each dimension in a cube can potentially
have a hierarchy defined on it. This hierarchy can be applied
to all the sub-cubes of the data cube. We do not go into fur-
ther detail of these operations as they are well described in
the literature.

3 Data Storage: Chunks and BESS

Multidimensional database technology facilitates flexi-
ble, high performance access and analysis of large volumes
of complex and interrelated data. It is more natural and in-
tuitive for humans to model data. Achunkis defined as a
block of data from the multidimensional array which con-
tains data in all dimensions. A collection of chunks defines
the entire array. Figure 2(a) shows chunking of a three di-
mensional array. A chunk is stored contiguously in memory
and data in each dimension is strided with the dimension
sizes of the chunk. Most sparse data may not be uniformly
sparse. Dense clusters of data can be stored as multidimen-
sional arrays. Sparse data structures are needed to store
the sparse portions of data which are stored using an ap-
propriate sparse data structure as illustrated in Figure 2(b).
Chunks also act as an index structure which helps in extract-
ing data for queries and OLAP operations.

Typically, sparse structures have been used for advan-
tages they provide in terms of storage, but operations on
data are performed on a multidimensional array which is
populated from the sparse data. However, this is not al-
ways possible when either the dimension sizes are large or
the number of dimensions is large. Since we are dealing
with multidimensional structures for a large number of di-
mensions, we are interested in performing operations on the
sparse structure itself. This is desirable to reduce I/O costs
by having more data in memory to work on. This is one

c32

d0

d1

d2

c1 c2 c3 c4

c5 c6 c7 c8

c24

c28

c32

c20

c29 c30 c31

Chunks
Multidimensional array

c1 c2 c3 .. .

Storage in memory

c13

c9 c10 c11

c15 c16

c12

c14

Sparse Data Structures

A1 A2 A3 A4

B1

B2

B3

B4

C1
C2

C3

A
B
C

Value

Offset
Value

Dense Array

or

or

(a) Chunking for an array (b) Chunked cube

Figure 2. Storage of data in chunks

of the primary motivations for our Bit-encoded sparse stor-
age (BESS). For each cell present in a chunk a dimension
index is encoded indlog jdije bits for each dimensiondi
of size jdij. A 8-byte encoding is used to store the BESS
index along with the value at that location. A larger en-
coding can be used if the number of dimensions are larger
than 20. A dimension index can then be extracted by a bit
mask operation. Aggregation along a dimensiondi can be
done by masking its dimension encoding in BESS and using
a sort operation to get the duplicate resultant BESS values
together. This is followed by a scan of the BESS index,
aggregating values for each duplicate BESS index. For di-
mensional analysis, aggregation needs to be done for ap-
propriate chunks along a dimensional plane. This will be
elaborated further in a later section.

Figure 3(a) illustrates an example for storing a two di-
mensional sparse chunk of size3 � 2. Valuesv1 andv2
in chunk 0 are stored using a bit-encoded structure. Dimen-
sionx can be encoded in 2 bits since there are only 3 distinct
values. Dimensiony needs 1 bit to differentiate between 0
and 1. Hence 3 bits are needed for an index. Higher dimen-
sional structures will use more bits but the minimum storage
is 32 bits since data is word aligned. Thus, a large number
of dimensions can be stored if 2 integers are used.

A chunk index structure stores the logical chunk coordi-
nates in each dimension for each chunk. Chunks are stored
in memory in some order of dimensions. Without loss of
generality let us assume that the order of storage is in the
orderX followed byY in Figure 3(b). To reference an ele-
ment in the chunk, first the chunk offset is dereferenced to
get the dimension index values. Since the dimension extents
are known for the chunk this can be done easily. The second
step is to add the index value in the chunk to this by retriev-
ing it from the bit encoding. This can be done by shifting
bits in the bit-encoded structure and using a bit-mask to ex-
tract the bits that are used to encode each dimension.

4 Overall Design

In this section we describe our design for a parallel and
scalable data cube on coarse grained parallel machines (e.g
IBM SP-2) or a Network of Workstations, characterized by

0 1 2 3 4 5

0

1

2

Chunk 0

3

5

4

v2

v3

v4

v6 v7

v9

v11

v14v13v12v10

v8 v5

v1

1001

0

1

00

Index Values

Bit Encodings
X

Y

0 0 0

0 0

1

10

v1

v2

xy

Bit encoding Cell size

0 1 2 3 4 5

0

1

2

30

3

5

4

v2

v3

v4

v6 v7

v9

v11

v14v13v12v10

v8 v5

v1

X

Y

Chunk 0 Chunk 1 Chunk 2 Chunk 3 Chunk 4 Chunk 5

0 24126 18

(a) Storage using BESS(b) Offsets for index retrieval

Figure 3. BESS used in Chunk Storage

powerful general purpose processors (few to a few hundred)
and a fast interconnection between them. The programming
paradigm used is a high level programming language (e.g.
C/C++) embedded with calls to a portable communication
library (e.g. Message Passing Interface).

