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Abstract 1 Introduction

Decision support systems are important in leveraging On-Line Analytical processing (OLAP) and multi-

information present in data warehouses in businesses ”kedlmenspngl an.aIyS|s IS used fpr d?CISIOI’I support systems
banking, insurance, retail and health-care among many oth- and statistical inferencing to find interesting information

ers Th’e multi—dim’ensional aspects of a business can pdrom large databases. Multidimensional databases are suit-
naturally expressed using a multi-dimensional data model. able for OLAP and data mining since these applications re-

Data analysis and data mining on these warehouses posequire dimension oriented operations on data. Traditional

new challenges for traditional database systems. OLAP multidimensional databases store data in multidimensional
and data mining operations require summary information arrays on which analytical operations are performed. Mul-

on these multi-dimensional data sets. Query processing forgdmensmnal arrays are 909d t? Sto;? ?}enie da;fq,_but most
these applications require different views of data for analy- atasets are sparse Iin practice for which other efficient stor-

sis and effective decision making. Data mining techniquesage §chemes are requllred. ) ,

can be applied in conjunction with OLAP for an integrated _ 't IS important to weigh the trade-offs involved in reduc-
business solution. As data warehouses grow, parallel pro- N9 the storage space versus the increase in access time for
cessing techniques have been applied to enable the use dtach sparse data structure, in comparison to multidimen-
larger data sets and reduce the time for analysis, thereby Sional arrays. These trade-offs are dependent on many pa-

enabling evaluation of many more options for decision mak- '@meters some of which are (1) number of dimensions, (2)
ing. sizes of dimensions and (3) degree of sparsity of the data.

In this paper we address (1) scalability in multi- Complex operations such as required for OLAP can be very
dimensional systems for OLAP and multi-dimensional anal- expensive in terms of data access time if efficient data struc-
ysis, (2) integration of data mining with the OLAP frame- tures are not used. . - ,
work, and (3) high performance by using parallel pro- We compare _th? storage and opgranonal _efﬂmency n
cessing for OLAP and data mining. We describe our Sys_OLAP and multi-dimensional analysis of various sparse

tem PARSIMONY - Parallel and Scalable Infrastructure for data storage schemes in [6]. A novel data structure using bit
Multidimensional Online analytical processing. This plat- encodings for dimension indices called Bit-Encoded Sparse

form is used both for OLAP and data mining. Sparsity of Structure (BESS) is used to store sparse data in chunks,
data sets is handled by using sparseunksusing a bit- whlch sgpports ff':\st OLAP query operations on sparse data
encoded sparse structure for compression, which enabled!Sing bit operations without the need for exploding the

aggregate operations on compressed data. Techniques fosparse data into a multidimensional array. Chunks provide

effectively using summary information available in data multl-émdmensmnal index stLucr:ure for eff|C|en|t.dc|jmenS|(')n I
cubes for data mining are presented for miniAgsocia-  Ofiented data accesses much the same as multi-dimensiona

tion rulesand decision-tree base@lassification These take ~ &rrays do.
advantage of the data organization provided by the multidi- !N this paper we present a parallel and scalable OLAP
mensional data model. and data mining framework for large data sets. Parallel data

cube construction for large data sets and a large number of
dimensions using both dense and sparse storage structuresis
presented. Sparsity is handled by using compreskadks
using a bit encoded sparse structure (BESS). Data is read
OLAP, Data Cube, Data Mining, High from.a relationgl data Warehou_se Whi.Ch provides a set of tu-
ples in the desired number of dimensions. Precomputed val-
ues are used in the probability calculations for association

Performance results for high dimensional data sets on
a distributed memory parallel machine (IBM SP-2) show
good speedup and scalability.
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rule mining. Also, classification trees can be built by using
the aggregates of class id. counts to calculate the splitting
criterion for each dimension.

The rest of the paper is organized as follows. Section 2
describes OLAP and multidimensional analysis using the
data cube operator. Section 3 presents multi-dimensional
storage using chunks and BESS for sparse data. Section 4
presents steps in the computation of the data cube on a par-
allel machine and the overall design. Section 5 describes
the algorithms, techniques and optimizations in the paral-
lel building of the simultaneous multi-dimensional aggre-
gates and the factors affecting performance. Section 6 de+tation, Slicing-dicing involves selecting some subset of the
scribes data mining algorithms like association rule mining cube Roll-up is an aggregation that can be done at different
and classification on the multidimensional structure and its levels of hierarchy, an®rill-down traverses the hierarchy
parallelization. Section 7 presents performance results forfrom lower to higher levels of detail. Summarizing these
cube building and and analysis for communication and I/O operations, we observe that OLAP requires access to data
for it. Section 8 concludes the paper. along a particular dimension or a combination of dimen-

sions.

