
Which Deep Learning Framework Should I Use: A
Comparative Study For Deep Regression Modeling

Vishu Gupta
ECE Department

Northwestern University
Evanston, USA

vishugupta2020@

u.northwestern.edu

Wei-keng Liao
ECE Department

Northwestern University
Evanston, USA

wkliao@

eecs.northwestern.edu

Alok Choudhary
ECE Department

Northwestern University
Evanston, USA

choudhar@

eecs.northwestern.edu

Ankit Agrawal
ECE Department

Northwestern University
Evanston, USA

ankitag@

eecs.northwestern.edu

Abstract—The combined impact of deep learning techniques
and computing resources with an increase in the availability
of databases is transforming many research fields leading to
technological advances to help solve real-life and research-related
problems. In the recent years, various deep learning frameworks
and libraries have been developed to implement these algorithms
that can operate efficiently at large scale and heterogeneous en-
vironments. However, these implementations can vary depending
on the framework leading to unexpected inconsistency in the
results even for the same algorithm. This irregularity is seen
more often in deep learning models trained using advanced
parallel computing resources such as GPUs. In this study, we
perform an investigation with three of the well-known deep
learning frameworks: Tensorflow 1, Tensorflow 2 with Keras,
and Pytorch for regression-based problems in physical sciences
to analyze how the results vary depending on the framework.
We implement different deep neural networks with varying
complexity and perform accuracy, time, and computational based
analysis to study the effect of the framework on model accuracy,
training/testing times, reproducibility, and memory usage.

Index Terms—deep learning, predictive modeling, regression,
framework analysis

I. INTRODUCTION

A STEM-based project usually involves multiple stages

of thinking, reasoning, investigation, and execution where

a group of people conduct background research, develop

multiple ideas for solutions, develop and create a prototype,

and then test, evaluate, and redesign them over a period

of time. For a project that involves big data and various

computing resources, one of the most critical component is

the computational framework to produce the desired model

that can be used for the advancement of the field and future

analysis. Among the publicly available frameworks that facil-

itate the development of various types of models, those that

deploy Deep Learning (DL) algorithms have experienced a

surge in interest over the past decade due to many factors,

including their successful application to various problems. DL

methods comprised of multi-layer artificial neural networks

have outperformed many state-of-the-art approaches in various

fields for classification and regression problems. Such open-

source implementations of DL algorithms have been adopted

and shared in various frameworks that have been employed and

improved upon by people in their respective fields of research

for various applications including natural language processing,

speech recognition, computer vision, and various domain-

specific scenarios [1]–[9]. Several DL frameworks exist, such

as Theano, Caffe, TensorFlow [10], Keras [11], PyTorch [12],

etc., which use different techniques to optimize, parallelize

and deploy models leading to differences in results. Hence,

it is not straightforward to decide for a user which particular

framework to use due to various options for implementation

and limited studies to compare these implementations [13]–

[15]. Moreover, the existing studies mainly focus on image

classification problems and not on regression problems which

are more common in physical sciences [8], [16]–[22]. In

general, very few existing works have been devoted to studying

the effectiveness of the different frameworks with respect to

different datasets and different DL architectures for domain-

specific fields. We believe that given a computational environ-

ment and dataset, effective and in-depth benchmarking of deep

learning frameworks is required to understand the impact of

the framework on the overall performance to better guide the

domain scientist when applying them.

In this study, we aim to provide a comparison between popu-

lar open-source DL frameworks on regression-based problems

in one of the fields of physical sciences – materials science

– where various machine learning (ML) based techniques

has greatly enhanced property prediction and materials dis-

covery [17], [18], [23]–[32]. We compare three well-known

DL frameworks by performing model training of deep neural

network architectures on different materials datasets for the

regression task of materials property prediction and compare

them on the basis of performance and computational aspects,

which includes the accuracy of the model, training/testing

time, resource/memory consumption, and size of the saved

model. We use Graphics Processing Units (GPU) for our

computational environment as GPUs have been increasingly

used for general-purpose computation that requires a highly

data parallel architecture, such as deep learning computation.