In what follows, we address issues of data partition-
ing, parallelism, schedule construction, data cube building,
chunk storage and memory usage on this machine architec-
ture.

4.1 Data Partitioning and Parallelism

Data is partitioned on processors to distribute work eq-
uitably. In addition, a partitioning scheme for multidi-
mensional has to bedimension-awareand for dimension-
oriented operations have some regularity in the distribu-
tion. A dimension, or a combination of dimensions can
be distributed. In order to achieve sufficient parallelism,
it would be required that the product of cardinalities of
the distributed dimensions be much larger than the num-
ber of processors. For example, for 5 dimensional data
(ABCDE), a one-dimensional (1D) distribution will par-
tition A and a two-dimensional (2D) distribution will par-
tition AB. We assume, that dimensions are available that
have cardinalities much greater than the number of proces-
sors in both cases. That is, eitherjAij � p for somei,
or jAij � jAj j � p for somei; j, 0 � i; j � n � 1, n
is the number of dimensions. Partitioning determines the
communication requirements for data movement in the in-
termediate aggregate calculations in the data cube.

We support both 1D and 2D partition in our implemen-
tations. Letk (1 or 2) be the number of dimensions used
for the partitioning. Fork = 2, a 2 dimensional partition-
ing, p processors are divided into two groups(k; p

k
), where

k is the number of processors in the group to be created by
the first distributed dimension, chosen to be a divisor ofp.
For each tuple, dimensionAi is used to choose among the
k partitions, and then dimensionAj is further used to find
the correct processor among thep

k
processors in that group

to get the 2D partitioning. Figure 4 shows the base cube
loading for a 3 dimensional cube (ABC) distributed on 4
processors in a 2D distribution, where dimensions A and B

are distributed in a (2, 2) grid. Clearly, whenK = 1, a 1D
partitioning is done withk = p.

30

c c

b

b

0

a15

a0

b

b

b

c c c

b

b

b

0
c c cc c c

b

b

b

0

0

a15

a0

Relational
Database

a b c

a1 b1 c1
c2b2a1

Loading

Parallel Multidimensional Database

D1

M 1

D0

M 0

D2

M 2

D3

M 3

P1

P0 P2

P3

a15
a10 a25

a35

a35
a25

a15
a10

c
15 25 0 15 25

15 25 0 15 25

b
5

10

15

b

b
5

10

15

15

20
b

b
15

20

25

30

25

Figure 4. Base cube loading for a 3 dimen-
sional cube on 4 processors

Since2n cubes are being constructed in the data cube,
we keep them distributed as well. The distribution of these
cubes depends on the cardinalities of their largest 1 or 2
dimensions. The same criteria is used here as the one used
for the base cube. However, redistribution of dimensions
and chunks may be required in an aggregation calculation,
which aggregates a dimension, if a dimension is partitioned
anew or is re-partitioned.

Table 1 shows the various distributions for aggregate cal-
culations supported in our framework. The underlined di-
mensions are partitioned. Calculations are eitherLocal or
Non Local. Local calculations maintain the data distribu-
tion on each processor and the aggregation calculation does
not involve any inter-processor communication. Non local
calculations distribute a undistributed dimension such as in
ABC ! AC , where dimensionB is aggregated andC,
which was previously undistributed, is distributed. Another
calculation isABC ! BC , whereA is aggregated and
B, the second distributed dimension becomes the first dis-
tributed dimension, andC gets distributed as the second di-
mension. These can be categorized as either dimension 1
or dimension 2 being involved in the (re)distribution. The
sub-cubes can be stored aschunkedor asmulti-dimensional
arrays which are distributed or on a single processor with
these distributions. The multi-dimensional arrays are how-
ever restricted to a 1D distribution since their sizes are small
and 2D distribution will not provide sufficient parallelism.
The data cube build scheduler does not evaluate the various
possible distributions currently, instead calculating the costs
based on the estimated sizes of the source and the target
sub-cubes and uses a partitioning based on the dimension
cardinalities.