, , _ _ Data Storage: Chunks and BESS

OLAP is used to summarize, consolidate, and synthesize
data according to multiple dimensions. It has been used in  Multidimensional database technology facilitates flexi-
applications such as financial modeling (budgeting, plan- ble, high performance access and analysis of large volumes
ning), sales forecasting, customer and product profitability of data [18]. It is more natural for humans to visualize a
exception reporting, resource allocation and capacity plan-multi-dimensional structure. Multi-dimensional arrays are
ning, variance analysis, promotion planning, and marketthe most intuitive of these structures. Chunking has been
share analysis [3]. Multi-dimensional database techniquesused to store arrays for better access performance as a col-
(MOLAP) have been applied to decision-support applica- lection of dense data blocks [15]. éhunkis defined as a
tions. A “cell” in multi-dimensional space represents a tu- block of data from the multidimensional array which con-
ple, with the attributes of the tuple identifying the location tains data in all dimensions. A collection of chunks defines
of the tuple in the multi-dimensional space andtiasure  the entire array. Figure 2(a) shows chunking of a three di-
values represent the content of the cell. mensional array. A chunk is stored contiguously in mem-

Data can be organized into a data cube by calculating allory and data in each dimension is strided with the dimen-
possible combinations of GROUP-BYs [9]. This operation sion sizes of the chunk. Most sparse data may not be uni-
is useful for answering OLAP queries which use aggrega-formly sparse. Dense clusters of data can be stored as mul-
tion on different combinations of attributes. For a data set tidimensional arrays. Sparse data structures are needed to
with n attributes this leads " GROUP-BY calculations.  store the sparse portions of data. These chunks can then ei-
A data cube treats each of the0 < k < n aggregation at-  ther be stored as dense arrays or stored using an appropriate
tributes as a dimension itspace. Figure 1 shows a lattice sparse data structure as illustrated in Figure 2(b). Chunks
structure for the data cube with 5 dimensions. At a level also act as an index structure which helps in extracting data
i,0 < i < n of the lattice, there ar€'(n, i) sub-cubes (ag-  for queries and OLAP operations.
gregates) with exactly dimensions, where the functidr

. o L . . -

gives the all combinations havirglistinct dimensions from m%

Figure 1. Lattice for cube operator

2 OLAP and Multidimensional Analysis

n dimensions. A total o}_"_, C'(n,i) = 2" sub-cubes are
present in the data cube iznc(iuding the base cube. Optimiza- % il
tions of calculating the aggregates in the sub-cubes can be 1314 c15/c1g Z &
performed using the lattice structure augmented by the var- o ) i i e g 2l
ious computations and communication costs to generate a ﬁz f C: z f 7 . "
DAG of cube orderings which minimize the cost. This is g R— Q @%
discussed in a later section. Mudnerson arey “’ﬁm
OLAP queries can in many cases be answered by the ag- e e S
gregates in the data cube. Most operations in a data analysis Suageinmenoy - Fumbia s
scenario require a multidimensional view of da@avoting (a) Chunking for an array (b) Chunked storage for a cube

involves rotating the cube to change the dimensional orien- Figure 2. Storage of data in chunks



Typically, sparse structures have been used for advan-| Xuitidimensional

Analysis

tages they provide in terms of storage, but operations on Seientific and
. . . . . atistica
data are performed on a multidimensional array which is | pawbases
populated from the sparse data. However, this is not al- | Daa Mining

ways possible when either the dimension sizes are large or v - {mdarray - md-array
orag

Aggregation

the number of dimensions is large. Since we are dealing|  Pata cuve oparse oparse

dense dense

chunked [

with multidimensional structures for a large number of di- rord o 1D 1D
. . . . - Completq hratielism| distributed [
mensions, we are interested in performing operations on the riproc zb % ZJZP,OC
sparse structure itself. This is desirable to reduce 1/O costs o
by having more data in memory to work on. This is one Agoregation) O avel by Lovel) - Cube
of the primary motivations for our Bit-encoded sparse stor- Chunk acces
age (BESS). For each cell present in a chunk a dimension Dimension Oeneed

index is encoded irflog|d;|] bits for each dimensiod;
of size|d;|. A 8-byte encoding is used to store the BESS .. . . C : :
tion. A dimension, or a combination of dimensions can

index along with the value at that location. A larger en- L . - .
i i . : be distributed. In order to achieve sufficient parallelism,
coding can be used if the number of dimensions are larger.