II. BACKGROUND

A. Model Input

Traditional approaches for training models incorporated

domain knowledge based manually designed materials rep-

72

2022 International Conference on Computational Science and Computational Intelligence (CSCI)

979-8-3503-2028-2/22/$31.00 ©2022 IEEE
DOI 10.1109/CSCI58124.2022.00069

TABLE I
DETAILED CONFIGURATIONS FOR DIFFERENT NETWORK ARCHITECTURES. THE NOTATION [...] REPRESENTS A STACK OF MODEL COMPONENTS,

COMPRISING A SEQUENCE (WHERE, FC: FULLY CONNECTED LAYER, RE: RELU ACTIVATION FUNCTION). EACH SUCH STACK IS FOLLOWED BY A

SHORTCUT CONNECTION IN THE CASE OF FCRN.

Output FCN-10 FCRN-10 FCN-17 FCRN-17 FCN-24 FCRN-24
1024 [FC1024-Re x 2] [FC1024-Re] x 2 [FC1024-Re x 4] [FC1024-Re] x 4 [FC1024-Re x 4] [FC1024-Re] x 4
512 [FC512-Re x 2] [FC512-Re] x 2 [FC512-Re x 3] [FC512-Re] x 3 [FC512-Re x 4] [FC512-Re] x 4
256 [FC256-Re x 2] [FC256-Re] x 2 [FC256-Re x 3] [FC256-Re] x 3 [FC256-Re x 4] [FC256-Re] x 4
128 [FC128-Re] [FC128-Re] [FC128-Re x 3] [FC128-Re] x 3 [FC128-Re x 4] [FC128-Re] x 4
64 [FC64-Re] [FC64-Re] [FC64-Re x 2] [FC64-Re] x 2 [FC64-Re x 3] [FC64-Re] x 3
32 [FC32-Re] [FC32-Re] [FC32-Re] [FC32-Re] [FC32-Re x 2] [FC32-Re] x 2
16 - - - - [FC16-Re x 2] [FC16-Re] x 2
1 FC1

resentation for inputs [33]–[36]. However, these approaches

tend to be more effective for a specific materials property and

may not serve well as the general materials representation that

can be used for model input for wide variety of materials

problem dealing with classification and regression. Hence, In

this work, we use composition based-attributes comprised of

raw elemental fractions (EF) as input which are simple to

calculate and have consistently shown to excel when used with

powerful DL techniques [37], [38]. EF representation used in

this work is composed of a 86-dimensional 1D vector where

each attribute represents an element in the periodic table. For

example, KCl is represented as a 1D vector of 86 numbers,

with the K and Cl columns containing 0.5 and everything else

as 0. From this, we can say that elemental fraction, when used

as model input, can help demonstrate better generalization and

facilitate the development of machine learning-based models

on other datasets with different materials properties.

B. Materials Property

Materials discovery can be greatly accelerated by leveraging

the continuously evolving data-driven approaches based on ad-

vanced ML/DL techniques where inputs such as composition-

based attributes can be used to predict various materials prop-

erties by capturing the underlying knowledge effectively [37],

[39], [40]. Materials property used for predictive modeling

in this study is formation enthalpy (also known as formation

energy) which is defined as the change in energy when one

mole of a chemical compound in the standard state (1 atm of

pressure and 298.15 K) is formed from its pure elements under

the same conditions [41]. We can determine the stability of the

material along with whether it is experimentally synthesizable

in a laboratory using the value of the formation enthalpy.

When more energy is produced in bond formation than needed

for bond breaking then we have negative formation enthalpy

and more negative formation enthalpy leads to more stable

material. It is also shown in [38] that the knowledge learnt

from training a model on formation enthalpy can help improve

the predictive ability of the model trained on other materi-

als properties. Materials databases also record various other

properties such as total energy, magnetic moment, band gap,

etc. [42]–[44].

III. METHOD

We next describe the architecture of the deep regression

neural network models used in this work and the different

deep learning frameworks used to build them.

A. Architecture

We create two types of neural networks FCN-n and FCRN-n

(n = 10, 17, 24) to study the impact of frameworks.

