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Abstract—There are two popular parallel I/O programming
styles used by modern scientific computational applications:
unique-file and shared-file. Unique-file I/O usually gives satis-
factory performance, but its major drawback is that managing
a large number of files can overwhelm the task of post-
simulation data processing. Shared-file I/O produces fewer
files and allows arrays partitioned among processes to be
saved in the canonical order. As the number of processors on
modern parallel machines increases into thousands and more,
the problem size and in turn the global array size also increase
proportionally. It is not practical to manage files of size each
larger than a few hundreds of GB. Hence, to seek a middle
ground between these two I/O styles, we propose a subfiling
scheme that divides a large multi-dimensional global array
into smaller subarrays, each saved in a smaller file, named
subfile. Subfiling is implemented on top of MPI-IO. We also
incorporate it into the parallel netCDF library in order to
preserve the partitioning information in the netCDF file header,
so that the global array can later be reconstructed. In addition,
since the subfiling scheme decreases the number of processes
sharing a file, it can reduce the overhead of file system’s data
consistency control. Our experimental results with several I/O
benchmarks show that subfiling can provide improved I/O
performance.
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I. INTRODUCTION

Modern parallel computers are increasingly used to solve
large, data-intensive applications, such as climate modeling,
fusion, fluid dynamics, and computational biology. The
amount of produced data can be very large and requires
effective I/O libraries and fast storage system [1]. There are
two I/O programming styles commonly used by today’s par-
allel applications. One is termed as unique I/O, also known
as unique-file-per-process style, in which each process ac-
cesses files that are unique to the process. This approach
may create a management nightmare for file systems when
a parallel job running on thousands of processes produces
hundreds of thousands or millions of files. Furthermore,
accessing millions of files can be a daunting task for post-
run data analysis. To avoid these problems, one solution is to
adopt the shared-file I/O programming style. Shared-file I/O
refers to a single file being accessed by multiple processes

concurrently. It can be used to save global partitioned data
structures in the canonical order and is often achieved by
using MPI-IO [2]. Shared-file I/O performance often suffers
from significant file system overheads due to conflicted I/O
requests among processes [3], [4]. Such overheads include
the system’s data consistency control for cache coherency
and I/O atomicity. As the number of concurrent accesses to a
shared file increases, the overhead can increase dramatically.

Furthermore, shared file I/O can result in files too large
for some systems to archive. The High Performance Storage
System (HPSS) [5] is a modern, flexible, performance-
oriented mass storage system. It has been used for archival
storage and supports several hierarchies with different ser-
vice characteristics, such as access time, maximum file size,
number of data copies, and data transfer rate. For example,
the default max file size is 10GB in IU’s TeraGrid-accessible
HPSS archival storage system [6]. If the amount of scientific
data generated from one application is more than the default
file size, the scientific data must be split into more than
one file. In order to seek a middle ground between the two
I/O programming styles, we propose a subfiling scheme that
allows a large multi-dimensional global array to be split into
a number of smaller subarrays, each saved in a separate file.
The subfiling scheme reduces the file system control over-
head by decreasing the number of processes concurrently
accessing a shared file. We develop the subfiling scheme as
a standalone I/O library using MPI-IO.

The Network Common Data Form (netCDF) [7] provides
a set of software libraries and machine-independent data
formats that support the creation, access, and sharing of
array-oriented scientific data and is widely used by many
scientific applications. The original netCDF API is designed
for serial data access and does not provide an efficient mech-
anism for parallel data storage and access. Parallel netCDF
(PnetCDF) [8] provides a parallel API to access netCDF files
with significantly better performance on top of MPI-IO and
is popular used by many scientific applications to save meta-
data along with data, and provides high-performance parallel
I/O. In order to preserve the array partitioning information
by the subfiling, we also incorporated it in parallel netCDF

