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Abstract

Decision support systems are important in leveraging
information present in data warehouses in businesses like
banking, insurance, retail and health-care among many oth-
ers. The multi-dimensional aspects of a business can be
naturally expressed using a multi-dimensional data model.
Data analysis and data mining on these warehouses pose
new challenges for traditional database systems. OLAP
and data mining operations require summary information
on these multi-dimensional data sets. Query processing for
these applications require different views of data for analy-
sis and effective decision making. Data mining techniques
can be applied in conjunction with OLAP for an integrated
business solution. As data warehouses grow, parallel pro-
cessing techniques have been applied to enable the use of
larger data sets and reduce the time for analysis, thereby
enabling evaluation of many more options for decision mak-
ing.

In this paper we address (1) scalability in multi-
dimensional systems for OLAP and multi-dimensional anal-
ysis, (2) integration of data mining with the OLAP frame-
work, and (3) high performance by using parallel pro-
cessing for OLAP and data mining. We describe our sys-
tem PARSIMONY - Parallel and Scalable Infrastructure for
Multidimensional Online analytical processing. This plat-
form is used both for OLAP and data mining. Sparsity of
data sets is handled by using sparsechunksusing a bit-
encoded sparse structure for compression, which enables
aggregate operations on compressed data. Techniques for
effectively using summary information available in data
cubes for data mining are presented for miningAssocia-
tion rulesand decision-tree basedClassification. These take
advantage of the data organization provided by the multidi-
mensional data model.

Performance results for high dimensional data sets on
a distributed memory parallel machine (IBM SP-2) show
good speedup and scalability.

Keywords: OLAP, Data Cube, Data Mining, High
Performance, Parallelism, Multi-dimensional analysis,
Chunks, Bit-encoding

1 Introduction

On-Line Analytical processing (OLAP) and multi-
dimensional analysis is used for decision support systems
and statistical inferencing to find interesting information
from large databases. Multidimensional databases are suit-
able for OLAP and data mining since these applications re-
quire dimension oriented operations on data. Traditional
multidimensional databases store data in multidimensional
arrays on which analytical operations are performed. Mul-
tidimensional arrays are good to store dense data, but most
datasets are sparse in practice for which other efficient stor-
age schemes are required.

It is important to weigh the trade-offs involved in reduc-
ing the storage space versus the increase in access time for
each sparse data structure, in comparison to multidimen-
sional arrays. These trade-offs are dependent on many pa-
rameters some of which are (1) number of dimensions, (2)
sizes of dimensions and (3) degree of sparsity of the data.
Complex operations such as required for OLAP can be very
expensive in terms of data access time if efficient data struc-
tures are not used.

We compare the storage and operational efficiency in
OLAP and multi-dimensional analysis of various sparse
data storage schemes in [6]. A novel data structure using bit
encodings for dimension indices called Bit-Encoded Sparse
Structure (BESS) is used to store sparse data in chunks,
which supports fast OLAP query operations on sparse data
using bit operations without the need for exploding the
sparse data into a multidimensional array. Chunks provide
a multi-dimensional index structure for efficient dimension
oriented data accesses much the same as multi-dimensional
arrays do.

In this paper we present a parallel and scalable OLAP
and data mining framework for large data sets. Parallel data
cube construction for large data sets and a large number of
dimensions using both dense and sparse storage structures is
presented. Sparsity is handled by using compressedchunks
using a bit encoded sparse structure (BESS). Data is read
from a relational data warehouse which provides a set of tu-
ples in the desired number of dimensions. Precomputed val-
ues are used in the probability calculations for association
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rule mining. Also, classification trees can be built by using
the aggregates of class id. counts to calculate the splitting
criterion for each dimension.

The rest of the paper is organized as follows. Section 2
describes OLAP and multidimensional analysis using the
data cube operator. Section 3 presents multi-dimensional
storage using chunks and BESS for sparse data. Section 4
presents steps in the computation of the data cube on a par-
allel machine and the overall design. Section 5 describes
the algorithms, techniques and optimizations in the paral-
lel building of the simultaneous multi-dimensional aggre-
gates and the factors affecting performance. Section 6 de-
scribes data mining algorithms like association rule mining
and classification on the multidimensional structure and its
parallelization. Section 7 presents performance results for
cube building and and analysis for communication and I/O
for it. Section 8 concludes the paper.