1) FCN-n: Here, we create an n-layer neural network

comprising of stacks of fully connected layers and ReLU as the

activation function (except for the last layer which has linear

activation) that we refer to as a fully connected network.

2) FCRN-n: We use FCN-n as our base network and

add skip connections after each stack (comprised of a fully

connected layer and ReLU) to introduce a neural network

referred to as a fully connected residual network.

The detailed architecture of the networks used in this work

is illustrated in Table I.

B. Deep Learning Framework

The frameworks considered in this study are Tensorflow

1 (TF-1), Tensorflow 2.2 integrated with Keras (TF-2), and

PyTorch. These frameworks support multi-core CPUs and

multiple GPUs. They also allow for performance optimization

via the availability of flexible APIs (e.g. RESTful, TF Serving,

Fast.ai), visualization tools (e.g. TensorBoard, Visdom), and

configuration options (e.g.). TF-1, TF-2 and PyTorch models

are saved in data, h5 and ckpt format respectively. Below we

provide a brief overview of these frameworks:

1) Tensorflow: Tensorflow is an open-source library for

large-scale machine learning and high performance computa-

tion across various platforms which includes CPU, GPU, and

distributed computing. It is an open-source project released by

the Google Brain team in 2015. Due to its parameter sharing

and auto differentiation capabilities, TensorFlow can support

different types of architectures. There is also a mechanism

to support parallelism via parallel execution of the data flow

graph model using multiple computational resources that col-

laborate to update shared parameters. Tensorflow is modeled

as a directed acyclic graph for computation where operation

is represented by nodes and deals with a multi-dimensional

array called Tensors which are the values that flow along the

edges of the graph. Given an operation, it can take zero or

73

TABLE II
SUMMARY OF THE MAIN FEATURES OF THE DEEP LEARNING

FRAMEWORKS USED IN THIS STUDY.

Tensorflow Keras Pytorch
Date of Release 2016 2015 2017
Developers Google Google Facebook
Core Language C++ Python, Python,

R C++
APIs Python, C++ Python Python
Model parallelism Yes Yes Yes
Data parallelism Yes Yes Yes
Multi-threaded Yes Yes Yes
CPU
Multi GPU Yes Yes Yes
NVIDIA cuDNN Yes Yes Yes
Fault Tolerance Checkpoint Checkpoint Checkpoint

& Recovery & Resume & Resume
Computational Static Static/ Dynamic
Graph Graph Dynamic Graph
Construction Graph
Debugging TF TF/ Python/

Debugger Python Pycharm/
Debugger Debugger

more tensors as input and in return give zero or more tensors

as output. As long as the graph of which the operation is part

of is valid, the operation will be valid.

2) Keras: Keras is also an open-source framework devel-

oped by the Google AI team members that is used to build

neural networks. It can be considered a meta-framework that

interacts and runs on top of other existing frameworks, such as

Tensorflow and Theano. Keras is implemeted using Python and

provides high-level APIs for developing neural networks mod-

els to perform deep learning. It relies on specialized libraries

that serves as its backend engine instead of handling low level

operations such as tensor manipulation and differentiation,

and minimizes the number of actions required by a user for

any specific action. One of the important feature of Keras is

that it enables the users to implement their neural network

models in the same way they would implement is on the base

framework (such as Tensorflow and Theano) with ease and

without sacrificing flexibility.

3) Pytorch: Pytorch is an open-source framework intro-

duced by the Facebook AI research group which facilitates

development of neural network based deep learning models

through an easy to use API using Python-based framework.

Python uses dynamic computation in contrary to static com-

putation graphs (used by other popular deep learning frame-

works) which allows greater flexibility when building highly

complex architectures.

We summarize the main features of the frameworks used in

our study in Table II.

IV. EMPIRICAL EVALUATION

We present a detailed analysis of the design and evaluation

of the problem discussed in this work. First, we perform the

evaluation of the selected frameworks by comparing the MAEs

using elemental fractions as model input to predict formation

TABLE III
DATASETS USED IN THIS WORK.

