
High Performance Data Mining Using Data Cubes On Parallel Computers�

Sanjay Goil Alok Choudhary
ECE Department and CPDC, Northwestern University

Technological Institute, 2145 Sheridan Road, Evanston IL-60208
fsgoil,choudharg@ece.nwu.edu

Abstract

On-Line Analytical Processing techniques are used for
data analysis and decision support systems. The multidi-
mensionality of the underlying data is well represented by
multidimensional databases. For data mining in knowledge
discovery, OLAP calculations can be effectively used. For
these, high performance parallel systems are required to
provide interactive analysis.

Precomputed aggregate calculations in aData Cubecan
provide efficient query processing for OLAP applications.
In this article, we present parallel data cube construction
on distributed-memory parallel computers from a relational
database. Data Cube is used for data mining of associations
usingAttribute Focusing. Results are presented for these
on the IBM-SP2, which show that our algorithms and tech-
niques are scalable to a large number of processors, pro-
viding a high performance platform for such applications.

1. Introduction

On-line Analytical Processing (OLAP) [1] systems en-
able analysts and managers to gain insight into the perfor-
mance of an enterprise through a wide variety of views of
data organized to reflect its multidimensional nature. OLAP
gives insight into data through fast, consistent, interactive
access to a wide variety of possible views of information.
It is used to summarize, consolidate, view, apply formulae
to, and synthesize data according to multiple dimensions.
Such data management and navigation requirements make
multidimensional database techniques a natural candidate
for OLAP, in which data is stored in a multidimensional ar-
ray. A cell in multidimensional space represents a tuple,
with the attribute values of the tuple identifying its location
in the multidimensional space and themeasurevalues rep-
resent the content of the cell.

�This work was supported in part by NSF Young Investigator Award
CCR-9357840 and NSF CCR-9509143. We would like to thank Dr. Inder-
pal Bhandari for discussions and helpful suggestions.

Data mining can be viewed as an automated application
of algorithms to detect patterns and extract knowledge from
data [2]. An algorithm that enumerates patterns from, or
fits models to, data is a data mining algorithm. Data mining
is a step in the overall concept of knowledge discovery in
databases (KDD). Large data sets are analyzed for search-
ing patterns and discovering rules. Automated techniques
of data mining can make OLAP more useful and easier to
apply in the overall scheme of decision support systems.
Data mining techniques likeAssociations, Classification,
Clustering and Trend analysis[2] can be used together with
OLAP to discover knowledge from data.

An approach to data mining calledAttribute Focusing[5]
targets the consumer by using algorithms that lead the user
through the analysis of data by finding association between
various attributes. Since data cubes have aggregation values
on combinations of attributes already calculated, the com-
putations of attribute focusing are greatly facilitated by data
cubes. We present a parallel algorithm to calculate thein-
terestingnessfunction used in attribute focusing on the data
cube.

In this article we present scalable parallel algorithms and
techniques to construct the data cube and perform data min-
ing through attribute focusing on the data cube. We have
currently considered main-memory data sets. Disk-based
implementation using parallel I/O is currently in progress.
We show the performance of these algorithms on the OLAP
council benchmark [14] which models a real OLAP envi-
ronment on a IBM SP-2 parallel machine. Results show
that our implementations are scalable to a large number of
processors. To the best of our knowledge, this is the first ef-
fort on high performance parallel computation of data cubes
and data mining using them.

The rest of the article is organized as follows. Commu-
nication operations used are given in Section 2. Section 3
gives an overview of the data cube operators. Section 4
presents parallel data cube construction. Section 5 describes
data mining on data cubes with results on the IBM-SP2.
Section 6 concludes the article.

2. Communication Costs

Distributed Memory Parallel Computers (shared-nothing
machines) consist of a set of processors (tens to a few
hundred) connected through an interconnection network.
The memory is physically distributed across the proces-
sors. Interaction between processors is through mes-
sage passing. Popular interconnection topologies are 2D
meshes (Paragon, Delta), 3D meshes (Cray T3D), hyper-
cubes (nCUBE), fat tree (CM5) and multistage networks
(IBM-SP2).