2 OLAP and Multidimensional Analysis

OLAP is used to summarize, consolidate, and synthesize
data according to multiple dimensions. It has been used in
applications such as financial modeling (budgeting, plan-
ning), sales forecasting, customer and product profitability
exception reporting, resource allocation and capacity plan-
ning, variance analysis, promotion planning, and market
share analysis [3]. Multi-dimensional database techniques
(MOLAP) have been applied to decision-support applica-
tions. A “cell” in multi-dimensional space represents a tu-
ple, with the attributes of the tuple identifying the location
of the tuple in the multi-dimensional space and themeasure
values represent the content of the cell.

Data can be organized into a data cube by calculating all
possible combinations of GROUP-BYs [9]. This operation
is useful for answering OLAP queries which use aggrega-
tion on different combinations of attributes. For a data set
with n attributes this leads to2n GROUP-BY calculations.
A data cube treats each of thek; 0 � k < n aggregation at-
tributes as a dimension ink-space. Figure 1 shows a lattice
structure for the data cube with 5 dimensions. At a level
i; 0 � i � n of the lattice, there areC(n; i) sub-cubes (ag-
gregates) with exactlyi dimensions, where the functionC
gives the all combinations havingi distinct dimensions from
n dimensions. A total of

Pn
i=0 C(n; i) = 2n sub-cubes are

present in the data cube including the base cube. Optimiza-
tions of calculating the aggregates in the sub-cubes can be
performed using the lattice structure augmented by the var-
ious computations and communication costs to generate a
DAG of cube orderings which minimize the cost. This is
discussed in a later section.

OLAP queries can in many cases be answered by the ag-
gregates in the data cube. Most operations in a data analysis
scenario require a multidimensional view of data.Pivoting
involves rotating the cube to change the dimensional orien-
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Figure 1. Lattice for cube operator

tation,Slicing-dicing involves selecting some subset of the
cube,Roll-up is an aggregation that can be done at different
levels of hierarchy, andDrill-down traverses the hierarchy
from lower to higher levels of detail. Summarizing these
operations, we observe that OLAP requires access to data
along a particular dimension or a combination of dimen-
sions.

3 Data Storage: Chunks and BESS

Multidimensional database technology facilitates flexi-
ble, high performance access and analysis of large volumes
of data [18]. It is more natural for humans to visualize a
multi-dimensional structure. Multi-dimensional arrays are
the most intuitive of these structures. Chunking has been
used to store arrays for better access performance as a col-
lection of dense data blocks [15]. Achunkis defined as a
block of data from the multidimensional array which con-
tains data in all dimensions. A collection of chunks defines
the entire array. Figure 2(a) shows chunking of a three di-
mensional array. A chunk is stored contiguously in mem-
ory and data in each dimension is strided with the dimen-
sion sizes of the chunk. Most sparse data may not be uni-
formly sparse. Dense clusters of data can be stored as mul-
tidimensional arrays. Sparse data structures are needed to
store the sparse portions of data. These chunks can then ei-
ther be stored as dense arrays or stored using an appropriate
sparse data structure as illustrated in Figure 2(b). Chunks
also act as an index structure which helps in extracting data
for queries and OLAP operations.
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Typically, sparse structures have been used for advan-
tages they provide in terms of storage, but operations on
data are performed on a multidimensional array which is
populated from the sparse data. However, this is not al-
ways possible when either the dimension sizes are large or
the number of dimensions is large. Since we are dealing
with multidimensional structures for a large number of di-
mensions, we are interested in performing operations on the
sparse structure itself. This is desirable to reduce I/O costs
by having more data in memory to work on. This is one
of the primary motivations for our Bit-encoded sparse stor-
age (BESS). For each cell present in a chunk a dimension
index is encoded indlog jdije bits for each dimensiondi
of size jdij. A 8-byte encoding is used to store the BESS
index along with the value at that location. A larger en-
coding can be used if the number of dimensions are larger
than 20. A dimension index can then be extracted by a bit
mask operation. Aggregation along a dimensiondi can be
done by masking its dimension encoding in BESS and using
a sort operation to get the duplicate resultant BESS values
together. This is followed by a scan of the BESS index,
aggregating values for each duplicate BESS index. For di-
mensional analysis, aggregation needs to be done for appro-
priate chunks along a dimensional plane.

4 Overall Design

In this section we describe our design for a parallel and
scalable data cube on coarse grained parallel machines (e.g
IBM SP-2) or a Network of Workstations, characterized by
powerful general purpose processors (few to a few hundred)
and a fast interconnection between them. The programming
paradigm used is a high level programming language (e.g.
C/C++) embedded with calls to a portable communication
library (e.g. Message Passing Interface).