4.2 Schedule Generation for Data Cube

Several optimizations can be done over the naive method
of calculating each aggregate separately from the initial data
[5]. Smallest Parent, computes a group-by by selecting the
smallest of the previously computed group-bys from which
it is possible to compute the group-by. Consider a four

Table 1. Partitioning of sub-cubes following
aggregation calculations

Distribution Local Non Local
Dimension 1 Dimension 2

2D ! 2D ABC ! AB ABC ! BC ABC ! AC

2D ! 1D ABC ! BC ABC ! AC

1D ! 1D ABC ! AB;AC ABC ! BC

2D ! UNI ABC ! BC ABC ! AC

1D ! UNI ABC ! BC ABC ! AC

UNI ! UNI ABC ! AB;AC; BC

attribute cube (ABCD). Group-byAB can be calculated
fromABCD, ABD andABC. Clearly sizes ofABC and
ABD are smaller than that ofABCD and are better candi-
dates. The next optimization is to compute the group-bys in
an order in which the next group-by calculation can bene-
fit from the cached results of the previous calculation. This
can be extended to disk based data cubes by reducing disk
I/O and caching in main memory. For example, after com-
putingABC fromABCD we computeAB followed byA.
An important multi-processor optimization is tominimize
inter-processor communication. The order of computa-
tion should minimize the communication among the proces-
sors because inter-processor communication costs are typ-
ically higher than computation costs. For example, for a
1D partition,BC ! C will have a higher communication
cost to first aggregate along B and then divide C among the
processors in comparison toCD ! C where a local aggre-
gation on each processor along D will be sufficient.

A lattice framework to represent the hierarchy of the
group-bys was introduced in [6]. This is an elegant model
for representing the dependencies in the calculations and
also to model costs of the aggregate calculations. A
scheduling algorithm can be applied to this framework sub-
stituting the appropriate costs of computation and commu-
nication. A lattice for the group-by calculations for a five-
dimensional cube (ABCDE) is shown in Figure 1. Each
node represents an aggregate and an arrow represents a pos-
sible aggregate calculation which is also used to represent
the cost of the calculation.

Calculation of the order in which the GROUP-BYs are
created depends on the cost of deriving a lower order (one
with a lower number of attributes) group-by from a higher
order (also called theparent) group-by. For example, be-
tween ABD! BD and BCD! BD one needs to select the
one with the lower cost. Cost estimation of the aggregation
operations can be done by establishing a cost model. Some
calculations do not involve communication and arelocal,
others involving communication are labeled asnon-local.
Details of these techniques for a parallel implementation us-
ing multidimensional arrays can be found in [3]. However,
with chunking and presence of sparse chunks the cube size
cannot be taken for calculating computation and communi-
cation costs. Size estimation is required for sparse cubes
to estimate computation and communication costs when di-
mension aggregation operations are performed. We use a

simple analytical algorithm for size estimation in presence
of hierarchies presented in [11]. This is shown to perform
well for uniformly distributed random data and also works
well for some amount of skew. Since we need reasonable
estimates to select the materialization of a sub-cube from a
sub-cube at a higher level, this works well.

4.3 Data Structure Management

For large data sets the sizes of the cubes and the number
of cubes will not fit in main memory of the processors. A
scalable parallel implementation will require disk space to
store results of computations, often many of them interme-
diate results. This is similar to apagingbased system which
can either rely on virtual memory system of the computer or
perform the paging of data structures to the needs of the ap-
plication. We follow the latter approach. Figure 5 shows the
data structures for our design and the ones which are paged
in and out from disk into main memory on each processor.

A global cube topology is maintained for each sub-
cube by distributing the dimension equally on each proces-
sor. A dimension of sizedi; 0 � i < n gets distributed
on p processors, a processori getsddi

p
e portion of di, if

i < di mod p, else it getsbdi
p
c. Each processor thus can

calculate what portion belongs to which processor. Further,
a constant chunk size is used in each dimension across sub-
cubes. This allows for a simple calculation to find the target
chunk which a chunk maps to after aggregating a dimen-
sion. However, the first distribution of the dimensions in the
base cube is done using a sample based partitioning scheme
which may result in a inexact partition and they are kept the
same till any of the distributed dimension gets redistributed.

A cube directorystructure is always maintained in mem-
ory for each cube at the highest level. For each cube this
contains a pointer to adata cubestructure which stores in-
formation about the cube and its chunks. It also contains a
file offset to indicate the file address if the data cube struc-
ture is paged out. A status parameter indicates whether
the data cube structure is in memory (INMEM) or on disk
(ONDISK).

A data cube structure maintains the cube topology pa-
rameters, the number of unique values in each dimension,
whether the chunk structure for the cube is in memory (sta-
tus), a pointer to the chunk structure if it is in memory and a
file offset if it is on disk. The total number of chunks for the
chunk structure of the cube is intotalchunks. Additionally,
for each chunk of the chunk structure, a chunk statuscstatus
is maintained to keep track of chunk structure paging. The
chunk address is a pointer to the chunk structure in mem-
ory which stores information for each chunk. This is when
cstatus is set to INMEM. Otherwise, cstatus can either be
UNALLOCATED or ONDISK. In the latter case the chunk
address will be a file offset value. For a multidimensional
array, the size of the array and the dimension factor in each

dimension are stored to lookup for the calculations involv-
ing aggregations instead of calculating them on the fly every
time.