Parallelization of applications requires distributing some
or all of the data structures among the processors. Each pro-
cessor needs to access all the non-local data required for its
local computation. This generates aggregate or collective
communication structures. In aBroadcast, one processor
sends a message of sizem to all other processors.Com-
bine is a binary associative operation applied on a vector of
sizem on every processor.Gather collects data of sizem
fromp processors and stores the resulting vector of sizemp

in one of the processors. In aAll-to-All Communication ,
each processor sends a distinct message of size at mostm

to every processor. Further details on these operations can
be found in [11].

3. Data Cube

The data cube operator is then-dimensional generaliza-
tion of the group-by operator [7]. Consider the following
query which uses the cube operator.
SELECT Model, Year, Color, SUM(sales) AS Sales
FROM Sales
WHERE Model in ’Ford’, ’Chevy’
AND Year BETWEEN 1990 AND 1992
GROUP BY CUBE(Model, Year, Color);

2N � 1 aggregate calculations are needed for aN -
dimensional data cube. For example,23 = 8 group-bys
are calculated for the above query:fModel, Year, Colorg,
fModel, Yearg, fModel, Colorg, fYear, Colorg, fModelg,
fYearg, fColorg and ALL.

Data cube computes multiple aggregates, along all pos-
sible combinations of dimensions. This operation is useful
for answering OLAP queries which use aggregation on dif-
ferent combinations of attributes. Data can be organized
into a data cube by calculating all possible combinations of
GROUP-BYs. For a data set withk attributes this would
lead to2k GROUP-BY calculations. An aggregate of an at-
tribute is represented by introducing a new valueALL in a
tuple.

The cube treats each of thek aggregation attributes as a
dimension ink-space. An aggregate of a particular set of
attribute values is a point in this space. The set of points
form ak-dimensional cube. Aggregate functions are classi-
fied into three categories.Distributive functions allow par-
titions of the input set to be aggregated separately and later

combined.Algebraicfunctions can be expressed in terms of
other distributive functions, e.g.average()can be expressed
as the ratio ofsum()andcount(). Holistic functions, such as
median()cannot be computed in parts and combined.

3.1. Operations on the Data Cube

Data Cube operators generalize the histogram, cross-
tabulation, roll-up, drill-down and sub-total constructs re-
quired by financial databases. The following operations can
be defined on the data cube.Pivoting involves rotating the
cube to change the dimensional orientation of a report or
page on display. It may consist of swapping the two dimen-
sions (row and column in a 2D-cube) or introducing another
dimension instead of some dimension already present in the
cube.Slicing-dicing involves selecting some subset of the
cube. For a fixed attribute value in a given dimension, it
reports all the values for all the other dimensions. It can be
visualized assliceof the data in a 3D-cube. Some dimen-
sions have a hierarchy defined on them. Aggregations can
be done at different levels of hierarchy. Going up the hier-
archy to higher levels of generalization is known asroll-up .
For example, aggregating the dimension up the hierarchy
(day ! month! quarter::) is a roll-up operation.Drill-
down traverses the hierarchy from lower to higher levels of
detail. Drill-down displays detail information for each ag-
gregated point. Trend analysis over sequential time periods
is another OLAP operation.

As an example, consider a multidimensional database
with product, date, supplierasdimensionsandsalesas a
measure. Partitioning a data set into dimensions and mea-
sures is a design choice. Dimensions usually have a hi-
erarchy associated with them, which specify aggregation
levels and the granularity of viewing data. For example
day ! month! quarter ! year is a hierarchy on date.

An OLAP engine can be built on top of a relational
database. This generates analytical queries in SQL which
may become cumbersome for complex queries and affect
performance. Relational systems have to embed a multidi-
mensional view on the underlying data. Alternatively, mul-
tidimensional OLAP (MOLAP) systems use multidimen-
sional databases modeled as multidimensional arrays. An
intuitive view of data provides a sophisticated analytical
functionality and support for complex queries. Data rela-
tionships are modeled more naturally and intuitively.

3.2. Optimizations

Several optimizations can be done over the naive method
of calculating each aggregate separately from the initial data
[7]. Optimizations 1 and 2 are normally considered for a
uniprocessor model. Optimization 3 is an added and impor-
tant consideration for a parallel implementation to reduce
the overheads from communication costs.

