CODESSEAL: Compiler/FPGA Approach to
Secure Applications*

Olga Gelbart!, Paul Ott', Bhagirath Narahari', Rahul Simha!,
Alok Choudhary?, and Joseph Zambreno?

! The George Washington University, Washington, DC 20052 USA
2 Northwesten University, Evanston, IL 60208 USA

Abstract. The science of security informatics has become a rapidly
growing field involving different branches of computer science and infor-
mation technologies. Software protection, particularly for security appli-
cations, has become an important area in computer security. This paper
proposes a joint compiler/hardware infrastructure - CODESSEAL - for
software protection for fully encrypted execution in which both program
and data are in encrypted form in memory. The processor is supple-
mented with an FPGA-based secure hardware component that is capable
of fast encryption and decryption, and performs code integrity verifica-
tion, authentication, and provides protection of the execution control
flow. This paper outlines the CODESSEAL approach, the architecture,
and presents preliminary performance results.

1 Introduction

With the growing cost of hacker attacks and information loss, it is becoming
increasingly important for computer systems to function reliably and securely.
Because attackers are able to breach into systems in operation, it is becoming
necessary not only to verify a program’s integrity before execution starts, but
also during runtime. Attackers exploit software vulnerabilities caused by pro-
gramming errors, system or programming language flaws. Sophisticated attack-
ers attempt to tamper directly with the hardware in order to alter execution. A
number of software and software-hardware tools have been proposed to prevent
or detect these kinds of attacks [IL2B18]. Most of the tools focus on a specific
area of software security, such as static code analysis or dynamic code checking.
While they secure the system against specific types of attacks, current meth-
ods do not provide code integrity, authentication, and control flow protection
methods that address attacks using injection of malicious code.

We propose a software/hardware tool - CODESSEAL - that combines static
and dynamic verification methods with compiler techniques and a processor sup-
plemented with a secure hardware component in the form of an FPGA (Field
Programmable Gate Array) in order to provide a secure execution environment

* The research is supported in part by NSF grant CCR-0325207.

P. Kantor et al. (Eds.): ISI 2005, LNCS 3495, pp. 530-535] 2005.
(© Springer-Verlag Berlin Heidelberg 2005

CODESSEAL: Compiler/FPGA Approach to Secure Applications 531

/ Validation | Validation) Validation Instructions
I$ Exec Core Input
< Normal Instructions
E xecution[_]|
le»|L1 Cache 7]
Core FPGA/CPU Validation Data
Output
D$ Comparator Normal Data
Processor H | —r
Core FPGA IMain Memory

Fig. 1. Processor Core Supplemented with an FPGA

for fully encrypted execution. Figure [I] shows the architecture of our hardware.
The main objective of the tool is to provide techniques to help proper authoriza-
tion of users, to prevent code tampering and several types of replay, data, and
structural attacks (such as control flow attacks), and to make it considerably
harder for attackers to extract any information that could point to a potential
vulnerability. CODESSEAL is also designed to support fully-encrypted executa-
bles to ensure confidentiality. Our preliminary experimental results reveal low
performance overheads incurred by our software protection methods for many
applications.

Several software techniques have been proposed for code security; these range
from tamper resistant packaging,copyright notices, guards, code obfuscation
[1L2,BL4] Software techniques typically focus on a specific type of vulnerabil-
ity and are susceptible to code tampering and code injection by sophisticated
attackers. Hardware techniques, including secure coprocessors and use of FPGAs
as hardware accelerators [9}[10], are attractive because of the quality of service
they provide but at the same time require substantial buy-in from hardware
manufacturers and can considerably slow down the execution. Of greater rele-
vance to our approach are the combined hardware-software approaches such as
the XOM project [§], the Secure program execution framework (SPEF) [7], and
hardware assisted control flow obfuscation [I1]. In addition to other advantages
over these techniques, such as the use of reconfigurable hardware in the form of
FPGAs and working on the entire compiler tool chain, our approach addresses
new problems arising from attacks on encrypted executables.

2 Our Approach: CODESSEAL

CODESSEAL (COmpiler DEvelopment Suite for SEcure AppLications) is a
project focused on joint compiler/hardware techniques for fully encrypted exe-
cution, in which the program and data are always in encrypted form in memory.
Encrypted executables do not prevent all forms of attack. Several types of replay,
data and structural attacks, such as control flow attacks, are possible and can
uncover program behavior. We term such attacks as EED attacks — attacks on
FEncrypted Executables and Data. EED attacks are based on exploiting structure
in encrypted instruction streams and data that can be uncovered by direct ma-
nipulation of hardware (such as address bus manipulation) in a well-equipped

532 O. Gelbart et al.

Hashing and
Signature Module

Executable
Launch program

‘ Source code or pre-compiled binary ‘

Embed control flow using compiler
or direct insertion

-

Load pvrog ram

Default Kernel
) error & security

checks 3 Verify incoming cache blocks ‘ f

L ! !