In what follows, we address issues of data partition-
ing, parallelism, schedule construction, data cube building,
chunk storage and memory usage on this machine architec-
ture. Figure 3 summarizes the various options available for
these, especially in terms of storage of cubes, parallelism at
different levels, aggregation calculation orderings and the
chunk access for aggregations. Moreover, a partial cube
can be constructed if the number of dimensions is large or a
specific level of the cube is needed. For example, in 2-way
attribute-oriented data mining of associations, all cubes at
level 2 are materialized by using the base cube and the min-
imum materializations of sub-cubes at the intermediate lev-
els between3 andn� 1 [8].

4.1 Data Partitioning and Parallelism

Data is partitioned on processors to distribute work eq-
uitably. In addition, a partitioning scheme for multidi-
mensional has to bedimension-awareand for dimension-
oriented operations have some regularity in the distribu-
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Figure 3. Data Cube Architecture
tion. A dimension, or a combination of dimensions can
be distributed. In order to achieve sufficient parallelism,
it would be required that the product of cardinalities of
the distributed dimensions be much larger than the num-
ber of processors. For example, for 5 dimensional data
(ABCDE), a 1D distribution will partitionA and a 2D dis-
tribution will partitionAB. We assume, that dimensions are
available that have cardinalities much greater than the num-
ber of processors in both cases. That is, eitherjAij � p for
somei, or jAijjAj j � p for somei; j, 0 � i; j � n � 1,
n is the number of dimensions. Partitioning determines the
communication requirements for data movement in the in-
termediate aggregate calculations in the data cube. We sup-
port both 1D and 2D partition in our implementations.

Since2n cubes are being constructed, and we keep them
distributed as well. The distribution of these cubes de-
pends on the cardinalities of their largest 1 or 2 dimensions.
The same criteria is used here as the one used for the base
cube. However, redistribution of dimensions and chunks
may be required if a dimension is partitioned anew or is re-
partitioned.

Table 1 shows the various distributions for aggregate cal-
culations supported in our framework. The underlined di-
mensions are partitioned. Calculations are eitherLocal or
Non Local. Local calculations maintain the data distribu-
tion on each processor and the aggregation calculation does
not involve any inter-processor communication. Non local
calculations distribute a undistributed dimension such as in
ABC ! AC , where dimensionB is aggregated andC,
which was previously undistributed, is distributed. Another
calculation isABC ! BC , whereA is aggregated and
B, the second distributed dimension becomes the first dis-
tributed dimension, andC gets distributed as the second di-
mension. These can be categorized as either dimension 1 or
dimension 2 being involved in the (re)distribution. Also, as
illustrated in Figure 3, the sub-cubes can be stored aschun-
kedor asmulti-dimensional arrayswhich are distributed or
on a single processor with these distributions. The multi-
dimensional arrays are however restricted to a 1D distribu-
tion since their sizes are small and 2D distribution will not



provide sufficient parallelism. The data cube build sched-
uler does not evaluate the various possible distributions cur-
rently, instead calculating the costs based on the estimated
sizes of the source and the target sub-cubes and uses a par-
titioning based on the dimension cardinalities.

Table 1. Partitioning of sub-cubes following
aggregation calculations

Distribution Local Non Local
Dimension 1 Dimension 2

2D ! 2D ABC ! AB ABC ! BC ABC ! AC

2D ! 1D ABC ! BC ABC ! AC

1D ! 1D ABC ! AB;AC ABC ! BC

2D ! UNI ABC ! BC ABC ! AC

1D ! UNI ABC ! BC ABC ! AC

UNI ! UNI ABC ! AB;AC

4.2 Schedule Generation for Data Cube

Several optimizations can be done over the naive method
of calculating each aggregate separately from the initial data
[9]. Smallest Parent, computes a group-by by selecting the
smallest of the previously computed group-bys from which
it is possible to compute the group-by. Consider a four
attribute cube (ABCD). Group-byAB can be calculated
fromABCD, ABD andABC. Clearly sizes ofABC and
ABD are smaller than that ofABCD and are better candi-
dates. The next optimization is to compute the group-bys in
an order in which the next group-by calculation can bene-
fit from the cached results of the previous calculation. This
can be extended to disk based data cubes by reducing disk
I/O and caching in main memory. For example, after com-
putingABC fromABCD we computeAB followed byA.
An important multi-processor optimization is tominimize
inter-processor communication. The order of computa-
tion should minimize the communication among the proces-
sors because inter-processor communication costs are typ-
ically higher than computation costs. For example, for a
1D partition,BC ! C will have a higher communication
cost to first aggregate along B and then divide C among the
processors in comparison toCD ! C where a local aggre-
gation on each processor along D will be sufficient.