1. Smallest Parent:For computing a group-by this se-
lects the smallest of the previously computed group-

bys from which it is possible to compute the group-
by. Consider a four attribute cube (ABCD). Group-
by AB can be calculated fromABCD, ABD and
ABC. Clearly sizes ofABC andABD are smaller
than that ofABCD and are better candidates. The
actual choice will be made by picking the smaller of
ABC andABD.

2. Effective use of Cache:This aims at using the cache
effectively by computing the group-bys in such an
order that the next group-by calculation can benefit
from the cached results of the previous calculation.
This can be extended to disk based data cubes by re-
ducing disk I/O and caching in main memory. For ex-
ample, after computingABC fromABCD we com-
puteAB followed by A. In MOLAP systems the
sizes of the intermediate levels are fixed and the order
can be determined easily.

3. Minimize inter-processor Communication: Com-
munication is involved among the processors to cal-
culate the aggregates. The order of computation
should minimize the communication among the pro-
cessors because communication costs are typically
higher than computation costs. For example,BC !

C will have a higher communication cost to first ag-
gregate along B and then divide C among the proces-
sors in comparison toCD ! C where a local aggre-
gation on each processor along D will be sufficient.

ABCD

ABC ABD ACD BCD

AB AC AD BC BD CD

A B C D

ALL

Level

3

4

of GROUP-BYs

4

4

2

4

1

4

0

3

2

1

0

Figure 1. Lattice for cube operator

A lattice framework to represent the hierarchy of the
group-bys was introduced in [10]. This is an elegant
model for representing the dependencies in the calculations
and also to model costs of the aggregate calculations. A
scheduling algorithm can be applied to this framework sub-
stituting the appropriate costs of computation and commu-
nication. A lattice for the group-by calculations for a four-
dimensional cube (ABCD) is shown in Figure 1. Each
node represents an aggregate and an arrow represents a pos-

sible aggregate calculation which is also used to represent
the cost of the calculation.

Calculation of the order in which the GROUP-BYs are
created depends on the cost of deriving a lower order (one
with a lower number of attributes) group-by from a higher
order (also called theparent) group-by. For example, be-
tween ABD! BD and BCD! BD one needs to select the
one with the lower cost. Cost estimation of the aggregation
operations can be done by establishing a cost model. This
is described later in the section on aggregation.

We assume that the total available memory on the pro-
cessors is large enough to hold the data sets in memory.
This is a reasonable assumption since most parallel ma-
chines these days have 128-256 MB main memory per node.
With 16 nodes we can handle databases of size 2GB and
larger data sets can be handled by increasing the number
of processors. Hence, it is important to develop scalable
algorithms to handle larger databases. In this article we
develop in-memory algorithms to calculate the data cube.
Disk-based algorithms are also being explored as part of
this research.

4. Parallel Data Cube Construction

We assume that data is provided as a set of tuples com-
ing from a relational database and the number of distinct
elements are given for each attribute. For illustration pur-
poses, letA;B;C andD be the attributes in a data set with
Da; Db; Dc andDd as the number of their distinct values,
respectively. We assume that the number of distinct values
in each dimension is known. However, the values are deter-
mined from the database by the algorithm. Without loss of
generality, letDa � Db � Dc � Dd. If this is not the case,
it can be made true by a simple renaming of the attributes.
Let p be the number of processors, numberedP0 : : : Pp�1,
andN be the number of tuples.

Figure 2 shows the various steps in the data cube con-
struction algorithm.

Algorithm 1 Parallel data cube construction and operations

1.Partition tuples between processors (Partitioning)

2.Load tuples into multidimensional array (Loading)

3.Generate schedule for order of group-by calculations

4.Perform aggregation calculations (Aggregation)

5.Redistribute sub-cubes to processors for query processing

6.Definelocal anddistributedhierarchies on all dimensions

Figure 2. Parallel cube construction steps

First, the tuples are partitioned onp processors in a par-
titioning step. Thepartitioningphase is followed by aload-
ing phase in which a multidimensional array is loaded on

each processor from the tuples acquired after the partition-
ing phase. This creates thebase cube. Loading can either
be done by a hash-based method or a sort-based method.
We have implemented both and have compared their scal-
ability properties. This is followed by aaggregationphase
which calculates the various aggregate sub-cubes. We de-
scribe each phase in the next few subsections.