A chunk structure for a sub-cube can either be in its en-
tirety or parts of it can be allocated as they are referred to.
The cstatus field of the data cube will keep track of alloca-
tions. Chunk structure keep track of the number of BESS
+ value pairs (ntuples) in the chunk, which are stored in
minichunks. Whether a chunk is dense or sparse is tracked
by type. A dense chunk has a memory pointer to a dense
array whereas a sparse chunk has a memory pointer to a
minichunk. Chunk index for each dimension in the cube
topology is encoded in a 8 byte valuecidx. Further, dimen-
sions of the chunk are encoded in another 8 byte valuecdim.
This allows for quick access to these values instead of cal-
culating them on the fly.

Minichunks can either be unallocated (UNALLO-
CATED), in memory (INMEM), on disk (ONDISK) or
both in memory and on disk (INMEMONDISK). Initially,
a minichunk for a chunk is allocated memory when a
value maps to the chunk (UNALLOCATED! INMEM).
When the minichunk is filled it is written to disk and its
memory reused for the next minichunk (INMEM! IN-
MEM ONDISK). Finally, when a minichunk is purged to
disk it is deallocated (INMEMONDISK ! ONDISK). A
chunk can thus have multiple minichunks. Hence, choosing
the minichunk size is an important parameter to control the
number of disk I/O operations for aggregation calculations.

On each processor, there is one file for the chunk struc-
ture of each cube, one file for the minichunks of all the
sparse chunks in the cube, one file for the multi-dimensional
chunks of the cube (or if the cube is a multi- dimensional
array). One file is used for the datacube structure. For 10
(20) dimensions there are 1024 (1048576) chunk files and
1024 (1048576) chunk structure files. With a limit of 2000
open files, file management is required to use the open file
descriptors efficiently.

Memory ptr/File offset

.

Disk

Mini ChunksChunk StructuresData CubesCube Directory

Main Memory

Paged Paged Paged

Processor P

Status= F
Data Cube *ptr
File offset

Status= T
Data Cube *ptr
File offset

Totalchunks (m)
Status
distribution

O I U

I : In memory
O: On Disk
U: Unallocated

Status
Type
Ntuples
Highmark
mem_ptr
fileoffset

status = INMEM
status

BESS Value
234.56001010

sorted by BESS= ONDISK

Files

.

0
1

N-1

i

Chunk status (0 <= i < m)

Figure 5. Data Structures on a processor Pi

5 Algorithms and Analysis

Since chunks can either be sparse or dense, we need
methods to aggregate sparse chunks with sparse chunks,
sparse with dense chunks and dense with dense chunks. The
case of dense chunks to sparse chunk does not arise since a
dense chunk does not get converted to a sparse chunk ever.
Also, a chunked organization may be converted into a multi-
dimensional array. In this section we discuss the algorithms
for cube aggregations and chunk mappings.

5.1 Chunk mapping to processors

Each chunk in the source cube is processed to map its
values to the target chunk. The chunk structure carries infor-
mation about the chunk’s dimensional offsets incidx. This
along withcdim, the chunk extents, is used to calculate the
local value in each dimension. For distributed dimensions
we need to add the start of the processor range to calculate
the global value. This is then used to calculate the target
start and stop values. This is used to determine the destina-
tion target processor and the target chunk. The source can
map to the same target chunk on the same processor, same
target chunk on another processor, split among chunks on
the same processor or split among chunks on different pro-
cessors. These cases are illustrated in Figure 6 for a two
dimensional source to target aggregation of chunks. It de-
scribes the chunk mapping process and the distinction be-
tweensplit andnon-splitchunks,local mapping andnon-
local mappings.

B

Split chunk on single processor

A

0

10

20

60

40

30

50

Y

X

10 40 600

C

C

25

B

55

ABC -> BC

P0

P1

P2

P3

P4

P5 P8

P7

P6 P9

P11

P10
P0

P1

P2

P3

P4

P5

P6

P7

P8

P9

P10

P11

15 30 45

Non-split chunk (Local)

Split chunk across processor boundary

Non-split chunk (Non local)

Figure 6. Chunk mapping after aggregation
for a 2D cube distribution

Each mapping to a target chunk on the local processor
is copied to a local aggregation buffer. If this buffer is full
or the current value maps to a different target chunk than
the ones in the buffer, it is aggregated with the target. For
a non-local calculation a send buffer is kept for each re-
mote processor. A split chunk needs to evaluate each of the
index values by decoding the BESS values and adding it
to the chunk index values. A target processor needs to be

evaluated for the distributed dimensions since this can po-
tentially be different. For a split source chunk, a corrected
BESS+value and target chunk id. is sent, otherwise just the
BESS+value is sent. Asynchronous send is used to overlap
computation and communication. Hence, before the send
buffer to a processor is reused, a receive of the previous
send must be completed. Asynchronous receive operations
are posted from all processors and periodically checked to
complete the appropriate sends. A processor receives the
BESS values and the target chunk id. and does the aggrega-
tion operation.