A lattice framework to represent the hierarchy of the
group-bys was introduced in [12]. A scheduling algorithm
can be applied to this framework substituting the appro-
priate costs of computation and communication. A lattice
for the group-by calculations for a five-dimensional cube
(ABCDE) is shown in Figure 1. Each node represents an
aggregate and an arrow represents a possible aggregate cal-
culation which is also used to represent the cost of the cal-
culation.

Calculation of the order in which the GROUP-BYs are
created depends on the cost of deriving a lower order (one
with a lower number of attributes) group-by from a higher
order (also called theparent) group-by. For example, be-

tween ABD! BD and BCD! BD one needs to select the
one with the lower cost. Cost estimation of the aggregation
operations can be done by establishing a cost model. Some
calculations do not involve communication and arelocal,
others involving communication are labeled asnon-local.
Details of these techniques for a parallel implementation us-
ing multidimensional arrays can be found in [5]. However,
with chunking and presence of sparse chunks the cube size
cannot be taken for calculating computation and communi-
cation costs. Size estimation is required for sparse cubes
to estimate computation and communication costs when di-
mension aggregation operations are performed. We use a
simple analytical algorithm for size estimation in presence
of hierarchies presented in [17]. This is shown to perform
well for uniformly distributed random data and also works
well for some amount of skew. Since we need reasonable
estimates to select the materialization of a sub-cube from a
sub-cube at a higher level, this works well.

4.3 Data Structure Management

For large data sets the sizes of the cubes and the number
of cubes will not fit in main memory of the processors. A
scalable parallel implementation will require disk space to
store results of computations, often many of them interme-
diate results. This is similar to apagingbased system which
can either rely on virtual memory system of the computer or
perform the paging of data structures to the needs of the ap-
plication. We follow the latter approach. Figure 4 shows the
data structures for our design and the ones which are paged
in and out from disk into main memory on each processor.

A global cube topology is maintained for each sub-
cube by distributing the dimension equally on each proces-
sor. A dimension of sizedi; 0 � i < n gets distributed
on p processors, a processori getsddi

p
e portion of di, if

i < di mod p, else it getsbdi
p
c. Each processor thus can

calculate what portion belongs to which processor. Further,
a constant chunk size is used in each dimension across sub-
cubes. This allows for a simple calculation to find the target
chunk which a chunk maps to after aggregating a dimen-
sion. However, the first distribution of the dimensions in the
base cube is done using a sample based partitioning scheme
which may result in a inexact partition and they are kept the
same till any of the distributed dimension gets redistributed.

A cube directorystructure is always maintained in mem-
ory for each cube at the highest level. For each cube this
contains a pointer to adata cubestructure which stores in-
formation about the cube and its chunks. It also contains a
file offset to indicate the file address if the data cube struc-
ture is paged out. A status parameter indicates whether
the data cube structure is in memory (INMEM) or on disk
(ONDISK).

A data cube structure maintains the cube topology pa-
rameters, the number of unique values in each dimension,
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whether the chunk structure for the cube is in memory (sta-
tus), a pointer to the chunk structure if it is in memory and a
file offset if it is on disk. The total number of chunks for the
chunk structure of the cube is intotalchunks. Additionally,
for each chunk of the chunk structure, a chunk statuscstatus
is maintained to keep track of chunk structure paging. The
chunk address is a pointer to the chunk structure in mem-
ory which stores information for each chunk. This is when
cstatus is set to INMEM. Otherwise, cstatus can either be
UNALLOCATED or ONDISK. In the latter case the chunk
address will be a file offset value. For a multidimensional
array, the size of the array and the dimension factor in each
dimension are stored to lookup for the calculations involv-
ing aggregations instead of calculating them on the fly every
time.