2009 International Conference on Parallel Processing

0190-3918/09 $25.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.68

470

2009 International Conference on Parallel Processing

0190-3918/09 $26.00 © 2009 IEEE

DOI 10.1109/ICPP.2009.68

470



(PnetCDF). By saving the subfiling information in the
netCDF files, the structure of global arrays can be portably
reconstructed. In the standalone library, the data partitioning
of a global array among subfiles is user customizable. For
instance, a 3D array can be partitioned along one of the three
axes. For PnetCDF, the data partitioning is always along the
most significant axis and the only customizable parameter
is the number of subfiles. Through the subfiling application
programming interfaces (APIs), the partitioned global array
still appears to users as a single netCDF array and access to it
is kept the same as without subfiling. In order to achieve this
goal, the subfiling implementation automatically generates
the MPI fileviews for each subfile for a given I/O request.
Mapping information of a global array to subfiles is stored as
netCDF attributes which are duplicated in all subfiles. Each
netCDF subfile is self-contained with sufficient information
to describe the layout of local array mapped to the global
array, including the names of all subfiles and partitioning of
each subfile. Therefore, accessing the metadata from one of
the subfiles is enough to understand the subfiling structure
of a global array.

We evaluate the subfiling scheme using the ROMIO
benchmark for collective I/O and two application I/O ker-
nels, FLASH-IO and S3D-IO. We compare the approaches
of unique I/O and single shared-file I/O on two parallel file
systems, Lustre and GPFS. Our measurements are performed
using from 16 to 512 processes. In most of the cases,
subfiling performs as expected in between the two I/O
approaches. Subfiling can even outperform both approaches
when the number of processes becomes large, causing sig-
nificant increase in the file open cost. For example, up to
239.589% improvement relative to one shared-file I/O was
observed on Lustre and 97.654% on Mercury in the 512-
process case of ROMIO benchmark. The rest of the paper
is organized as follows. Section 2 discusses background and
related work. The design and implementation of the subfiling
scheme is presented in Section 3. The implementation for
parallel netCDF is discussed in Section 4. Section 5 gives
the performance results and analysis. The paper is concluded
in Section 6.

II. BACKGROUND AND RELATED WORK

Programming for unique-file I/O usually uses POSIX I/O
APIs [9] as illustrated in Figure 1(a). The POSIX standard
also defines a set of I/O consistency semantics that have been
abided by many modern file systems, such as Lustre [10],
IBM GPFS [11], Sun ZFS [12], and SGI XFS [13]. Unique-
file I/O can also be programmed using MPI-IO, which is
done by using the MPI COMM SELF communicator in the
file open. However, the design goal of MPI-IO is mainly for
parallel I/O operations on shared files.

File 0 File 1 File n

POSIX I/O

P1P0 Pn P0 P0 Pn

(b)

P00 P01

MPI I/O

P0m P10 P11 P1m Pn0

MPI I/O

Pn1 Pnm

Subfile nSubfile 0 Subfile 1

(c)

(a)

Fig. 1 I/O accessing Pattern Style

Subfiling library

one shared file

Figure 1. I/O accessing Pattern Style

A. MPI-IO

MPI-IO inherits two important MPI features: MPI com-
municators defining a set of processes for performing group
operations and MPI derived data types for describing non-
contiguous memory layouts [2]. A communicator specifies
the processes that can participate in a collective operation
for both inter-process communication and file I/O. When
opening a file, the MPI communicator is a required argu-
ment to indicate the group of processes sharing the file.
MPI collective I/O operations require all the processes
in the communicator to participate, as shown in Figure
1(b). Independent I/O functions, in contrast, requiring no
synchronization. MPI derived data types are also used to
describe non-contiguous layouts in file space. A process can
specify the visible file ranges by setting its fileview through
a derived data type.