4.1. Partitioning

A sample based partitioning algorithm is used to parti-
tion the tuples among the processors. AttributeA is used
in this partitioning. This is done to ensure the partitioning
of data at the coarsest grain possible. This dividesA nearly
equally onto the processors and also establishes an order on
A. If Ax 2 Pi andAy 2 Pj thenAx � Ay for i < j.
In fact, in the partitioning scheme used here, tuples end up
being sorted locally on each processor.

4.2. Loading

Once tuples are partitioned on processors, they are
loaded into a multidimensional array (md-array). The size
of the md-array in each dimension is the same as the num-
ber of unique values for the attribute represented in that di-
mension. A tuple is represented as a cell in the md-array
indexed by the values of each of the attributes. Hence, each
measureneeds to be loaded in the md-array from the tuples.
We describe two methods to perform this task, a hash based
method and a sort-based method.

4.2.1. Hash-based method

Each attribute is hashed in a separate hash table to get
unique values for it. A sort on the attribute’s hash table will
index the dimension of the base cube corresponding to that
attribute. These hash tables are then probed to fill in the
measure values in the base cube. Hashing techniques are
known to provide good performance on the average, though
it heavily depends on the choice of a good hash function.

4.2.2. Sort-based method

This method provides regularity of access over the sorted
hash tables since the attributes probing them are sorted,
unlike the hash-based method, where accesses in the hash
table have no order. The sorted hash-tables are scanned
only in one direction for all the tuples which have the
same value for all the attributes in dimensions which come
earlier, i.e have more unique values, since the order in
which the attributes are sorted is with respect to their num-
ber of unique values. For example, for two consecutive
records(a1; b1; c1; d1) and(a1; b1; c1; d4), hash table forD
is scanned from the current position to get the index. How-
ever, for(a1; b1; c1; d4) and(a1; b2; c1; d1), hash tables for
bothC andD need to be scanned from the beginning.

Source Target Cost

ABC! AB (
Da

p
DbDc))top

AC (
Da

p
DbDc)top

BC (
Da

p
DbDc)top + (DbDc)tcomb + (

D
b

p
Dc)tcopy

AB! A (
Da

p
Db)top

B (
Da

p
Db)top +Dbtcomb +

D
b

p
tcopy

AC! A (
Da

p
Dc)top

C (
Da

p
Dc)top +Dctcomb +

Dc

p
tcopy

BC! B (
D
b

p
Dc)top

C (
D
b

p
Dc)top +Dctcomb +

Dc

p
tcopy

A! ALL Datop
B! ALL Dbtop
C! ALL Dctop

Table 1. Calculation of GROUP-BYs for a
three attribute data cube (Da � Db � Dc), on
p processors

4.3. Aggregation

Each processor hasDa

p
portion of A. The costs of cal-

culating the GROUP-BYs from the base cube for a three
attribute (or 3D) cube is given in Table 1. Lettop be the
cost of an addition,tcopy the cost of copying a byte.tcomb

is the cost of a Combine operation. These costs are then
used by a scheduling algorithm, which generates a schedule
for calculating the various group-bys.

Some calculations arelocal and some arenon-localand
need multiple processors to exchange data leading to com-
munication among processors. Even with local calculations
the costs can differ depending on how the calculation is
made. CalculatingAC from ABC requires summing on
theB dimension and calculatingAC from ACD requires
aggregation onD. Depending on how the multidimensional
array is stored these costs could be different since the stride
of the access can affect the cache performance. From the
cost calculations shown in Table 1, we see that the cost of
calculating aggregates from a parent are lower if the order
of the attributes in the aggregate is a prefix of the parent.
Calculating ABC! AB ! A is a local calculation on each
node.