A chunk structure for a sub-cube can either be in its en-
tirety or parts of it can be allocated as they are referred to.
The cstatus field of the data cube will keep track of alloca-
tions. Chunk structure keep track of the number of BESS
+ value pairs (ntuples) in the chunk, which are stored in
minichunks. Whether a chunk is dense or sparse is tracked
by type. A dense chunk has a memory pointer to a dense
array whereas a sparse chunk has a memory pointer to a
minichunk. Chunk index for each dimension in the cube
topology is encoded in a 8 byte valuecidx. Further, dimen-
sions of the chunk are encoded in another 8 byte valuecdim.
This allows for quick access to these values instead of cal-
culating them on the fly.

Minichunks can either be unallocated (UNALLO-
CATED), in memory (INMEM), on disk (ONDISK) or
both in memory and on disk (INMEMONDISK). Initially,
a minichunk for a chunk is allocated memory when a
value maps to the chunk (UNALLOCATED! INMEM).
When the minichunk is filled it is written to disk and its
memory reused for the next minichunk (INMEM! IN-

MEM ONDISK). Finally, when a minichunk is purged to
disk it is deallocated (INMEMONDISK ! ONDISK). A
chunk can thus have multiple minichunks. Hence, choosing
the minichunk size is an important parameter to control the
number of disk I/O operations for aggregation calculations.

5 Algorithms and Analysis

Since chunks can either be sparse or dense, we need
methods to aggregate sparse chunks with sparse chunks,
sparse with dense chunks and dense with dense chunks. The
case of dense chunks to sparse chunk does not arise since a
dense chunk does not get converted to a sparse chunk ever.
Also, a chunked organization may be converted into a multi-
dimensional array. The various options are illustrated in
Figure 3. In this section we discuss the algorithms for cube
aggregations and chunk mappings.

5.1 Chunk mapping to processors

Each chunk in the source cube is processed to map its
values to the target chunk. The chunk structure carries infor-
mation about the chunk’s dimensional offsets incidx. This
along withcdim, the chunk extents, is used to calculate the
local value in each dimension. For distributed dimensions
we need to add the start of the processor range to calculate
the global value. This is then used to calculate the target
start and stop values. This is used to determine the destina-
tion target processor and the target chunk. The source can
map to the same target chunk on the same processor, same
target chunk on another processor, split among chunks on
the same processor or split among chunks on different pro-
cessors. These cases are illustrated in Figure 5 for a two
dimensional source to target aggregation of chunks. It de-
scribes the chunk mapping process and the distinction be-
tweensplit andnon-splitchunks,local mapping andnon-
local mappings. For a detailed algorithm refer to [7].

A split chunk needs to evaluate each of the index values
by decoding the BESS values and adding it to the chunk
index values. A target processor needs to be evaluated for
the distributed dimensions since this can potentially be dif-
ferent. For a split source chunk, a corrected BESS+value
and target chunk id. is sent, otherwise just the BESS+value
is sent. Asynchronous send is used to overlap computa-
tion and communication. Hence, before the send buffer to
a processor is reused, a receive of the previous send must
be completed. Asynchronous receive operations are posted
from all processors and periodically checked to complete
the appropriate sends. A processor receives the BESS val-
ues and the target chunk id. and does the aggregation op-
eration. For a conversion of a chunked source cube to a
multidimensional target array, offsets are calculated. Dense
chunks are similarly treated.
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5.2 Aggregation Computations

The same partitioning dimensions in the source and tar-
get sub-cubes result in a local aggregation calculation. For
example,ABC ! AB has bothA andB partitioned in
both sub-cubes and this results in a local aggregation. On
the other hand,ABC ! AB, has onlyA partitioned in the
result sub-cube and B goes from being distributed to being
undistributed. This results in communication and is a non
local aggregation. Other cases are illustrated in Table 1.

The extents of a chunk of the aggregating cube can be
contained in the extents of a chunk of the aggregated cube.
In this case the BESS+value pairs are directly mapped to the
target chunk, locally or non-locally. However, the BESS
index values need to be modified to encode the offsets of
the new chunk. Figure 6 illustrates a case forAB ! A
where the chunks withA extents of10 � 13 on processor
P0 map to the chunk with extents9 � 13 on processor P1.
The BESS encoding of A needs to be incremented by 1 to
correctly reflect the target BESS encoding. If the chunk is
overlapping over a target chunk boundary, then each BESS
value has to be extracted to determine its target chunk. This
is computationally more expensive than the direct case. It is
to be noted that a 2 dimensional distribution may result in
more overlapped chunks than a 1 dimensional distribution,
because the former has more processor boundary area than
the latter.