B. PnetCDF

Dataset storage, exchange, and access play a critical
role in scientific applications. For such purposes, netCDF
serves as a software library and self-describing machine-
independent data format that supports the creation, access,
and sharing of array-oriented scientific data [7]. NetCDF
stores metadata in the file header that describes the struc-
tures of the arrays and their layout in the file. Additional
information, such as user annotations, can also be saved
as attributes. Parallel netCDF [8] is developed to support
parallel I/O operations and access files exceeding 4GB in
size. The PnetCDF library is built on the top of MPI-IO for
portability. Its I/O functions take an additional argument of
an MPI communicator to indicate the processes participating
in the shared-file I/O operations. PnetCDF constructs MPI
derived data types to define a process’s file view based on its
request to a subarray. MPI file hints supplied by the users are
passed to the underlying MPI-IO library, so that PnetCDF
can take advantage of the I/O optimizations available in
MPI-IO.
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There are many optimizations to improve shared-file
I/O performance, including two-phase I/O [1], [14], disk-
directed I/O [16], server-directed I/O [17], persistent
file domain [18], active buffering [19], and collaborative
caching [20]. The two-phase I/O has been adopted by
ROMIO, a popular MPI-IO implementation developed at
Argonne National Laboratory [15]. However, even with these
improvements, the shared-file I/O performance is still far
from the unique-file I/O. A major obstacle comes from file
system locking overhead due to the data consistency control.
Such overhead does not exist if a file is only accessed by a
unique process. Therefore, reducing the number of processes
sharing a file can alleviate lock conflict and improve the
performance.

int  subfile_to_global_view(int ndims, int gsizes[], 
                         MPI_Datatype etype, int order,

                         int lengths[], subfile_struct *sfp);
int local_to_global_view(int ndims, int starts[], 

int num_subfiles, subfile_struct *sfp);

int subfile_open(char *filename, int cmode,
                         int subfile_struct *sfp);

                         MPI_Datatype etype, void *buf);
int subfile_write(subfile_struct *sfp, int count, 

int subfile_read(subfile_struct*sfp, int count, 
                         MPI_Datatype etype, void *buf);
int subfile_close(subfile_struct *sf);

Figure 2. API of subfiling scheme on top of MPI-IO

III. DESIGN AND IMPLEMENTATION

The subfiling scheme defines a set of APIs, as shown in
Figure 2, for users to customize the partitioning of an array
among subfiles. The implementation of these APIs is built
on top of MPI-IO, as depicted in Figure 1(c).

A. Subfiling APIs

A data structure named subfile struct is created to store
the information about the subfiling of an array as shown in
Figure 3. Used as an argument in the APIs, its contents are
filled with the dimensionalities of the array, dimensionalities
of subarrays in subfiles, and the partitioning order. The
subfile partitioning order specifies the dimensions of a multi-
dimension array that are partitioned among subfiles. The
partitioning can be done along one or more axes. The
partitioning order argument is an integer variable whose
values of 1 or 0 in the bit locations indicate if the axis is
partitioned or not. For instance, the integer value of 6 (110
in binary bit form) means the partitioning order is along Z
and Y axes. Two mapping functions are used to specify the
I/O buffer’s layout in the subfiles. One is a local-to-global
array mapping, which is the same as defining MPI-IO file
view. The other defines the mapping from the subarrays in
subfiles to the global array, which describes how the global
array is split into subfiles. Through these two functions, we
can construct a process’s file views to each subfile. Given
a generic file name in function subfile open(), the subfile

are named by appending with a unique number. A subfile
is only opened by the processes that have valid file view to
it. Depending on the partitioning, a process may open more
than one subfile.

typedef struct {
        int ndims;
        int sf_num;
        MPI_Comm sf_comm;
        int *global_sizes;
        int *global_starts;
        int *subsizes;
        int *sfsizes;
        char *filename;
        MPI_File sf_fh;
        MPI_Datatype sf_type;
        MPI_Datatype buf_type;
        subfile_struct *next;
} subfile_struct;

Figure 3. The subfile struct structure

B. Implementation

Two additional pieces of subfiling metadata stored in
the subfile struct object (as shown in Figure 3.) are MPI
file handlers and communicators. Given the global array
dimensionality, number of subfiles, and the partitioning
order, we first calculate the dimensionalities of the subarrays
for each subfile. Conceptually, a subfile is like an MPI
process which has a file view mapping from its subarray
to the global array. This mapping information is saved in a
text file that later can be used to reconstruct the global array.
The subarray dimensionalities are also used to calculate
a process’s file view to each subfile. In other words, a
process’s local-to-global array file view is decomposed into
several local-to-subarray file views, each corresponding to a
subfile. Meanwhile, the derived data type describing memory
layout of a process’s I/O buffer is also decomposed in to
several ones, each for a subfile. Once the local-to-subarray
mapping is known, the MPI communicators can be created
from the group of processes sharing the same subfiles. This
approach avoids the processes with zero-length file view
for a subfile to open it. Otherwise, if a subfile is opened
by all processes, those processes with zero-length file view
would wait idly for other process to complete a collective
I/O, as MPI collective I/O is synchronous. Therefore, our
implementation improves the process efficiency by ensuring
a file is only opened by the processes with valid accesses to
it.