Static Verification i Request more cache blocks for i

iiiiiii Module ! verification if necessary i

)

-

; ‘ Pass verified blocks to the processor ‘ f

Dynamic
Verification
Module

Fig. 2. CODESSEAL Framework

laboratory. To help detect such attacks, compilers will need to play a key role in
extracting structural information for use by supporting hardware.

Fig. 2 describes the overall CODESSEAL framework. It has two main com-
ponents — (1) static verification and (2) dynamic verification. At compile-time,
static integrity and control flow information is embedded into the executable.
The static verification module checks the overall integrity of the executable and
also checks its signature. Upon success, the executable is launched and each
block is dynamically verified in the FPGA for integrity and control flow. The
CODESSEAL hardware architecture is shown in Figure [l The architecture re-
configurability provided by an FPGA provides us with the ability to change the
verification and cryptographic algorithms embedded in the hardware by simply
reprogramming the FPGA. A detailed exposition of the static verification and
authentication components of our framework, and experimental results, are pro-
vided in [6]. In this paper we focus on the dynamic verification component and
present an implementation and preliminary performance study.

2.1 Dynamic Verification

If the static verification is performed successfully, the system allows launching
of the executable. After this, the dynamic verification module is responsible for
preventing run-time attacks on the program. Our dynamic verification module
has two components: (i) checking that code and data blocks have not been
modified at run-time by an attacker and (ii) asserting the legal control flow
in the program, i.e., any changes made to the control flow graph of the program
is considered equivalent to code tampering and the program is halted.

CODESSEAL: Compiler/FPGA Approach to Secure Applications 533

Our technique involves the use of an FPGA placed between main memory and
the cache that is closest to main memory (L1 or L2, depending on the system)
— see Figure 2l The instructions and data are loaded into the FPGA in blocks
and decrypted by keys that are exclusive to the FPGA. Thus, the decrypted
code and data are visible “below” the FPGA, typically inside a chip, thereby
preventing an attack that sniffs the address/data lines between processor and
memory. The original code and data are encrypted by a compiler that uses the
same keys. The assumption is that both FPGA loading and compilation occur
at a safe site prior to system operation.

If full encryption is not used, instruction and data block hashes (using SHA-
1, for example) can be maintained inside the FPGA and verified each time a
new block is loaded. If the hash does not match the stored hash, the processor is
halted. Even when full encryption is used, it is desirable to perform a hash check
because a tampering attack can be used to disrupt execution without decryp-
tion. While this technique maintains code integrity it does not prevent structural
(control flow) attacks which is the subject of our ongoing work.Our approach
to preventing control-flow attacks embeds the control flow information, as cap-
tured by a control flow graph of the program, into the code. The signature of
each block contains a hash of itself as well as control flow information denoting
parent and child blocks. During the execution, only blocks whose hash and par-
ent information is verified are permitted for execution. If a malicious block is
introduced, its hash or control flow verification (performed in the secure FPGA
component) will fail, thereby halting the program. Note that by using additional
hardware to verify the program at runtime, we avoid adding additional code to
the executable, thus preventing code analysis attacks.

Data tampering in encrypted systems is more complicated because a write
operation necessitates a change in the encryption: data needs to be reencrypted
on write-back to RAM. Also, because data can get significantly larger than
code, a large set of keys might be needed to encrypt data, resulting in a key
management problem.

2.2 Preliminary Experimental Results

Experimental Setup. For the dynamic verification technique, we have cur-
rently implemented a scheme in which each instruction or data block of the
executable is hashed using SHA1 algorithm. (Ongoing work explores the use of
other cryptographic algorithms.) The hashes are stored in each block as well as
in the FPGA. The FPGA performs hash verification as each block loads. Each
block verification involves three steps: on L1 cache miss, a block is brought in, (a)
its hash is calculated, (b) the “correct” hash is fetched from the FPGA memory
and (c) the two hashes are compared.