than 20. A dimension index can then be extracted by a b|tIt wogld.be requed that the product of cardinalities of
. : ; the distributed dimensions be much larger than the num-
mask operation. Aggregation along a dimensipican be . .
9 : L . ber of processors. For example, for 5 dimensional data
done by masking its dimension encoding in BESS and using

. ; (ABCDE), a 1D distribution will partitiond and a 2D dis-
a sort operation to get the duplicate resultant BESS valuestribution will partition AB. We assume, that dimensions are
together. This is followed by a scan of the BESS index, P : '

aggregating values for each duplicate BESS index. For di_avallable that have cardinalities much greater than the num-

mensional analysis, aggregation needs to be done for approt—)er of processors in both cases. That s, eifHer > p for

riate chunks along a dimensional plane somei, or |4;|[4;] > p for somei, j, 0 < i,j < n —1,
P 9 P ' n is the number of dimensions. Partitioning determines the

4 Overall Design communication requirements for data movement in the in-
termediate aggregate calculations in the data cube. We sup-

In this section we describe our design for a parallel and port both 1D and 2D partition in our implementations.
scalable data cube on coarse grained parallel machines (e.g Since2” cubes are being constructed, and we keep them
IBM SP-2) or a Network of Workstations, characterized by distributed as well. The distribution of these cubes de-
powerful general purpose processors (few to a few hundred)pends on the cardinalities of their largest 1 or 2 dimensions.
and a fast interconnection between them. The programmindThe same criteria is used here as the one used for the base
paradigm used is a high level programming language (e.g.cube. However, redistribution of dimensions and chunks
C/C++) embedded with calls to a portable communication may be required if a dimension is partitioned anew or is re-
library (e.g. Message Passing Interface). partitioned.

In what follows, we address issues of data partition-  Table 1 shows the various distributions for aggregate cal-
ing, parallelism, schedule construction, data cube building, culations supported in our framework. The underlined di-
chunk storage and memory usage on this machine architecmensions are partitioned. Calculations are eittmral or
ture. Figure 3 summarizes the various options available forNon Local Local calculations maintain the data distribu-
these, especially in terms of storage of cubes, parallelism ation on each processor and the aggregation calculation does
different levels, aggregation calculation orderings and the not involve any inter-processor communication. Non local
chunk access for aggregations. Moreover, a partial cubecalculations distribute a undistributed dimension such as in
can be constructed if the number of dimensions is large oraABC' — AC, where dimensiorB is aggregated and,
specific level of the cube is needed. For example, in 2-waywhich was previously undistributed, is distributed. Another
attribute-oriented data mining of associations, all cubes atcalculation iSABC — BC, where A is aggregated and
level 2 are materialized by using the base cube and the min-B, the second distributed dimension becomes the first dis-
imum materializations of sub-cubes at the intermediate lev- tributed dimension, an@' gets distributed as the second di-
els betweerd andn — 1[8]. mension. These can be categorized as either dimension 1 or
dimension 2 being involved in the (re)distribution. Also, as
illustrated in Figure 3, the sub-cubes can be storethas-

Data is partitioned on processors to distribute work eq- kedor asmulti-dimensional arraysvhich are distributed or
uitably. In addition, a partitioning scheme for multidi- on a single processor with these distributions. The multi-
mensional has to bdimension-awarand for dimension-  dimensional arrays are however restricted to a 1D distribu-
oriented operations have some regularity in the distribu- tion since their sizes are small and 2D distribution will not

Figure 3. Data Cube Architecture

4.1 Data Partitioning and Parallelism



provide sufficient parallelism. The data cube build sched- tween ABD— BD and BCD— BD one needs to select the
uler does not evaluate the various possible distributions cur-one with the lower cost. Cost estimation of the aggregation
rently, instead calculating the costs based on the estimateaperations can be done by establishing a cost model. Some
sizes of the source and the target sub-cubes and uses a patalculations do not involve communication and &eal,
titioning based on the dimension cardinalities. others involving communication are labeled ramn-local
Detalils of these techniques for a parallel implementation us-
ing multidimensional arrays can be found in [5]. However,