In function subfile open(), each process calls
MPI File open() for the subfiles which have a non-zero
length file view, followed by setting the file view through
MPI File set view() using the subfile view calculated
earlier. Note that one process may open more than one file,
if it accesses data across the subfile partitioning boundaries.
Similarly, in subfile write() or subfile read(), each process
calls MPI File write all() or MPI File read all() for to
access data in the subfiles. At the end, subfile close() closes
all subfiles. Figure 4 shows an example for the file views
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Figure 4. Data partitioning and Mapping

and array mappings used in the subfiling. A 3-D array
partitioned among 64 processes and split into 4 subfiles.
The mapping of local subarrays to global array is illustrated
in Figure 4(a). The global array is partitioned along both Y
and Z axes into four subfile datasets, as shown as Figure
4(b). The subfile views are given in Figure 4(c). A new
communicator is created for each subfile, which includes
only the processes that have an accessible view in the file.
Each subfile is opened collectively by the processes in
this communicator. Subfiling is in fact a superset of the
unique-file and shared-file I/O styles. It can behave like
the unique-file I/O if the number of subfiles is equal to the
number of application processes. Subfiling is equivalent to
the shared-file I/O, when the number of subfiles is set to
one.

IV. INCORPORATING SUBFILING INTO PNETCDF

The stand-alone subfiling library saves the subfiling infor-
mation in a separate text file, which may not be a favorable
strategy. A better choice is to save the metadata together
with array data in a self-describing file format, such as
netCDF. As parallel netCDF supports parallel I/O, it has
been adopted by many scientific applications. Therefore,
we augment the PnetCDF functionalities by incorporating
the subfiling scheme. The software architecture is shown in
Figure 5.

PnetCDF Library

Subfiling Functions

MPI I/O

Parallel File System

Parallel netCDF applications

Figure 5. The subfiling component in the pnetCDF software architecture

A. Subfiling Attributes

We define the subfiling metadata as netCDF attributes
to the array variable that is partitioned by the subfiling
scheme. The names of these attributes have the common
prefix ”subfiling ”. They include subfiling enabled (a flag
indicating if subfiled), subfiling gndims (number of dimen-
sions in the global array), subfiling gsize (global array size),
subfiling nfiles (number of subfiles), and subfiling porder
(partitioning order). There are also attributes describing the
subarrays in each subfile, such as subfile name, subarray
dimensions, and subarray size. These attributes are dupli-
cated in all subfiles so that reading one subfile is enough
to obtain the information about the partitioning of a global
array among the subfiles.

The subfiling feature is completely hidden in PnetCDF
without adding new APIs and is enabled through two MPI
hints: subfiling enabled and subfiling nfiles. Due to the
netCDF format and programming characteristics, the array
partitioning cannot be as flexible as the stand-alone subfiling
library.

B. Implementation

Since arrays saved in a netCDF file must be organized
in the canonical order, we limit our subfile partitioning in
PnetCDF to along only the array’s most significant dimen-
sion. The only user controllable parameter is the number of
subfiles. To allow subfiling to be enabled on a per variable
basis, we add an MPI hint as a new argument of type
MPI Info to the variable define API, ncmpi def var(). When
defining variables, users can enable subfiling for a variable
and disable it for another. Although PnetCDF file create
function also takes an MPI hint argument, since subfiling
is per variable basis, enabling subfiling at file create time
has no effect. The file name supplied by the user is used
as a base name for the subfiles. We refer this file as the
base file. A subfile name appends the variable name and
subfile number to the based name. The base file contains
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all variables that are not subfiled. The subfiling metadata
described in Section 2 are saved in the base file as global
attributes and in each subfile.