The experimental setup was as follows. We used SimpleScalar version 3.0
processor simulator for the ARM processor and a gcc 3.3 cross-compiler. The
ARM processor chosen to be represented by SimpleScalar had an ARM1020E
core and ran at 300 MHz. The FPGA chosen was modeled after the Virtex-II
X(C2V800 and ran at 150 MHz and had at most 3 MB on onboard memory. The

534 O. Gelbart et al.

Table 1. Performance results for dynamic verification

Benchmark Comment No. %Penalty| %Penalty| % Penalty|
instr (instr) |(data) |(both)
djpeg (MiBench) [136KB, 720x611 67.52M |.0389 2.2368 |2.2757
162KB,1265x2035 |232.28M|.0117 4.3126 |4.3242
rijndael(MiBench) |pdf 116.7KB 9.55M |.1238 .1100 .2337
ipg 455KB 39.90M |.0297 [.0263 |.0560
susan(MiBench) 256KB, 512x512 |71.16M |.0160 7749 7949
blowfish(MiBench) |pdf 116.7KB 20.21M |.0301 .0350 .0650
jpg 455KB 83.86M |.0072 .0084 .0157
go(SPECINT2000) |6x6 board 26.22M (10.1072 |7.7642 |17.8724
8x8 board 75.23M (9.5524 |7.0244 |16.5768
Transitive 16-64 vertices 15.24M (0.8 3.36 4.16
closure (DIS) 123-2048 edges
256-512 vertices 7.22B |0 42.89 42.89
16384-196608 ed
field (DIS) Average for 5 runs |2.9B 0.02 0.08 0.08
pointer (DIS) Average for 11 runs|1.09B |0.02 1.24 1.24

performance penalty for each of the three steps described above was: 6 processor
cycles(3 FPGA cycles)for step (a) to calculate SHA-1 (maximum clock rate is
66 Mhz), 2 processor cycles(1 FPGA cycle) for step (b) (maximum clock rate
for memory is 280 Mhz) and 2 processor cycles(1 FPGA cycle) for step (c) to
compare hashes. The memory requirement on the FPGA was 22 bytes per cache
block(20 per hash and 2 to map addresses to hashes).

Results and Analysis. Dynamic verification was implemented for both code
and data blocks and tested for a number of applications from the MiBench,
DIS (Data intensive systems), and SPECINT2000 benchmarks. The control flow
protection scheme is currently being implemented and thus not included in the
results presented in this paper. Our experiments show an average of 3.97% perfor-
mance penalty. The experimental results are summarized in Table [II, and reveal
that our dynamic verification techniques result in very low performance degrada-
tion (overheads) in most cases. Some of the data intensive systems benchmarks,
such as transitive closure, result in high overheads (of 42%) thereby motivating
the need to study tradeoffs between security and performance.

3 Conclusions and Future Work

This paper proposed a tool - CODESSEAL - that combines compiler and FPGA
techniques to provide a trusted computing environment while incurring low per-
formance overhead in many benchmarks. The goal of our tool is to provide ad-
ditional security to a computer system, where software authentication, integrity
verification and control flow protection are particularly important. The tool is

CODESSEAL: Compiler/FPGA Approach to Secure Applications 535

also designed to protected mission-critical applications against a hands-on attack
from a resourceful adversary.

References

10.

11.

. Cowan, C.: Software Security for Open-Source Systems. IEEE Security and Privacy

(2003)

Chang, H., Attallah, M.J.: Protecting Software Code by Guards. Proceedings of the
1st International Workshop on Security and Privacy in Digital Rights Management
(2000) 160-175

Colberg, C., Thomborson, C., Low, D.: A taxonomy of obfuscating transformations.
Technical Report. Dept of Computer Science, Univ. of Auckland (1997)

Fisher, M: Protecting binary executables. Embedded Systems Programming (2000)
Vol.13(2).

Actel: Design security with Actel FPGAs. http://www.actel.com (2003)

Gelbart, O., Narahari, B., Simha, R.: SPEE: A Secure Program Execution envi-
ronment tool using static and dynamic code verification. Proc. the 3rd Trusted
Internet Workshop. International High Performance Computing Conference. Ban-
galore, India (2004)

Kirovski, D., Drinic, M., Potkonjak, M.: Enabling trusted software integrity. Pro-
ceedings of the 10th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (2002) 108-120

. Lie, D., Thekkath, C., Mitchell, M., Lincoln, P., Boneh, D., Mitchell, J., Horowitz,

M.: Architectural support for copy and tamper resistant software. Proceedings
of the 9th International Conference on Architectural Support for Programming
Languages and Operating Systems (2000) 168-177

Smith, S., Austel, V.: Thrusting trusted software: towards a formal model of pro-
grammable secure coprocessors. Proceedings of the 3rd USENIX Workshop on
Electronic Commerce (1998) 83-98

Taylor, R., Goldstein, S.: A high-preformance flexible architecture for cryptog-
raphy. Proceedings of the Workshop on Cryptographic Hardware and Software
Systems (1999)

X. Zhuang, T. Zhang, S. Pande: Hardware assisted control flow obfuscation for
embedded processors. Proc. of Int. Conference on Compilers, Architecture and
Synthesis for Embedded Systems (CASES) 2004.

	Introduction
	Our Approach: CODESSEAL
	Dynamic Verification
	Preliminary Experimental Results

	Conclusions and Future Work