Table 1. Partitioning of sub-cubes following with chunking and presence of sparse chunks the cube size
aggregation calculations cannot be taken for calculating computation and communi-
cation costs. Size estimation is required for sparse cubes
Distrbution Local TN R— to estimate computation and communication costs when di-
2D — 2D ABC — AB ABC — BC ABC — AC 1 i 1
2D = 2D ABC - AB B, — mension aggregation operations are p_erfo.rme.d. We use a
D> 1D ABC — AB AC | ABC = BC simple analytical algorithm for size estimation in presence
2D — UNI ABC — BC ABC — AC f . . . .
1D = UNI ABC — BC | ABC — aC of hierarchies presented in [17]. This is shown to perform
UNI — UNIT ABC — AB, AC

well for uniformly distributed random data and also works
well for some amount of skew. Since we need reasonable
4.2 Schedule Generation for Data Cube estimates to select the materialization of a sub-cube from a

L . sub-cube at a higher level, this works well.
Several optimizations can be done over the naive method

of calculating each aggregate separately from the initial data4.3 Data Structure Management
[9]. Smallest Parent computes a group-by by selecting the
smallest of the previously computed group-bys from which
it is possible to compute the group-by. Consider a four
attribute cube A BC D). Group-byAB can be calculated
from ABCD, ABD andABC. Clearly sizes ofABC and
ABD are smaller than that of BC' D and are better candi-
dates. The next optimization is to compute the group-bys in
an order in which the next group-by calculation can bene-

fit from the cached results of the previous calculation. This

can be extended to disk based data cubes by reducing disfgata structures fqr our design and the ones which are paged
/0 and caching in main memory. For example, after com- in and out from disk into main memory on each processor.

puting ABC from ABC'D we computed B followed by A. A global cube topology is maintained for each sub-
An important multi-processor optimization is minimize cube by Q|str|bgt|ng the_ dlmenSIOp equally on gaqh proces-
inter-processor communication The order of computa-  SOF- A dimension of sizé;,0 < i < ngets distributed
tion should minimize the communication among the proces- ©" P Processors, a processogets [ 4] portion of d;, if
sors because inter-processor communication costs are typ: < d; mod p, else it QEtSL%J- Each processor thus can
ically higher than computation costs. For example, for a calculate what portion belongs to which processor. Further,
1D partition, BC' — C' will have a higher communication a constant chunk size is used in each dimension across sub-
cost to first aggregate along B and then divide C among thecubes. This allows for a simple calculation to find the target
processors in comparison@@D — C where a local aggre-  chunk which a chunk maps to after aggregating a dimen-
gation on each processor along D will be sufficient. sion. However, the first distribution of the dimensions in the
A lattice framework to represent the hierarchy of the base cube is done using a sample based partitioning scheme
group-bys was introduced in [12]. A scheduling algorithm which may result in a inexact partition and they are kept the
can be applied to this framework substituting the appro- same till any of the distributed dimension gets redistributed.
priate costs of computation and communication. A lattice A cube directonystructure is always maintained in mem-
for the group-by calculations for a five-dimensional cube ory for each cube at the highest level. For each cube this
(ABCDE) is shown in Figure 1. Each node represents an contains a pointer to data cubestructure which stores in-
aggregate and an arrow represents a possible aggregate cdbrmation about the cube and its chunks. It also contains a
culation which is also used to represent the cost of the cal-file offset to indicate the file address if the data cube struc-
culation. ture is paged out. A status parameter indicates whether
Calculation of the order in which the GROUP-BYs are the data cube structure is in memory (INMEM) or on disk
created depends on the cost of deriving a lower order (one(ONDISK).
with a lower number of attributes) group-by from a higher A data cube structure maintains the cube topology pa-
order (also called thparen) group-by. For example, be- rameters, the number of unique values in each dimension,

For large data sets the sizes of the cubes and the number
of cubes will not fit in main memory of the processors. A
scalable parallel implementation will require disk space to
store results of computations, often many of them interme-
diate results. This is similar togagingbased system which
can either rely on virtual memory system of the computer or
perform the paging of data structures to the needs of the ap-
plication. We follow the latter approach. Figure 4 shows the



MEM _ONDISK). Finally, when a minichunk is purged to

disk it is deallocated (INMEMONDISK — ONDISK). A
Dot Cube Bt [ Tomemamis 1) - chunk can thus have multiple minichunks. Hence, choosing
Fleotiset _ /| saus i;,,‘p/ *’ﬁi’%‘ the minichunk size is an important parameter to control the
o HiGhmark alus - el number of disk I/O operations for aggregation calculations.