For a conversion of a chunked source cube to a multidi-
mensional target array, offsets are calculated. Dense chunks
are similarly treated. This is explained in a later section.

5.2 Local - Non Local Aggregation

The same partitioning dimensions in the source and tar-
get sub-cubes result in a local aggregation calculation. For
example,ABC ! AB has bothA andB partitioned in
both sub-cubes and this results in a local aggregation. On
the other hand,ABC ! AB, has onlyA partitioned in the
result sub-cube and B goes from being distributed to being
undistributed. This results in communication and is a non
local aggregation. Other cases are illustrated in Table 1.

The distribution of the sub-cubes is ascertained by the
cardinalities of its two largest dimensions. A sub-cube can
be 2D, 1D distributed or be on a single processor. To gener-
ate the schedule of data cube calculations, the lattice struc-
ture is used, exploiting the various optimization discussed
earlier in the section on schedule generation. Computation
and communication costs for aggregation are used by the
scheduler by analyzing the chunk aggregation operations
and the resulting partitioning. The cost analysis of the var-
ious aggregations between 1D, 2D and uniprocessor aggre-
gations is not included in this paper.

The extents of a chunk of the aggregating cube can be
contained in the extents of a chunk of the aggregated cube.
In this case the BESS+value pairs are directly mapped to the
target chunk, locally or non-locally. However, the BESS in-
dex values need to be modified to encode the offsets of the
new chunk. If the chunk is overlapping over a target chunk
boundary, then each BESS value has to be extracted to de-
termine its target chunk. This is computationally more ex-
pensive than the direct case. It is to be noted that a 2 dimen-
sional distribution may result in more overlapped chunks
than a 1 dimensional distribution, because the former has
more processor boundary area than the latter.

5.3 Sparse - Sparse Chunk Aggregation

Sparse chunks store BESS+value pairs in minichunks.
Sparse to sparse aggregations involve accessing these
minichunks. The BESS values are kept sorted in the
minichunks to facilitate the aggregation calculations by us-
ing sort, merge and scan operations used in relational pro-

Algorithm 1 Sparse - sparse chunk aggregation algorithm

for i 1 toNp

visited[i] = FALSE;
done = FALSE
Initialize prev target chunk id
for i 1 toNp

nextchunk = i
if(! visited[nextchunk])

dof
/* Check if this is the chunk mapping to the same target */

for each BESS value innextchunk
if(Buffer is not full and target chunk id =
prev target chunk id)

for j 1 tondimp

Mask dim aggp from BESS index and
copy to memory buffer

else
Sort memory buffer on masked BESS indices
Merge sorted buffer with sorted BESS values
of target chunk id
Empty the buffer for reuse

/* If dimension oriented chunk acceess, get the next chunk along
dimensiondim aggp */
if(chunk access = DIM ORIENTED)

if((nextchunk Next chunk()) = FALSE)
done = TRUE

else
done = TRUE

visited[nextchunk] = TRUE
g while (! done)

end

Figure 7. Chunk aggregation algorithm

cessing. Figure 8 shows an aggregation in whichB is ag-
gregated inABC to giveAC sub-cube. Here the bit encod-
ing for B is masked from the BESS values for both chunks,
which means we are aggregating along dimensionB. A in-
teger sort is done on the remaining encoding of A and C
on both the chunks. This gets the values which map to the
same A and C contiguous to each other. This is followed by
a merge of sorted values aggregating where the values ofA

andC are the same.

A B C

3 1

3 2

1

4 6

4 2

3

A B C

3 2

3 3

1

4

4 3

4

2

Value
0

Value

110

123

102

99

87

56

155

134

233

400

A C Value

3 1

3 2

3 3

4 1

4 2

4 400

994

3

6

134

155

179

212

BESS

320

4

5

5

6

5

5

5

6

6

Sparse -Sparse
aggregation

Mask B
Sort on A,C
Merge

0 1 1 0 0 1

6

1 0

Figure 8. Sparse - sparse chunk aggregation

Buffer management for this aggregation depends on the
order in which chunks to be aggregated are accessed. There
are two alternative ways to access chunks,dimension ori-

entedin which the chunks are accessed along the dimen-
sion to be aggregated. The other method,chunk number-
ing, accesses chunks in the order in which they are laid out
in memory. In the dimension oriented access, a buffer can
be filled with the source chunks that map to a single tar-
get chunk and the sort and scan operations are done on the
buffer in memory. For the chunk order access, the consec-
utive chunks accessed are mapped to different chunks for
all dimensions except the innermost dimension. This re-
sults in sort of each individual chunk and merge with the
sorted values calculated earlier mapping to the same chunk.
This involves a disk read to get the previous result from the
minichunk of the target chunk, which was written to disk if
it was full.