When using the stand-alone subfiling library, a process’s
file view must be defined before opening the subfiles.
The library uses the mappings of local-to-global array and
subfile-to-global array to determine the group of processes
for each subfile. However, in PnetCDF, a process’s file
view can only be known when it calls PnetCDF write/read
functions. Therefore, in our implementation, the subfiling
partitioning, mapping, MPI communicator creation, and file
opening are all carried out in the write/read functions. All
subfiles are closed before the function returns.

During read operations, the root process retrieves the
subfiling metadata from the base file and broadcasts to
all other processes. Each process uses this information to
construct its file view for each subfiles. MPI communicators
are also created based on the same information. Subfiling
implementations are transparent to users.

An example program that enables subfiling for one vari-
able is given in Figure 6. Lines 1 and 2 create an MPI hint.
Line 3 creates the base netCDF file. Line 4 defines a variable
and uses the MPI hint to enable subfiling for this variable.
Line 5 declares the end of variable/attribute define mode.
Line 6 writes the variable and Line 7 closes the base file.

1. MPI_Info_set(sf_into, "subfiling", "enable");
2. MPI_Info_set(sf_info, "subfiling_nfiles", "4");
3. ncmpi_create(comm, filename, mode,
                        null_info, ncid);
4. ncmpi_def_var(ncid, type, ndims, dimids, varid, sf_info);
5. ncmpi_enddef(ncid);
6. ncmpi_put_vara_all(ncid, varid, starts, counts, buf); 
7. ncmpi_close(ncid).

Figure 6. Example of using subfiling scheme in PnetCDF

V. EXPERIMENTAL RESULTS

The performance results of the subfiling scheme were
collected from two parallel machines: Mercury at the Na-
tional Center for Supercomputing Applications (NCSA) and
Franklin at Lawrence Berkeley National Laboratory. Mer-
cury is an IA-64 Linux cluster with 887 nodes where each
node contains two Intel 1.3/1.5 GHz Itanium II processors
sharing 4 GB of memory. Mercury is using Myrinet inter-
connected network and the GPFS parallel file system. On
this system, GPFS has 54 I/O servers. Franklin is a 9660-
node SuSE Linux cluster where each node contains two 2.6
GHz dual-core AMD Opteron processor with a theoretical
peak performance of 5.2 GFlop/sec. Each compute node has
4 GBytes of memory. The parallel file system on Franklin
is Lustre [10] with 80 I/O servers in total.

We evaluate and compare the performance of subfiling
with the unique-file and shared-file I/O. We first define β
= nproc/nsubfile as the parameter to indicate the ratio of
number of processes sharing a subfile. For performance
evaluation, we use three benchmarks: a three-dimensional

block I/O test named coll perf from the PnetCDF test suite
and two application I/O kernels, FLASH-IO and S3D-IO.
We measured the performance of all benchmarks by timing
the MPI-IO open, write, and close functions separately.
The I/O bandwidth numbers were obtained by dividing the
aggregate I/O amount by the total run time measured from
the beginning of file open until after file close.

A. PnetCDF Collective I/O Test

Based on the collective I/O test program from ROMIO
test suite, PnetCDF test suite contains a program named
coll perf.c using a three-dimensional block-partitioning pat-
tern. We chose this test to report boh the write bandwidths
for unique-file, one shared-file, and subfiling I/O methods.
The partitioning of data is done through the assignment of
a number of processes on each Cartesian dimension. In our
experiments, we set the subarray size in each process to 256
x 256 x 256 4-byte integers.

Figure 7 and Figure 8 show the results for using the
unique-file I/O, one shared-file I/O, and subfiling method
with β=8 and β=16. The subarry in each subfile is of size
512x512x512 and 512x512x1024, when β=8 and 16, re-
spectively. On Lustre, the two subfiling methods perform as
expected in between the unique-file and shared-file methods.
However, on GPFS, the two subfilings outperform the other
two I/O methods when the number of processes is very large.
The unique-file I/O has a significantly higher open cost than
the subfiling on GPFS. The performance improvement is
attributed to the reduced file system control overhead due to
the decreased number of processes concurrently accessing a
subfile.