Sparse chunks store BESS+value pairs in minichunks.
Sparse to sparse aggregations involve accessing these
minichunks. The BESS values are kept sorted in the
minichunks to facilitate the aggregation calculations by us-
ing sort, merge and scan operations used in relational pro-
cessing. A sparse chunk can be aggregated to a dense chunk
by converting the BESS dimension encodings to a chunk
offset value. The detailed algorithms are described in [7].

6 Data Mining

Data mining can be viewed as an automated application
of algorithms to detect patterns and extract knowledge from
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data [4]. We briefly describe an integration of association
rule mining and classification with the parallel OLAP and
multidimensional analysis infrastructure presented in this
paper.

6.1 Association Rule Mining

An association rule is an expressionA ) B, whereA
andB are sets of items contained in a set of transactions.
This means that a transaction in the database that contains
the items inA tend to contain the items inB, with a cer-
tain probability. These are captured in the metricsupport
andconfidence. Association rule mining has applications in
cross-marketing, attached mailing, add-on sales, store lay-
out and customer segmentation based on buying patterns to
name a few.

Discovery of quantitative rules is associated with quanti-
tative information from the database. The data cube rep-
resents quantitative summary information for a subset of
the attributes. Attribute-oriented approaches [1] [10] [11] to
data mining are data-driven and can use this summary infor-
mation to discover association rules.Supportof a patternA
in a setS is the ratio of the number of transactions contain-
ingA and the total number of transactions inS. Confidence
of a ruleA ! B is the probability that patternB occurs in
S when patternA occurs inS and can be defined as the ra-
tio of the support ofAB and support ofA. The rule is then
described asA! B [support, confidence]and astrongas-
sociation rule has a support greater than a pre-determined
minimum support and a confidence greater than a pre-
determined minimum confidence. This can also be taken
as the measure of“interestingness”of the rule. Calculation
of support and confidence for the ruleA ! B involve the
aggregates from the cubeAB, A, B and ALL. Support is
calculated as Prob(A[B) = Number of transactions(A[B)

Total transactions
,

which involve values from cubeA;B andALL. Confi-
dence is Prob(BjA) = Number of transactions(A\B)

Number transactions(A) , which
involves cubesAB andA. Since the data cube has these
summaries for all possible combinations ofA andB, com-



putation of support and confidence can be done for all pos-
sible pairs. Similarly, association between more attributes
can be generated by looking at cubes with more attributes.

Additionally, dimension hierarchies can be utilized to
provide multiple level data mining by progressive general-
ization (roll-up) and deepening (drill-down). This is useful
for data mining at multiple concept levels and interesting in-
formation can potentially be obtained at different levels. An
approach to data mining called Attribute Focusing targets
the end-user by using algorithms that lead the user through
the analysis of data. Attribute Focusing has been success-
fully applied in discovering interesting patterns in the NBA
[1] and other applications. Since data cubes have aggrega-
tion values on combinations of attributes already calculated,
the computations of attribute focusing are greatly facilitated
by data cubes. We present a parallel algorithm to calculate
the interestingness function used in attribute focusing on the
data cube.

6.2 Decision-tree based Classi�cation

Classification is used for predictive data mining. Ap-
plications that look at the known answers in the past and
leverage from it in the future can take advantage of this tech-
nique. A set of sample records called thetraining data set
is given consisting of several attributes. Attributes can ei-
ther becontinuous, if they come from an ordered domain,
or categorical, if they are from an unordered domain. One
of the attributes is theclassifyingattribute that indicates the
classto which the record belongs. The objective of classifi-
cation is to build a model of the classifying attribute based
upon the other attributes of the record. We use the decision
tree model because they are relatively inexpensive to con-
struct, easy to interpret and easy to integrate with data base
systems.

Recent work has focused on using the entire data set, in
classifiers like SLIQ [14] and SPRINT [16]. A parallel clas-
sifier in the same spirit has been developed in ScalParC [13].
The approach of SPRINT, SLIQ is to sort the continuous at-
tribute once in the beginning and maintain the sorted order
in the subsequent splitting steps. Separate lists are kept for
each attribute which maintains a record identifier for each
sorted value. In the splitting phase the same records need to
be assigned to a node, which may be in a different order in
the different attribute lists. A hash table is used to provide a
mapping between record identifiers and the node to which it
belongs after the split. This mapping is then probed to split
the attribute lists in a consistent manner.