Status= T o1 ! U mem_p
Data Cube *ptr fileoffset
File offset

stafus= ONDI$K sorted by BESS

5 Algorithms and Analysis

Since chunks can either be sparse or dense, we need

: methods to aggregate sparse chunks with sparse chunks,
sparse with dense chunks and dense with dense chunks. The
case of dense chunks to sparse chunk does not arise since a

Main Memory

Processor A/D

S—_—
dense chunk does not get converted to a sparse chunk ever.
m . Also, a chunked organization may be converted into a multi-
Disk dimensional array. The various options are illustrated in
Figure 4. Data Structures on a processor P Figure 3. In this section we discuss the algorithms for cube

aggregations and chunk mappings.

whether the chunk structure for the cube is in memetg( 5.1 Chunk mapping to processors
tus), a pointer to the chunk structure if it is in memory and a
file offset if it is on disk. The total number of chunks for the Each chunk in the source cube is processed to map its
chunk structure of the cube is fatalchunks Additionally, values to the target chunk. The chunk structure carries infor-
for each chunk of the chunk structure, a chunk stastiatus mation about the chunk’s dimensional offsetcidx. This
is maintained to keep track of chunk structure paging. The along withcdim, the chunk extents, is used to calculate the
chunk address is a pointer to the chunk structure in mem-local value in each dimension. For distributed dimensions
ory which stores information for each chunk. This is when we need to add the start of the processor range to calculate
cstatus is set to INMEM. Otherwise, cstatus can either bethe global value. This is then used to calculate the target
UNALLOCATED or ONDISK. In the latter case the chunk start and stop values. This is used to determine the destina-
address will be a file offset value. For a multidimensional tion target processor and the target chunk. The source can
array, the size of the array and the dimension factor in eachmap to the same target chunk on the same processor, same
dimension are stored to lookup for the calculations involv- target chunk on another processor, split among chunks on
ing aggregations instead of calculating them on the fly everythe same processor or split among chunks on different pro-
time. cessors. These cases are illustrated in Figure 5 for a two
A chunk structure for a sub-cube can either be in its en- dimensional source to target aggregation of chunks. It de-
tirety or parts of it can be allocated as they are referred to.Scribes the chunk mapping process and the distinction be-
The cstatus field of the data cube will keep track of alloca- tweensplit and non-splitchunks,local mapping anchon-
tions. Chunk structure keep track of the number of BESS local mappings. For a detailed algorithm refer to [7].
+ value pairs iftupleg in the chunk, which are stored in A split chunk needs to evaluate each of the index values
minichunks Whether a chunk is dense or sparse is trackedby decoding the BESS values and adding it to the chunk
by type A dense chunk has a memory pointer to a denseindex values. A target processor needs to be evaluated for
array whereas a sparse chunk has a memory pointer to &he distributed dimensions since this can potentially be dif-
minichunk. Chunk index for each dimension in the cube ferent. For a split source chunk, a corrected BESS+value
topology is encoded in a 8 byte valagx. Further, dimen-  and target chunk id. is sent, otherwise just the BESS+value

sions of the chunk are encoded in another 8 byte vadire is sent. Asynchronous send is used to overlap computa-
This allows for quick access to these values instead of cal-tion and communication. Hence, before the send buffer to
culating them on the fly. a processor is reused, a receive of the previous send must

Minichunks can either be unallocated (UNALLO- be completed. Asynchronous receive operations are posted
CATED), in memory (INMEM), on disk (ONDISK) or  from all processors and periodically checked to complete
both in memory and on disk (INMEMNDISK). Initially, the appropriate sends. A processor receives the BESS val-
a minichunk for a chunk is allocated memory when a ues and the target chunk id. and does the aggregation op-
value maps to the chunk (UNALLOCATEB; INMEM). eration. For a conversion of a chunked source cube to a
When the minichunk is filled it is written to disk and its multidimensional target array, offsets are calculated. Dense
memory reused for the next minichunk (INMEM> IN- chunks are similarly treated.
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Figure 5. Chunk mapping after aggregation Figure 6. Modification of BESS indices while
for a 2D cube distribution mapping a non-split chunk
5.2 Aggregation Computations data [4]. We briefly describe an integration of association