Each cube is distributed across the processors since di-
mensionA is distributed. The intermediate cubes, result-
ing from aggregation of parent cubes are also distributed
among the processors. This results in good load balanc-
ing among the processors. Calculations involving multiple
cubes can also be distributed across processors as a result of
this. The first attribute in the aggregate cube is always dis-
tributed among processors. As a result, A is distributed in
ABCD, ABC, AB and A, B is distributed in BCD, BC and
B, and C is distributed in CD and C and D is distributed.

Figure 3 illustrate a global aggregate calculation of cal-

b1

ABCD BCD

P0 P1 P2 P3

d1

c1

c2

1 2 3 4 5 6 7 8

b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

c1

c2

c1

c2

c1

c2

c1

c2
b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

b1

b2

b3

b4

c1

c2

c1

c2 c2

c1

A: 1,2,3,4,5,6,7,8

B: b1,b2,b3,b4

C: c1,c2

D: d1,d2

d2

Local Op

BCD

A: 1,2,3,4,5,6,7,8

B: b1,b2,b3,b4

C: c1,c2

D: d1,d2

ABCD BCD

P2P1P0 P3

Reduce Operation

c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

c1

c2

b4

b3

b2

b1

Sum(A)
c1

c2

b4

b3

b2

b1

d2

d1 d1

d2 d2

d1 d1

d2 d2

d1

GlobalSum(A)

Figure 3. Global aggregation calculation, ABCD ! BCD, (a) local phase (b) global phase

culatingABCD ! BCD. First a local aggregation is done
along dimensionA. This is followed by aCombineopera-
tion on BCD. Each processor then keeps the corresponding
portion of BCD, distributing B evenly among processors.

Clearly, as can be observed from the aggregation calcu-
lations shown in the table above, there are multiple ways
of calculating a GROUP BY. For calculating the aggregate
at a level where aggregates can be calculated from multi-
ple parents, we need to pick up an assignment such that the
cost is minimized. In [12], this is solved by posing it as a
graph problem and using minimum cost matching in a bi-
partite graph. We have augmented it by our cost model and
the optimizations needed. Again, refer to Figure 1. Sup-
pose we want to calculate aggregates at a levelk from the
parent at levelk+1. A bipartite graphG((V = X[Y); E)

is defined as follows. A group of nodesX is the nodes at
level k. Clearly jX j = 2k. Another group of nodesjY j is
the nodes at levelk+1 andjY j = 2k+1. The edges connect-
ing the nodes at levelk andk + 1 belong toE. The edge
weights are the costs of calculating the particular aggregate
at levelk from the parent at levelk + 1. Costs described
in Table 1 are used here. A node at levelk + 1 can possi-

bly calculate

�
k + 1

k

�
aggregates at levelk. Hence the

nodes are replicated these many times at levelk + 1 and
these are added toY . We seek a match between nodes from
levelk+1 and levelk which minimizes the total edge costs.
This is done for each level and the resulting order of calcu-
lations at each level is picked up. This creates a directed
acyclic graph which is then traversed, from the base cube as
the root, to each child in a depth first search manner, calcu-
lating each aggregation. This results in preserving all of the
three optimizations for multiple group-bys described in an
earlier section.

4.4. Results

We have implemented the algorithms presented in the
previous section using ’C’ and message passing using the

Message Passing Interface (MPI) on the IBM SP-2 parallel
machine. Each node of the SP-2 is a RS/6000 processor,
with 128MB memory. The interconnection network is a
multistage network connected through a high speed switch.
The use of C and MPI makes the programs portable across
a wide variety of parallel platforms with little effort.

We have used the OLAP council benchmark [14] which
simulates a realistic On-Line Analytical Processing busi-
ness situation. The data sets have attributes taken from
the following set of attributes: Product (9000), Customer
(900), Time (24), Channel (9) and Scenario (2). Product,
Customer and Channel are character strings with 12 char-
acters each. Time is an integer depicting year and month
(e.g. 199704 is April 1997) and Scenario is a 6 character
string showing if it is an “Actual” or a “Budget” value. The
measurestored in each cell of the array is afloat value for
the sales figure.Sum()function is used here to compute the
aggregates in the results presented here.