Table 2 is an example training set with three attributes,
Age, Car color and Gender, and a class attribute. Fig-
ure 7(a) shows the classification tree for it. At each node
the attribute to split is chosen that best divides the train-
ing set. Several splitting criteria have been used in the
past to evaluate the goodness of a split. Calculating the

Table 2. Training Set
Row-id Age Car-Color Gender Class-id

0 10 Green F 0
1 50 Blue M 1
2 40 Yellow F 0
3 30 Green F 0
4 20 Red M 1
5 40 Blue M 0
6 20 Yellow M 1

gini index is commonly used [2]. This involves comput-
ing the frequency of records of each class in each of the
partitions. If a parent node havingn records andc possi-
ble classes is split intop partitions, thegini index of the
ith partition isginii = 1 �

Pc
j=1(nij=ni)

2. ni is the to-
tal number of records in partitioni, of which nij records
belong to classj. Thegini index of the total split is given
by ginisplit =

Pp
i=1(ni=n)ginii. The attribute with the

least value ofginisplit is chosen to split the records at that
node. The matrixnij is called thecount matrix. The count
matrix needs to be calculated for each evaluated split point
for a continuous attribute. Categorical attributes have only
one count matrix associated with them, hence computation
of the gini index is straightforward. For the continuous at-
tributes an appropriate splitting value has to be determined
by calculating theginisplit and choosing the one with the
minimum value. If the attribute is sorted then a linear search
can be made for the optimal split point by evaluating the
gini index at each attribute value. The count matrix is cal-
culated at each possible split point to evaluate theginisplit
value. Splitting the split-attribute is straightforward by ad-
justing pointer values. The challenge is to split the non-
split attributes efficiently. Existing implementations such
as SPRINT and ScalParC maintain a mapping of the row-
id and class-id with the values assigned to each node. The
values are split physically among nodes, such that the con-
tinuous attribute maintain their sorted order in each node to
facilitate the sequential scan for the next split determination
phase. A hash list maintains the mapping of record ids to
nodes. The record ids in the lists for non-splitting attributes
are searched to get the node information, and perform the
correct split.
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Figure 7. (a) Classification tree for training
set (b) Classification tree embedded on the
base cube



6.3 Classi�cation on the cube structure

We propose that classification trees can be built using
structure imposed on data using the multidimensional data
model. Gini index calculation relies on the count matrix
which can be efficiently calculated using the dimensional
model. Each populated cell represents a record in the array.
For the base cube (which is a multidimensional representa-
tion of the records without any aggregation) the class value
of the record is stored in each cell. The gini index calcu-
lation uses the count matrix which has information about
the number of records in each partition belonging to each
possible class.
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Figure 8. (a) Training set records (b) corre-
sponding multidimensional model

To evaluate split points for a continuous attribute the
ginisplit needs to be evaluated for each possible split point
in a continuous attribute and once for a categorical attribute.
This means the aggregate calculations present in each of the
1 dimensional aggregates can be used if they have number
of records belonging to each class. Therefore for each ag-
gregate we store the number of records in each class. Figure
8(a) gives an example training set with two dimensions,A,
a continuous dimension andB a categorical dimension and
two class values0 and1. Figure 8(b) is the corresponding
multidimensional model. The continuous dimensionsA is
stored in the sorted order. The aggregates store the number
of records mapping to that cell for both classes0 and1. To
calculate theginisplit for the continuous attribute attribute
A it is now easy to look at theA aggregate and sum the val-
ues belonging to both classes 0 and 1 on both sides of the
split point under consideration to get the count matrix. Gini
index calculation is done on an attribute list which in the
case of a multidimensional model is a dimension. Count
matrix is repeatedly calculated on the sorted attribute list
which is readily available in the cube structure as a higher
level one dimensional aggregate. Each dimension is sorted
in the dimensional structure as shown in Figure 8(b). Fur-
ther details are present in [7].

7 Performance Results

In this section we present performance results for our
system on a 16-node IBM SP-2 distributed memory par-

allel computer available to us at Northwestern University.
AssumeN tuples andp processors. Initially, each proces-
sor readsN

p
tuples from a shared disk, assuming that the

number of unique values is known for each attribute. These
are partitioned using a sample based partitioning algorithm
(Partitioning phase) so that the attribute (dimension) values
are ordered on processors and distributed almost equally.
To load the base cube, tuples are sorted (Sorting phase) on
the combined key of all the attributes so that the access to
chunks is conformant to its layout in memory/disk. (Sorting
in the orderA0 ! A1 ! A2 : : : An�1, is conformant to the
layout of chunks whereA0 is the outer most dimension and
An�1 is the inner most, for loading a sorted run of values.)