Dataset Data Size
OQMD [42] 345220
MP [43] 89181
JARVIS [44] 28171

enthalpy. Next, we perform time evaluation of the frameworks

by looking at the training time to perform model training

and test time to perform prediction. Finally, we perform

computational evaluation for the models by checking the GPU

memory usage, model parameters and size of the saved model.

Before presenting the results, we discuss the experimental

settings and datasets used in this work.

1) Experimental Settings: We implement deep learning

models with Python using Tensorflow 1 (TF-1), Tensorflow

2.2 integrated with Keras (TF-2), and PyTorch framework. In

this study, we use six neural networks FCN-n and FCRN-n

(n = 10, 17, 24), where the number of neurons in each layers

are inspired from [37], [45], [46]. We used mean absolute error

(MAE) as loss function and the error metric for all the results,

Adam as the optimizer with a mini-batch size of 32, learning

rate as 0.0001. We used early stopping with patience of 100

which stops the training if the validation loss does not improve

for 100 epochs. Note that all model training, evaluation, and

benchmarking for FCN-n and FCRN-n (n = 10, 17, 24) was

conducted on a single NVIDIA GV100GL GPU (Tesla V100-

PCIe) with 16GB of memory.

2) Datasets: The three datasets used for evaluation are

shown in Table III.

OQMD was downloaded from the database website [42]

whereas MP and JARVIS datasets were obtained using Mat-

miner [47]. We perform formation enthalpy prediction from

an input vector composed of 86 composition-based elemental

fractions. The datasets are randomly split with stratification

based on the number of elements in a compound with a fixed

random seed of 1234567 into training, validation, and test sets

in the ratio of 81:9:10. For each dataset, we perform five runs

each using different frameworks by initializing the network

weights randomly with a random seed of 1234567 for fixed

random initialization and with random seeds of 1, 12, 123,

1234, 1234567 for the different random initializations and

report the results.

A. Accuracy Analysis

First, we perform accuracy analysis where we compare the

test MAEs of the three frameworks discussed in this work

by using formation enthalpy as the materials property when

model trained on OQMD, MP and JARVIS dataset using each

of the deep neural networks with EF as model input.

Table IV shows the accuracy of the three frameworks using

FCN-n and FCRN-n (n = 10, 17, 24) across three datasets.

We derive the following insights from Table IV.

• Accuracy TF-2 performs the best with least MAE on the

test set for all the model-dataset combinations making it

74

TABLE IV
PREDICTION PERFORMANCE BENCHMARKING FOR THE PREDICTION TASK “ACCURACY ANALYSIS” AND “TIME ANALYSIS” FOR DIFFERENT

FRAMEWORKS USING MULTIPLE RUNS FOR FIXED RANDOM INITIALIZATION AND DIFFERENT RANDOM INITIALIZATIONS. THE AVERAGE AND STANDARD

DEVIATION VALUES ARE REPORTED ACROSS FIVE RUNS. THE TEST TIME IS CALCULATED PER 1000 ENTRIES.

Data Set Model Framework Fixed Random Initialization Different Random Initializations
(Data Size) MAE (eV/atom) Training Time (s) Test Time (s) MAE (eV/atom) Training Time (s) Test Time (s)
OQMD FCN-10 TF-1 0.0509 ± 0.0007 28016 ± 7276 0.0788 ± 0.0029 0.0512 ± 0.0007 26260 ± 6485 0.0804 ± 0.0054
(345134) TF-2 0.0479 ± 0.0003 24709 ± 5927 0.0769 ± 0.0027 0.0475 ± 0.0003 23852 ± 3547 0.0776 ± 0.0064

PyTorch 0.0557 ± 0.0000 21854 ± 433 0.0385 ± 0.0011 0.0565 ± 0.0012 25116 ± 5890 0.0391 ± 0.0043
FCRN-10 TF-1 0.0450 ± 0.0004 40666 ± 5550 0.1082 ± 0.0016 0.0456 ± 0.0004 37015 ± 6313 0.1087 ± 0.0041