Figure 4 gives the performance on History Sales data
containing 4 attributes (4 dimensional base cube) with
around 1 million records for 8, 16, 32 and 64 processors.
The density of the cube is 1%. The hash-based method
performs better than the sort-based method for this case.
The addition of a dimension increases the stride factor for
accesses for the sort-based loading algorithm, deteriorating
the cache performance. The hash-based method has no par-
ticular order of reference in the multidimensional array and
benefits from a better cache performance. It can be ob-
served that for large data each component in cube construc-
tion scales well as we increase the number of processors.

We have compared the effect of density of the data sets
on the cube construction algorithm. The aggregation costs,
which use the multi-dimensional array are not affected by
the change in density. The other phases of the data cube
construction deal with the tuples and the number of tuples
increase as the density of the data set increases. The costs
for partition, sort, hash and the load phases increase because
the number of tuples on each processor increases.

8 16 32 64
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

Tim
e (

se
c)

HistSale(Product, Customer, Time, Channel)

Partition
Hash
Load
Aggregate
Total

8 16 32 64
Processors

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

8.0

9.0

10.0

11.0

Tim
e (

se
c)

HistSale(Product, Customer, Time, Channel)

Partition
Sort
Hash
Load
Aggregate
Total

Figure 4. Various phases of cube construction using (a) hash-based (b) sort-based method for His-
tory Sales data (N = 1,010,000 records, p = 8, 16, 32 and 64 and data size = 500MB)

5. Data Mining on Data Cubes

Data mining techniques are used to discover patterns and
relationships from data which can enhance our understand-
ing of the underlying domain. A data mining tool can be
understood along the following components :data, what is
analyzed ;statistics, the kind of patterns that are searched
for by the tool;filtering, how many of those patterns are to
be presented to the user and the selection of those patterns;
visualization, the visual representation used to present the
patterns to the user;interpretation, what should the user
think about when studying the pattern;exploration, in what
order should the patterns be considered by the user;process
support, how does one support data mining as a process as
opposed to an exercise done only once. Attribute focusing
(AF) is a data mining method that has most of these but in
particular relies on exploration and interpretation [5].

Discovery of quantitative rules is associated with quanti-
tative information from the database. The data cube repre-
sents quantitative summary information for a subset of the
attributes. Attribute-oriented approaches [5] [8] [9] to data
mining are data-driven and can use this summary informa-
tion to discover association rules. Transaction data can be
used to mine association rules by associatingsupportand
confidencefor each rule. Support of a patternA in a setS
is the ratio of the number of transactions containingA and
the total number of transactions inS. Confidence of a rule
A ! B is the probability that patternB occurs inS when
patternA occurs inS and can be defined as the ratio of the
support ofAB and support ofA. The rule is then described
asA ! B [support, confidence] and astrongassociation
rule has a support greater than a pre-determined minimum
support and a confidence greater than a pre-determined min-
imum confidence. This can also be taken as the measure of
“interestingness” of the rule. Calculation of support and
confidence for the ruleA! B involve the aggregates from
the cubeAB, A and ALL. Additionally, dimension hier-
archies can be utilized to provide multiple level data min-
ing by progressive generalization (roll-up) and deepening
(drill-down). This is useful for data mining at multiple con-

cept levels and interesting information can potentially be
obtained at different levels.

Attribute Focusing calculates associations between at-
tributes by using the notion of percentages and sub-
populations. The overall distribution of an attribute is com-
pared with its distribution in various subsets of data. If a
certain subset of data has a characteristically different dis-
tribution for the focus attribute, then that combination of
attributes are marked as interesting.

An event,E is a stringEn = x1; x2; x3; : : : xn; in which
xj is a possible value for some attribute andxk is a value
for a different attribute of the underlying data.E is inter-
esting to thatxj ’s occurrence depends on the otherxi’s oc-
currence. The “interestingness” measure is the sizeIj(E)

of the difference between:
(a) the probability ofE among all such events in the data
set and,
(b) the probability thatx1; x2; x3; : : : xj�1; xj+1; : : : xn
andxj occurred independently. The condition of interest-
ingness can then be defined asIj(E) > �, where� is some
fixed threshold.