It is seen that the dimension oriented access performs
better than chunk ordering since the sort can be done more
efficiently than the sort-merge operation which involves
disk I/O.

5.4 Sparse - Dense Chunk Aggregation

A sparse chunk can be aggregated to a dense chunk by
converting the BESS dimension encodings to a chunk offset
value. The chunk structure has the values for the index of
the chunk in each dimension in the variablecidx. This is
used to calculate the offset of the chunk in the resulting cube
topology by using the number of chunks in each dimension
of the result sub-cube.

The BESS index values are extracted and each dimen-
sion value is multiplied with the appropriate dimension fac-
tor for the chunk stored in the chunk structure. This con-
verts the BESS values to an offset within the chunk which
is added to the chunk offset after adjusting the source chunk
offset with the resulting chunks offset. The value is then ag-
gregated to this location in the resultant dense chunk.

5.5 Chunked - Multidimensional array
Aggregation

A chunk is aggregated to a dense multi-dimensional ar-
ray in a similar way as a sparse - dense chunk described
above. The chunk offset is calculated fromcidx and the
BESS value is used to calculate the offset within the chunk.
This is added to the chunk offset which is the correct offset
in the resulting multi-dimensional array. This could either
be local or non-local. Local values are aggregated to the
correct offset. Non local offsets are copied to a buffer for
each processor along with the value at that location. Once
the buffer is full it is sent to the appropriate processor, which
receives it and does the aggregation.

5.6 Interprocessor communication

The processor with the least load is assigned to a uni-
processor sub-cube for load balancing. To perform a paral-
lel aggregation calculation every processor cooperates since
each contains a part of the source and possibly target cube.

Since there are dependencies between any two levels of the
lattice, i.e between the source and the target, the latter can-
not be used for any further calculation unless it is calcu-
lated completely. This is especially important when the
calculation is in parallel since other processors contribute
to the aggregated values. Each processor goes through its
chunks assigned to it independently and communicates with
other processors by sending and receiving messages. Asyn-
chronous sends and receives are used to overlap computa-
tion with communication and reduce the synchronization
that results from waiting for messages. For example, When
a processor needs to send a message in bufferB, it posts a
asynchronous send and goes on to do its processing. But be-
fore modifyingB again it needs to check that the message
has been sent. Hence, each processor also posts a asyn-
chronous receive to get values from other processors. Once
data is received from a particular processor, another asyn-
chronous receive is posted for that processor. Processors
exchange sentinel values to signal the end of the current
communication phase. Figure 9 shows the communication
phase on each processor.

Algorithm 2 Communication in source! target aggregation

for i 0 toP , i 6= myid
PostAsynchronous RECEIVE from processori
Initialize send request[i] to FALSE

for j 1 toNp (for each chunk)
...Computation...
Find target processor for chunk asproc
While (send request[proc] = TRUE)

Wait for b to be received atproc before modifyingb
if(targetproc 6= myid)

PostAsynchronous SENDto processorproc
Setsend request[proc] toTRUE

for i 0 toP , i 6= myid
If(Test for receives[i] = TRUE)

Receive and aggregate buffer
[This will setsend request[myid] to FALSE on proces-
sor i]
PostAsynchronous RECEIVE from processori

end

Figure 9. Communication in source ! target
aggregation

5.7 Queries

Queries are supported by executing them from the ap-
propriate aggregated cube. This is determined by the at-
tributes of the query and the dimensions present in the cube.
A query is described by giving a range in the dimensions
desired, which is translated into chunk numbers to be re-
trieved. Each processor has a global topology for each
cube and determines the inclusion of its local domain in
the query. Hierarchies are defined on dimensions which are
used for roll-up operations. An attribute with an order de-
fined on its elements keeps it as a dimension with the or-
der. An attribute, with no order is organized as a collection

of values ordered by the hierarchy. A hierarchy is defined
for each dimension, which is correspondingly used for each
cube materialized. Related queries take advantages of the
chunks already fetched for another query. Only the remain-
ing chunks need to be read from disk.

6 Performance Results
In this section we present performance results for our

system on a 16-node IBM SP-2 distributed memory par-
allel computer available to us at Northwestern University.
AssumeN tuples andp processors. Initially, each proces-
sor readsN

p
tuples from a shared disk, assuming that the

number of unique values is known for each attribute. These
are partitioned using a sample based partitioning algorithm
(Partitioning phase) so that the attribute (dimension) values
are ordered on processors and distributed almost equally.
To load the base cube, tuples are sorted (Sorting phase) on
the combined key of all the attributes so that the access to
chunks is conformant to its layout in memory/disk. (Sorting
in the orderA0 ! A1 ! A2 : : : An�1, is conformant to the
layout of chunks whereA0 is the outer most dimension and
An�1 is the inner most, for loading a sorted run of values.)