TF-2 0.0427 ± 0.0003 39912 ± 6340 0.1016 ± 0.0043 0.0427 ± 0.0005 36205 ± 9015 0.0963 ± 0.0042
PyTorch 0.0483 ± 0.0000 48440 ± 1301 0.0458 ± 0.0055 0.0491 ± 0.0022 36375 ± 7927 0.0430 ± 0.0041

FCN-17 TF-1 0.0503 ± 0.0002 34935 ± 10301 0.1128 ± 0.0070 0.0503 ± 0.0004 35360 ± 4898 0.1236 ± 0.0113
TF-2 0.0469 ± 0.0004 30534 ± 3593 0.0943 ± 0.0066 0.0463 ± 0.0004 31768 ± 5002 0.0995 ± 0.0048

PyTorch 0.0552 ± 0.0000 42968 ± 4982 0.0601 ± 0.0176 0.0567 ± 0.0020 29429 ± 4726 0.0522 ± 0.0068
FCRN-17 TF-1 0.0447 ± 0.0006 46450 ± 6405 0.1666 ± 0.0098 0.0455 ± 0.0004 36688 ± 9148 0.1845 ± 0.0174

TF-2 0.0424 ± 0.0002 35447 ± 5380 0.1068 ± 0.0125 0.0419 ± 0.0006 50018 ± 13699 0.1214 ± 0.0058
PyTorch 0.0486 ± 0.0000 47633 ± 6537 0.0721 ± 0.0162 0.0487 ± 0.0036 45694 ± 11580 0.0666 ± 0.0071

FCN-24 TF-1 0.0511 ± 0.0005 33623 ± 8469 0.1495 ± 0.0097 0.0513 ± 0.0004 32495 ± 7782 0.1549 ± 0.0106
TF-2 0.0466 ± 0.0005 37283 ± 4665 0.1200 ± 0.0059 0.0470 ± 0.0002 36647 ± 6692 0.1198 ± 0.0066

PyTorch 0.0548 ± 0.0000 80016 ± 1741 0.0665 ± 0.0026 0.0553 ± 0.0017 58906 ± 25381 0.0583 ± 0.0093
FCRN-24 TF-1 0.0447 ± 0.0006 53741 ± 16692 0.2158 ± 0.0017 0.0447 ± 0.0003 52988 ± 11556 0.2165 ± 0.0031

TF-2 0.0423 ± 0.0004 54688 ± 11133 0.1475 ± 0.0089 0.0424 ± 0.0005 55896 ± 14351 0.1437 ± 0.0068
PyTorch 0.0484 ± 0.0000 51904 ± 770 0.0870 ± 0.0015 0.0485 ± 0.0037 50065 ± 6987 0.0715 ± 0.0101

MP FCN-10 TF-1 0.1199 ± 0.0020 2109 ± 353 0.0950 ± 0.0033 0.1209 ± 0.0028 2536 ± 568 0.0926 ± 0.0062
(89181) TF-2 0.1176 ± 0.0029 2850 ± 470 0.0806 ± 0.0047 0.1156 ± 0.0005 2997 ± 543 0.0834 ± 0.0030

PyTorch 0.1230 ± 0.0000 2571 ± 57 0.0589 ± 0.0009 0.1241 ± 0.0028 2704 ± 444 0.0594 ± 0.0007
FCRN-10 TF-1 0.1182 ± 0.0020 3846 ± 1010 0.1191 ± 0.0011 0.1194 ± 0.0021 3235 ± 323 0.1194 ± 0.0026

TF-2 0.1132 ± 0.0012 5147 ± 637 0.1031 ± 0.0037 0.1130 ± 0.0015 4595 ± 1082 0.1020 ± 0.0087
PyTorch 0.1185 ± 0.0000 5356 ± 53 0.0841 ± 0.0051 0.1203 ± 0.0031 5314 ± 1173 0.0517 ± 0.0149

FCN-17 TF-1 0.1228 ± 0.0007 3210 ± 624 0.1262 ± 0.0055 0.1228 ± 0.0015 3110 ± 766 0.1406 ± 0.0100
TF-2 0.1187 ± 0.0012 4645 ± 545 0.1403 ± 0.0232 0.1182 ± 0.0022 4157 ± 380 0.1069 ± 0.0151