Another condition of interestingness, in attribute focus-
ing depends on finding the optimal number of attribute
values, n formally described asIj(En) > Ij(En�1);
Ij(En) � Ij(En+1); whereEn = x1; x2; x3; : : : ; xn. AF
seeks to eliminate all but the most interesting events by
keepingE only if the number of attribute values,n, is just
right. Eliminate one or morexi’s andIj decreases, include
one ore more newxi’s to the string andIj gets no larger.
The convergence ton removes patterns likeEn�1 andEn+1

which are less interesting thanEn and have information al-
ready contained byEn. Hence, as a result of this the user
does not have to drill down or roll up from a highlighted pat-
tern, since the event descriptions returned are at their most
interesting level.

5.1. Attribute Focusing on data cubes

In this section we present an algorithm to compute the
first measure of interestingness of the attribute focusing
method using data cubes. Figure 5 shows the algorithm.

Algorithm 2 Calculation of interestingness using data cubes

1.Replicate each single attribute sub-cubes on all processors using aGather followed by aBroadcast.

2.Perform aCombine operation of ALL (0D cube) followed by aBroadcast to get the correct value of ALL on all processors.

3.Take the ratio of each element of the AB sub-cube and ALL to getP (AB). Similarly calculateP (A) andP (B) using the replicated sub-cubes
A and B.

4.For each elementi in AB calculatejP (AB)� P (A)P (B)j, and compare it with a threshold�, setting AB[i] to 1 if it is greater, else set it to 0.

Figure 5. Algorithm for calculating interestingness between attributes A and B with data cubes

AB AB

A A A

AB

0.17 0.19 0.08 0.10 0.17 0.05

P2

0.09

B

0.34

0.19

0.22

0.25

B

0.34

0.19

0.22

0.25

B

0.34

0.19

0.22

0.25

0.05

0.03

0.05

0.04

0.08

0.03

0.07

0.02

0.02

0.03

0.01

0.01

0.03

0.02

0.01

0.04

0.06

0.04

0.03

0.04 0.02

0.01

0.04

0.02

0.01

0.02

0.01

0.01

0.11 0.04

0.01

0.01

0.01

0.01

0.08

0.01

0.01

0.01

P0 P1

Figure 6. Use of sub-cubes AB, A and B for calculations on 3 processors

Consider a 3 attribute data cube with attributes A, B and
C, definingE3 = ABC. For showing 2-way associations,
we will calculate the interestingness function between A
and B, A and C and finally between B and C. When calcu-
lating associations between A and B, the probability ofE,
denoted byP (AB) is the ratio of the aggregation values in
the sub-cube AB and ALL. Similarly the independent prob-
ability of A, P (A) is obtained from the values in the sub-
cube A, dividing them by ALL.P (B) is similarly calcu-
lated from B. The calculationjP (AB) � P (A)P (B)j > �,
for some threshold�, is performed in parallel. Since the
cubes AB and A are distributed along the A dimension no
replication of A is needed. However, since B is distributed
in sub-cube B, and B is local on each processor in AB, B
needs to be replicated on all processors. AB and A cubes
are distributed, but B is replicated on all processors. Figure
6 shows a sample calculation of P(AB), P(A) and P(B) on
three processors. A sample calculation is, highlighted in the
figure,j0:03� 0:22� 0:08j = 0:0124 which is greater than
� values from 0.001 to 0.01, and the corresponding attribute
values are associated within that threshold.

5.2. Results : Data Mining

We have used a few data sets from the OLAP council
benchmark. We perform 2-way association calculations by
performing attribute focusing for all combinations of two
attributes. For example, for a 3D cube, ABC, interesting-

ness measure will be calculated between A and B, A and
C and between B and C. Typically, a few different� values
are used for analysis of data, to vary the degree of associa-
tion between the attributes. We run each calculation for 20
different � values, ranging from 0.001 to 0.02 in steps of
0.01.

Figure 7 shows the run times we observe for the Bud-
get data for attribute focusing calculations on 8, 16, 32 and
64 processors. The associated communication time (in mil-
liseconds) is also given.