Table 3. Description of datasets and at-
tributes, (N) Numeric (S) String

Data dim (di) (
Q

i
di) Tuples

I 3 1024(S),256(N), 512(N) 2
27 10 million

II 5 1024(S),16(N),32(N),16(N),256(S) 2
31 1 and 10 million

III 10 1024(S),16(S),4(S),16,4,4,16,4,4,32(N) 2
37 5 and 10 million

IV 20 16(S),16(S),8(S),2,2,2,2,4,4, 2
51 1 million

4,4,4,8,2,8,8,8,2,4,1024 (N)

The base cube is loaded on each processor from these
tuples locally on each processor. The sub-cubes of the data
cube are calculated from here (Building phase). This is fol-
lowed by the analysis and data mining phase on the com-
puted aggregates.

We choose four data sets, one each of dimensionality 3,
5, 10 and 20 to illustrate performance. Random data with
a uniform distribution is currently used for the performance
figures. We have evaluated other types of data (e.g skewed
with Zipfian distribution) including real OLAP data sets (in-
cluding the OLAP benchmark [3], which we used in our ear-
lier study [5]), for a better characterization of performance
under different workloads. The number of sub cubes in the
datacube for Dataset I is23 = 8, dataset II is25 = 32 and
dataset III is210 = 1024. We report the results of complete
data cube construction for these sets. For Dataset IV we
report the results of partial data cube construction in which
1350 sub-cubes are calculated.

8 16 32
Number of Processors

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

200.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

5 dimensions, 10 million tuples

Partitioning
Sorting
Loading
Build 2D
Build 1D

8 16 32
Number of Processors

0.0

5.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

45.0

50.0

55.0

60.0

65.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

10 dimensions, 10 million tuples

Partitioning
Sorting
Loading

8 16 32
Number of Processors

0.0

400.0

800.0

1200.0

1600.0

2000.0

2400.0

2800.0

T
im

e
 (

in
 s

e
c
o

n
d

s
)

10 dimensions, 10 million tuples

Build (2D partitioning)
Build (1D partitioning)

Figure 9. Time taken by various phases of the
data cube construction algorithm for 5 (32
sub cubes) and 10 (1024 sub cubes) dimen-
sions
Figure 9 shows the time taken by the various phases of



the data cube construction algorithm. Each phase of the
cube construction process shows good speedup for all the
data sets when a single dimension is partitioned in the base
cube. A two dimensional partitioning performs better than a
one dimensional partitioning because there are more chunks
in the partitioned dimension that allows for better sparse-
sparse aggregation performance.

Figure 10 shows the time for full and partial cube build
for dataset III and for partial cube building for dataset IV.
Partial build times are much smaller than the full cube build-
ing time.
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Figure 10. Full and partial cubes (a) 10D, 10
million tuples on 16 processors, (b) partial
cubes for 20D on 8 & 16 processors
Other results which are used to evaluate our parallel in-

frastructure include time to execute OLAP queries, notably
range queries and queries over dimension hierarchies. As-
sociation rule mining and classification tree building on the
multidimensional infrastructure are also evaluated with ap-
propriate data sets. We do not include them here due to lack
of space.

8 Conclusions

In this paper we have presented the design and imple-
mentation of a scalable parallel system for multidimen-
sional analysis, OLAP and data mining. Using the multi-
dimensional data model, data is stored inchunks. Sparse
chunks are represented by a bit encoding which can be used
for efficient aggregation operations on compressed data.
For maximum efficiency of operations dense regions can
also be stored as multidimensional arrays if the cardinalities
of the dimensions involved are not large and the cube size
is below a specific threshold. Operations between chunked
and multi-dimensional array cubes are supported.

The data structures to track the different cubes in a data
cube, the chunk structures of each cube and the chunks
themselves (using minichunks) use paging to support a large
number of cubes, a large number of chunks per cube and a
large chunk size. This framework has been demonstrated
for use in OLAP queries which are ad-hoc in nature and
require fast computation times by pre-aggregating calcula-
tions. Data mining uses some of the precomputed aggre-
gated calculations to compute the probabilities needed for

calculating support and confidence measures for association
rules and the split point evaluation in building classification
trees. Parallelism has been used to support a large number
of dimensions and large data sets for effective data analysis
and decision making.
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