B. FLASH I/O Benchmark

The FLASH I/O benchmark suite [22] is the I/O kernel
of a block-structured adaptive mesh hydrodynamics code
that solves the compressible Euler equations on a block
structured adaptive mesh and incorporates the necessary
physics to describe the environment, including the equation
of state, reaction network, and diffusion [23]. The compu-
tational domain is divided into blocks that are distributed
across a number of MPI processes. A block is a three-
dimensional array with an additional 4 elements as guard
cells in each dimension on both sides to hold information
from its neighbors. There are 24 data variables per array
element, and about 80 blocks on each MPI process. A
variation in block numbers per MPI process is used to
generate a slightly unbalanced I/O load. Since the number of
blocks is fixed for each process, an increase in the number
of processes linearly increases the aggregate I/O amount as
well. We use the PnetCDF version of FLASH I/O in our
experiments.

FLASH I/O produces a checkpoint file and two visualiza-
tion files containing centered and corner data. Checkpoint
files are the largest of the three output data sets, the I/O
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time of which dominates the entire benchmark. We set the
block size to be 16x16x16, which produces approximately
64 MB of data per process. There are 24 collective write
calls, one for each of the 24 variables. In each write
operation, every MPI process writes a contiguous chunk of a
variable, appended to the data written by the previous ranked
MPI process. In our experiments, we only evaluated the
performance for writing the checkpoint file. Figure 9 shows
the results of unique-file I/O, one-shared-file I/O, subfiling
method with β=8 and β=16. The two subfiling methods
perform as expected in between the unique-file and shared-
file methods.

C. S3D I/O Benchmark

The S3D I/O benchmark is the I/O kernel of the S3D
application, a parallel turbulent combustion application using
a parallel direct numerical simulation (DNS) solver designed
at Sandia National Laboratories [21]. It is parallelized using
a three dimensional domain decomposition and MPI com-
munication. Each MPI process is in charge of a piece of
the three dimensional domain. A checkpoint is performed
at regular intervals, and its data consist primarily of the
solved variables in 8-byte three-dimensional arrays, corre-
sponding to the values at the three-dimensional Cartesian
mesh points. Each aggregate checkpoint stores four global
arrays, which represent mass, velocity, pressure, and temper-
ature, respectively. The mass and velocity arrays are four-
dimensional and the pressure and temperature arrays are
three-dimensional. All four arrays share the same size for
the lowest three spatial dimensions X, Y, and Z, which are
partitioned among MPI processes in a block-block-block
fashion. The fourth dimension sizes of the mass and velocity
data are 11 and 3, respectively, and are not partitioned.
In our experiments, we keep the size of partitioned X-Y-
Z dimensions a constant 50x50x50 in each process. Thus,
each run produces about 15.26 MB of write data per process
per checkpoint.

Figure 10 and Figure 11 show the results of unique-
file I/O, one-shared-file I/O, subfiling method with β=8
and β=16. When β=8, the subarray in each subfile is
of size 100x100x100. When β=16, the subarray size is
200x100x100. Compared to one shared-file I/O scheme,
the timing of MPI collective write is effectively reduced
by the subfiling scheme. On Lustre, the subfiling’s write
bandwidths are in between the unique I/O and shared-file
I/O, as expected. However, on GPFS, the two subfilings
outperform the other two I/O methods. By examining the
file open time, the unique-file I/O has a significantly higher
open cost than the subfiling and share-file methods. On the
other hand, Lustre handles large-scale concurrent file open
much better than GPFS and hence the unique-file I/O is still
the best. The performance improvement of subfiling scheme
over the shared-file I/O is attributed to reduced write time by
decreasing the number of processes concurrently accessing

each subfile.

VI. CONCLUSIONS

In this work we propose a subfiling scheme to extend
the flexibility of parallel shared-file I/O for large multi-
dimensional arrays to allow split into a number of smaller
subfiles. Subfiling’s implementation is built on top of MPI-
IO. We evaluate its performance under PnetCDF. The subfil-
ing scheme demonstrated it can outperform single shared-file
I/O and reduce file open cost by decreasing the number of
files opened. Reducing file open cost is important as some
parallel file systems may not handle large number of files
efficiently.
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