The base cube is loaded on each processor (Figure 4)
from these tuples locally on each processor. The sub-cubes
of the data cube are calculated from here (Building phase).
This is followed by the analysis and data mining phase on
the computed aggregates.

Table 2. Description of datasets and at-
tributes, (N) Numeric (S) String

Data Dim Cardinalities (di) (
Q

i
di) Tuples

I 3 1024(S),256(N), 512(N) 2
27 10 million

II 5 1024(S),16(N),32(N),16(N),256(S) 2
31 1 and 10 million

III 10 1024(S),16(S),4(S),16,4,4,16,4,4,32(N) 2
37 5 and 10 million

IV 20 16(S),16(S),8(S),2,2,2,2,4,4, 2
51 1 million

4,4,4,8,2,8,8,8,2,4,1024 (N)

We choose four data sets, one each of dimensionality 3,
5, 10 and 20 to illustrate performance. Random data with
a uniform distribution is currently used for the performance
figures. Random data with skewed distributions result in
similar performance characteristics. OLAP council bench-
mark [8] which models a realistic business scenario has also
been used for performance evaluation. A aubset of results
is presented here due to limited space.

Table 2 illustrates the data sets for our experiments. The
3 dimensional data set has chunk sizes in each dimension
as 32, 16, 8 for a chunk dimension product as212 and the
number of chunks as213 distribute across processors. The
other data sets are in 5, 10 and 20 dimensions. The number
of sub cubes in the datacube for Dataset I is23 = 8, dataset
II is 25 = 32 and dataset III is210 = 1024. We report the
results of complete data cube construction for these sets.
For Dataset IV we report the results of partial data cube
construction in which 1350 sub-cubes are calculated.

Figure 10 shows the time taken by the various phases
of the data cube construction algorithm. Each phase of the
cube construction process shows good speedup for all the
data sets when a single dimension is partitioned in the base
cube. A two dimensional partitioning performs better than a
one dimensional partitioning because there are more chunks
in the partitioned dimension that allows for better sparse-
sparse aggregation performance.

8 16 32
Number of Processors

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

5 dimensions, 10 million tuples

Partitioning
Sorting
Loading
Build 2D
Build 1D

8 16 32
Number of Processors

0.0

20.0

40.0

60.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

10 dimensions, 10 million tuples

Partitioning
Sorting
Loading

8 16 32
Number of Processors

0.0

400.0

800.0

1200.0

1600.0

2000.0

2400.0

2800.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

10 dimensions, 10 million tuples

Build (2D partitioning)
Build (1D partitioning)

Figure 10. Time taken by phases of the data
cube construction algorithm for 5 (32 sub
cubes) and 10 (1024 sub cubes) dimensions

Figure 11 shows the time taken by the two different
methods of accessing chunks for aggregation calculations.
Dimension oriented method is better than the access that
follows chunk numbering because of better buffer use in
the sparse aggregation calculations. In all cases we observe
that the dimension ordering method works better than the
access pattern that follows chunk numbering. This effect is
more pronounced on a lower number of processor and lower
dimensional data sets because the effect of amortizing sort
costs among chunks mapping to the target chunks is more.
This is due to the fact that there are more chunks along a
given dimension to be aggregated in these cases. This ef-
fect will be more pronounced with higher data densities.

4 8 16
Number of Processors

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

25.0

T
im

e
 (

in
 s

e
co

n
d

s)

3D, N=1.34 million

Chunk Numbering
Dimension Oriented

4 8 16
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

T
im

e
 (

in
 s

e
co

n
d

s)

5D, N=0.214 million

Chunk Numbering
Dimension Oriented

Figure 11. Comparison of the two chunk ac-
cess methods, chunk numbering and dimen-
sion oriented for a dataset with 3 and 5 di-
mensions

Figure 12 compares the minichunk write performance
for the two chunk access orders.

A minichunk write occurs to flush the aggregation buffer
while performing the sparse aggregation. This can happen
if the buffer is full or when the target mapping of the source
chunks change. We observe that there are lesser writes for
dimension order access and the file offsets that are written
have better locality than the chunk-order access mechanism.