The same partitioning dimensions in the source and tar-rule mining and classification with the parallel OLAP and
get sub-cubes result in a local aggregation calculation. Formultidimensional analysis infrastructure presented in this
example,ABC — AB has bothA and B partitioned in paper.
both sub-cubes and this results in a local aggregation. O
the other handdBC' — AB, has onlyA partitioned in the
result sub-cube and B goes from being distributed to being An association rule is an expressidn= B, where A
undistributed. This results in communication and is a non and B are sets of items contained in a set of transactions.
local aggregation. Other cases are illustrated in Table 1.  This means that a transaction in the database that contains

The extents of a chunk of the aggregat cube can be  the items inA tend to contain the items iB, with a cer-
contained in the extents of a chunk of the aggregatibe. tain probability. These are captured in the mesipport
In this case the BESS+value pairs are directly mapped to theandconfidenceAssociation rule mining has applications in
target chunk, locally or non-locally. However, the BESS cross-marketing, attached mailing, add-on sales, store lay-
index values need to be modified to encode the offsets ofout and customer segmentation based on buying patterns to
the new chunk. Figure 6 illustrates a case foB — A name a few.
where the chunks withi extents ofl0 — 13 on processor Discovery of quantitative rules is associated with quanti-
PO map to the chunk with exterfis— 13 on processor P1. tative information from the database. The data cube rep-
The BESS encoding of A needs to be incremented by 1 toresents quantitative summary information for a subset of
correctly reflect the target BESS encoding. If the chunk is the attributes. Attribute-oriented approaches[1][10] [11] to
overlapping over a target chunk boundary, then each BESSJata mining are data-driven and can use this summary infor-
value has to be extracted to determine its target chunk. Thignation to discover association rule&upporiof a patternd
is computationally more expensive than the direct case. Itisin a setS is the ratio of the number of transactions contain-
to be noted that a 2 dimensional distribution may result in ing A and the total number of transactionsinConfidence
more overlapped chunks than a 1 dimensional distribution,of a rule A — B is the probability that patter® occurs in
because the former has more processor boundary area thas when pattermd occurs inS and can be defined as the ra-
the latter. tio of the support ofA B and support ofd. The rule is then

Sparse chunks store BESS+value pairs in minichunks.described ast — B [support, confidencednd astrongas-
Sparse to sparse aggregations involve accessing thesgociation rule has a support greater than a pre-determined
minichunks. The BESS values are kept sorted in the minimum support and a confidence greater than a pre-
minichunks to facilitate the aggregation calculations by us- determined minimum confidence. This can also be taken
ing sort, merge and scan operations used in relational pro-as the measure tihterestingness’of the rule. Calculation
cessing. A sparse chunk can be aggregated to a dense churi support and confidence for the rule— B involve the
by converting the BESS dimension encodings to a chunk aggregates from the cub&B, A, B and ALL. Support is
offset value. The detailed algorithms are described in [7].  calculated as Prob(U B) = Number=ol-transactions(AUB)

6 Data Minin which involve values from cubdl, B and ALL. Confi-
g dence iS Probe|A) - Number_of_transactions(ANB) , Wthh

Number_transactions(A)

Data mining can be viewed as an automated applicationinvolves cubesAB and A. Since the data cube has these
of algorithms to detect patterns and extract knowledge fromsummaries for all possible combinations4fand B, com-

"6.1 Association Rule Mining




putation of support and confidence can be done for all pos- Table 2. Training Set

sible pairs. Similarly, association between more attributes Row-id | Age | Car-Color | Gender | Class-id
. . . 0 10 Green F 0
can be generated by looking at cubes with more attributes. 1 50 Bite W 1
Additionally, dimension hierarchies can be utilized to 2 40 Yellow F 0
. . .. . 3 30 Green F 0
provide multiple level data mining by progressive general- 7 0 Red M 1
ization (roll-up) and deepening (drill-down). This is useful 5 40 Blue M 0
6 20 Yellow M 1

for data mining at multiple conceptlevels and interesting in-
formation can potentially be obtained at different levels. An
approach to data mining called Attribute Focusing targets gini index is commonly used [2]. This involves comput-
the end-user by using algorithms that lead the user throughng the frequency of records of each class in each of the
the analysis of data. Attribute Focusing has been successpartitions. If a parent node havingrecords and: possi-
fully applied in discovering interesting patterns in the NBA ble classes is split intp partitions, thegini index of the