6. Conclusions

On-Line Analytical Processing is fast gaining impor-
tance for business data analysis using large amounts of
data now available in data warehouses. Aggregations are
an important function of OLAP queries and can benefit
from the data cube operator introduced in [7]. Multidimen-
sional databases model the multi-dimensionality of data in-
tuitively, providing support for complex analytical queries,
also being amenable to parallelization. Summary results in
the data cube can be used to perform data mining through
attribute focusing methods. We have presented a parallel
algorithm to perform attribute focusing on the data cube.

In this article, we presented algorithms and tech-
niques for constructing multidimensional data cubes on dis-
tributed memory parallel computers and perform data min-
ing through attribute focusing on them. Our techniques are

8 16 32 64
Processors

0.00

0.50

1.00

1.50

2.00

2.50

3.00

3.50

4.00

4.50

5.00

5.50

6.00

6.50

7.00
Ti

m
e

(s
ec

)

Budget
Attribute Focusing Time

8 16 32 64
Processors

0.0
1.0
2.0
3.0
4.0
5.0
6.0
7.0
8.0
9.0

10.0
11.0
12.0
13.0
14.0
15.0
16.0
17.0
18.0
19.0
20.0
21.0

Ti
m

e
(m

se
c)

Budget
Communication Time for AF

Figure 7. Time for (a) attribute focusing for 20 different � values for Budget data, (b) associated
communication cost (in milliseconds) on 8, 16, 32 and 64 processors

platform independent and are portable across a wide variety
of parallel platforms without much effort.

References

[1] Codd E. F., “Providing OLAP to user-analysts : An
IT mandate”, Technical Report, E.F. Codd and Asso-
ciates, 1993.

[2] Fayyad U.M, Piatesky-Shapiro G., Smyth P. and Uthu-
rusamy R., “From data mining to knowledge discov-
ery: An overview”, Advances in data mining and
knowledge discovery, MIT Press, pp. 1-34.

[3] Bhandari I., Colet E., et.al., “Advanced Scout: Data
Mining and Knowledge Discovery in NBA Data”, Re-
search Report RC 20443, IBM T.J Watson Research
Center, 1996.

[4] Bhandari I., Halliday M., Tarver E., Brown D., Chaar
J. and Chillarege R., “A case study of software pro-
cess improvement during development”, IEEE Trans-
actions on Software Engineering, 19(12), December
1993, pp. 1157-1170.

[5] Bhandari I., “Attribute Focusing: Data mining for the
layman”, Research Report RC 20136, IBM T.J Watson
Research Center.

[6] Goil S. and Choudhary A., “Parallel Data Cube Con-
struction for High Performance On-Line Analytical
Processing”, Proc. 4th Intl. Conf. on High Perfor-
mance Computing, Bangalore, India, 1997.

[7] Gray J., Bosworth A., Layman A and Pirahesh H.,
“Data Cube: A Relational Aggregation Operator
Generalizing Group-By, Cross-Tab, and Sub-Totals”,
Proc. Intl. Conf. on Data Engineering, 1996.

[8] Han J., Cai Y. and Cercone N., Data-Driven Discovery
of Quantitative Rules in Relational Databases,IEEE
Trans. on Knowledge and Data Engineering, Vol 5,
No. 1, February 1993.

[9] Han J. and Fu Y., Discovery of Multiple-Level Asso-
ciation Rules from Large Databases,Proc. of the21st

VLDB Conference, Zurich, 1995.

[10] Harinarayan V., Rajaraman A. and Ullman J. D.,
“Implementing Data Cubes Efficiently”, Proc. SIG-
MOD’96.

[11] Kumar V., Grama A., Gupta A. and Karypis G., “In-
troduction to Parallel Computing: Design and Anal-
ysis of Algorithms”, Benjamin Cummings Publishing
Company, California, 1994.

[12] Sarawagi S., Agrawal R., and Gupta A., “On Com-
puting the Data Cube”, Research Report 10026, IBM
Almaden Research Center, San Jose, California, 1996.

[13] Sarawagi S. and Stonebraker M., “Efficient Organiza-
tion of Large Multidimensional Arrays”, Proc. of the
11th Intl. Conf. on Data Engineering, Houston, Febru-
ary 1994.

[14] “OLAP Council Benchmark” available from
http://www.olapcouncil.org