0 500 1000 1500 2000
Access Number

0

20000

40000

60000

80000

100000

120000

M
in

ic
h

u
n

k
 O

ff
s
e

t
in

 F
il
e

P= 8 N= 2.3M 5D Chunk-order access
(Cube0 -> Cube4) I/O, Minichunk Write

0 500 1000 1500
Access Number

0

20000

40000

60000

80000

100000

120000

M
in

ic
h

u
n

k
 O

ff
s
e

t
in

 F
il
e

P= 8 N= 2.3M 5D Dimension-order access
(Cube0 -> Cube4) I/O, Minichunk Write

(a) (b)

Figure 12. Minichunk writes to Cube 4 on 8
processors 5D, 2.37M (a) Chunked-order ac-
cess (b) Dimension-order access

A larger chunksize means lesser number of chunks and
hence lesser chunk traversal and aggregation overhead.
Hence we observe lower numbers for it in our experiments.
Choice of a chunk size depends on the number of dimen-
sions, size of the dimensions and density of the data set. A
chunksize should be maximized given these variables. Also
observed is the time of aggregation increases as the outer-
most dimension is aggregated. Time taken forABC ! AB

is lesser than time taken forABC ! AC since the former
reads minichunks which are stored almost contiguously.
The latter has to index to the correct file location to get to
the minichunk offset. This is because the storage order of
chunks isC (innermost),B andA (outermost).

Figure 13 shows preliminary results of executing 100
random queries on the base level of data on cubes chosen at
the highest two levels (basecube and the next level). Ranges
are chosen randomly from a set of these cubes and tuples
are extracted from minichunks of chunks in the range. We
are currently evaluating query performance on different data
sets and will include them in the final version of the paper.

4 8 16
Number of processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

A
ve

ra
g

e

tim
e

 (
in

 s
e

co
n

d
s)

5D cube
Average response time for 100 queries

4 8 16
Number of processors

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

16.0

18.0

20.0

A
ve

ra
g

e

tim
e

 (
in

 s
e

co
n

d
s)

10D cube
Average response time for 100 queries

Figure 13. Average time for 100 random range
queries for 5D and 10D datasets

7 Conclusions

In this paper we have presented the design and imple-
mentation of a scalable parallel system for multidimen-
sional analysis. Using the multidimensional data model,
data is stored inchunkswhich can either be sparse or dense.
Sparse chunks are represented by a bit encoding which can
be used for efficient aggregation operations on compressed

data. For maximum efficiency of operations dense regions
can also be stored as multidimensional arrays if the cardi-
nalities of the dimensions involved are not large and the
cube size is below a specific threshold. Operations between
chunked and multi-dimensional array cubes are supported.

The data structures to track the different cubes in a data
cube, the chunk structures of each cube and the chunks
themselves (using minichunks) use paging to support a large
number of cubes, a large number of chunks per cube and a
large chunk size. A combination of these results in sup-
porting a large number of dimensions and large data sizes.
Use of parallelism further enhances scalability. Parallelism
has been used to support a large number of dimensions and
large data sets for effective data analysis and decision mak-
ing. We believe it can serve as a suitable platform for high
performance SSDB applications.

References

[1] G. Colliat. OLAP, Relational, and Multi-dimensional
Database Systems. InSIGMOD Record, volume 25(3),
September 1996.

[2] S. Goil and A. Choudhary. BESS: Sparse data storage of
multi-dimensional data for OLAP and data mining. Tech-
nical Report CPDC-9801-005, Northwestern University, De-
cember 1997.

[3] S. Goil and A. Choudhary. High Performance OLAP and
Data Mining on Parallel Computers.Journal of Data Mining
and Knowledge Discovery, 1(4), 1997.

[4] S. Goil and A. Choudhary. High performance multidimen-
sional analysis and data mining. InProc. SC98: High Per-
formance Networking and Computing Conference, Novem-
ber 1998.

[5] J. Gray, A. Bosworth, A. Layman, and H. Pirahesh. Data
Cube: A Relational Aggregation Operator Generalizing
Group-By, Cross-Tab, and Sub-Totals. InProc. 12th Inter-
national Conference on Data Engineering, 1996.

[6] V. Harinarayan, A. Rajaraman, and J. Ullman. Implement-
ing data cubes efficiently. InProc. SIGMOD International
Conference on Management of Data, 1996.

[7] W. Lehner and W. Sporer. On the design and implementation
of the multidimensional cubestore storage manager. In15th
IEEE Symposium on Mass Storage Systems (MSS’98), March
1998.

[8] OLAP Council, http://www.olapcouncil.com.OLAP Council
Benchmark, 1997.

[9] S. Sarawagi. Indexing OLAP Data. InData Engineering
Bulletin, volume 20(1), March 1997.

[10] A. Shoshani. OLAP and Statistical Databases: Similarities
and Differences. InProc. Principles of Database Systems,
1997.

[11] A. Shukla, P. Deshpande, J. Naughton, and K. Ramaswamy.
Storage estimation for multidimensional aggregates in the
resence of hierarchies. InProc. of the 22nd International
VLDB Conference, May 1996.

[12] Y. Zhao, P. Deshpande, and J. Naughton. An array-based al-
gorithm for simultaneous multi-dimensional aggregates. In
Proc. ACM-SIGMOD International Conference on Manage-
ment of Data, pages 159–170, 1997.