[1] and other applications. Since data cubes have aggregai'” partition isgini; = 1 — Y27_, (nij/n;)*. n; is the to-
tion values on combinations of attributes already calculated,tal number of records in partitioiy of whichn;; records

the computations of attribute focusing are greatly facilitated belong to clasg. Thegini index of the total split is given

by data cubes. We present a parallel algorithm to calculateby ginispiz = Y i, (ni/n)gini;. The attribute with the
the interestingness function used in attribute focusing on theleast value ofyinisp; is chosen to split the records at that

data cube. node. The matrix;; is called thecount matrix The count
. . . matrix needs to be calculated for each evaluated split point
6.2 Decision-tree based Classification for a continuous attribute. Categorical attributes have only

one count matrix associated with them, hence computation
of the gini index is straightforward. For the continuous at-
tributes an appropriate splitting value has to be determined
by calculating theyinis,;: and choosing the one with the
minimum value. If the attribute is sorted then a linear search
can be made for the optimal split point by evaluating the
gini index at each attribute value. The count matrix is cal-
culated at each possible split point to evaluateghe sp;;;

classto which the record belongs. The objective of classifi- yalge. Spll|tt|ng the split-attribute is stra!ghtforwgrd by ad-
justing pointer values. The challenge is to split the non-

cation is to build a model of the classifying attribute based split attributes efficiently. Existing implementations such

upon the other attributes of the recprd. We use the demsmnas SPRINT and ScalParC maintain a mapping of the row-
tree model because they are relatively inexpensive to con-. S )
: . . id and class-id with the values assigned to each node. The
struct, easy to interpret and easy to integrate with data base : .
values are split physically among nodes, such that the con-

systems. . ) S . .
. tinuous attribute maintain their sorted order in each node to

| Re.](c:.ent l\{\ll(orlétﬁs fi):useg ggglslllr]rg tlkge eAr\mre O:?tla lset, Tacilitate the sequential scan for the next split determination
classifiers like SLIQ [14] an [16]. A parallel clas- phase. A hash list maintains the mapping of record ids to

sifier in the same spirit has been developed in ScalParC [13] nodes. The record ids in the lists for non-splitting attributes

The approac_h OfSPRINT’.SLIQ IS to sprt .the continuous at- are searched to get the node information, and perform the
tribute once in the beginning and maintain the sorted orderCorrect split

in the subsequent splitting steps. Separate lists are kept for

each attribute which maintains a record identifier for each

sorted value. In the splitting phase the same records need to " oy AL

be assigned to a node, which may be in a different order in ‘F ° 3

the different attribute lists. A hash table is used to provide a @ @

mapping between record identifiers and the node to whichit o

belongs after the split. This mapping is then probed to split @

the attribute lists in a consistent manner. 010
Table 2 is an example training set with three attributes,

Age, Car color and Gender, and a class attribute. Fig- o110 o111

ure 7(a) shows the classification tree for it. At each node @ ®

the attribute to split is chosen that best divides the train- Figure 7. (a) Classification tree for training

ing set. Several splitting criteria have been used in the ¢ (b) Classification tree embedded on the
past to evaluate the goodness of a split. Calculating the pase cube

Classification is used for predictive data mining. Ap-
plications that look at the known answers in the past and
leverage from it in the future can take advantage of this tech-
nigue. A set of sample records called tr&ning data set
is given consisting of several attributes. Attributes can ei-
ther becontinuousif they come from an ordered domain,
or categorical if they are from an unordered domain. One
of the attributes is thelassifyingattribute that indicates the
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6.3 Classification on the cube structure allel computer available to us at Northwestern University.

We propose that classification trees can be built using Aerl:m%J;fﬁtL![plels ar;r(jon?rocissro:js. diln;(tlally, eri?r? ptrr? Ctetsr;
structure imposed on data using the multidimensional data>©" €@ ¢ uples from a shared disk, assuming that the
number of unique values is known for each attribute. These

model. Gini index calculation relies on the count matrix . . L .
are partitioned using a sample based partitioning algorithm

which can be efficiently calculated using the dimensional o . . .
model. Each populated cell represents a record in the array(Partmonmg phasgso that the attribute (dimension) values

For the base cube (which is a multidimensional representa—are ordered on processors and distributed almost equally.

tion of the records without any aggregation) the class vaIue;Lo load ttf;e bdaie cu?eilttljr]plesttgrt)e tsortédrg:l gt Ft): aspon ¢
of the record is stored in each cell. The gini index calcu- € combined key of all the atinbutes so that the access 1o

lation uses the count matrix which has information about phunks Is conformantto its layoutin memory/disk. (Sorting

the number of records in each partition belonging to each'" the orderdo — A; — A... An_1,is conformantto the
possible class. layout of chunks wherd, is the outer most dimension and

A, _1 is the inner most, for loading a sorted run of values.)

Traini, ng Set Multidimensional model cid
base cube

A

9
g

o o
10

Table 3. Description of datasets and at-
tributes, (N) Numeric (S) String

30

50
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olo|n|o|w]|n|o
N kfo [ k|ololy

2| s|<|2|ofo|w|oln

Q|N|Q|Q |~ |K|Q|K~
05 <00 3
“
Q
N
05 <0 w2

s Data dim (d;) (Hi d;) Tuples
zo | 3 1024(S),256(N), 512(N) 227 10 million
P 0 20 30 40 50 60 1l 5 1024(S),16(N),32(N),16(N),256(S) 23T 1 and 10 million
e o [T T T2 ol o = T Il 10 1024(S),16(S) 4(S),16,4,4,16,4,4,32(N) 257 5 and 10 million
cid }{ —————————— k{ —————————— Aggregates v 20 16(S),16(S),8(5).2.2,2,2,4,4, 25T 1 million
R I I I I I 4,4,4,82,88,8,24,1024 (N)

@ ®)

The base cube is loaded on each processor from these
tuples locally on each processor. The sub-cubes of the data
cube are calculated from hefuilding phasg This is fol-

To evaluate split points for a continuous attribute the lowed by the analysis and data mining phase on the com-
ginisi: Needs to be evaluated for each possible split point puted aggregates.
in a continuous attribute and once for a categorical attribute. We choose four data sets, one each of dimensionality 3,
This means the aggregate calculations present in each of th®, 10 and 20 to illustrate performance. Random data with
1 dimensional aggregates can be used if they have numbe@ uniform distribution is currently used for the performance
of records belonging to each class. Therefore for each agfigures. We have evaluated other types of data (e.g skewed
gregate we store the number of records in each class. Figuraith Zipfian distribution) including real OLAP data sets (in-
8(a) gives an example training set with two dimensiofis, ~ cluding the OLAP benchmark [3], which we used in our ear-

a continuous dimension ari8l a categorical dimension and lier study [5]), for a better characterization of performance
two class value$ and1. Figure 8(b) is the corresponding under different workloads. The number of sub cubes in the
multidimensional model. The continuous dimensignis ~ datacube for Dataset | i = 8, dataset Il i2° = 32 and
stored in the sorted order. The aggregates store the numbedataset Il1i2'® = 1024. We report the results of complete

of records mapping to that cell for both clas$esnd1. To data cube construction for these sets. For Dataset IV we
calculate theyini;; for the continuous attribute attribute  report the results of partial data cube construction in which
Aitis now easy to look at thel aggregate and sum the val- 1350 sub-cubes are calculated.

ues belonging to both classes 0 and 1 on both sides of the ... IR
split point under consideration to get the count matrix. Gini e o | -
index calculation is done on an attribute list which in the . & .

case of a multidimensional model is a dimension. Count ™

matrix is repeatedly calculated on the sorted attribute list: =
which is readily available in the cube structure as a higher =
level one dimensional aggregate. Each dimension is sorted .
in the dimensional structure as shown in Figure 8(b). Fur-
ther details are present in [7].

Figure 8. (a) Training set records (b) corre-
sponding multidimensional model
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Figure 9. Time taken by various phases of the
7  Performance Results data cube construction algorithm for 5. (32
sub cubes) and 10 (1024 sub cubes) dimen-

In this section we present performance results for our  sions

system on a 16-node IBM SP-2 distributed memory par-  Figure 9 shows the time taken by the various phases of



the data cube construction algorithm. Each phase of thecalculating support and confidence measures for association
cube construction process shows good speedup for all theules and the split point evaluation in building classification
data sets when a single dimension is partitioned in the basdrees. Parallelism has been used to support a large number
cube. A two dimensional partitioning performs better than a of dimensions and large data sets for effective data analysis
one dimensional partitioning because there are more chunk&nd decision making.
in the partitioned dimension that allows for better sparse- References
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