PyTorch 0.1257 ± 0.0000 6202 ± 775 0.1363 ± 0.0699 0.1242 ± 0.0023 5183 ± 1086 0.1038 ± 0.0112
FCRN-17 TF-1 0.1202 ± 0.0017 5257 ± 1659 0.1830 ± 0.0057 0.1184 ± 0.0019 5299 ± 1507 0.1921 ± 0.0106

TF-2 0.1129 ± 0.0016 7517 ± 1952 0.1368 ± 0.0099 0.1130 ± 0.0024 6801 ± 2032 0.1231 ± 0.0082
PyTorch 0.1130 ± 0.0000 12092 ± 1059 0.1362 ± 0.0302 0.1180 ± 0.0031 7037 ± 2524 0.1225 ± 0.0259

FCN-24 TF-1 0.1223 ± 0.0017 2910 ± 333 0.1305 ± 0.0658 0.1213 ± 0.0014 3402 ± 682 0.1360 ± 0.0002
TF-2 0.1166 ± 0.0014 5797 ± 1429 0.1210 ± 0.0100 0.1174 ± 0.0016 5554 ± 657 0.1177 ± 0.0018

PyTorch 0.1220 ± 0.0000 5938 ± 125 0.1142 ± 0.0021 0.1243 ± 0.0034 7317 ± 2275 0.0696 ± 0.0246
FCRN-24 TF-1 0.1197 ± 0.0014 5018 ± 719 0.1537 ± 0.0899 0.1190 ± 0.0010 6412 ± 1889 0.2224 ± 0.0056

TF-2 0.1138 ± 0.0022 8979 ± 1531 0.1528 ± 0.0114 0.1140 ± 0.0022 7543 ± 2058 0.1561 ± 0.0073
PyTorch 0.1166 ± 0.0000 9691 ± 134 0.1424 ± 0.0041 0.1203 ± 0.0023 9068 ± 3167 0.0888 ± 0.0337

JARVIS FCN-10 TF-1 0.0817 ± 0.0012 620 ± 138 0.1308 ± 0.0044 0.0813 ± 0.0014 649 ± 141 0.1287 ± 0.0028
(19994) TF-2 0.0790 ± 0.0009 888 ± 135 0.1022 ± 0.0082 0.0790 ± 0.0017 1214 ± 268 0.0975 ± 0.0064

PyTorch 0.1015 ± 0.0000 1127 ± 14 0.1669 ± 0.0036 0.0998 ± 0.0104 1078 ± 314 0.1668 ± 0.0015
FCRN-10 TF-1 0.0758 ± 0.0014 1261 ± 323 0.1603 ± 0.0083 0.0752 ± 0.0013 1183 ± 126 0.1603 ± 0.0038

TF-2 0.0714 ± 0.0011 1891 ± 280 0.1162 ± 0.0048 0.0726 ± 0.0006 1679 ± 270 0.1086 ± 0.0096
PyTorch 0.0731 ± 0.0000 1949 ± 38 0.2199 ± 0.0014 0.0759 ± 0.0044 1801 ± 190 0.0976 ± 0.0685

FCN-17 TF-1 0.0839 ± 0.0019 930 ± 244 0.1969 ± 0.0266 0.0846 ± 0.0013 947 ± 364 0.1933 ± 0.0095
TF-2 0.0797 ± 0.0015 1711 ± 305 0.1849 ± 0.0585 0.0809 ± 0.0007 1250 ± 391 0.1277 ± 0.0321

PyTorch 0.1652 ± 0.0000 807 ± 173 0.2381 ± 0.0921 0.1234 ± 0.0305 1096 ± 286 0.2791 ± 0.0748
FCRN-17 TF-1 0.0753 ± 0.0012 1391 ± 267 0.2350 ± 0.0115 0.0757 ± 0.0016 1409 ± 237 0.0741 ± 0.0805

TF-2 0.0706 ± 0.0013 2625 ± 466 0.2285 ± 0.0378 0.0710 ± 0.0012 2386 ± 675 0.1571 ± 0.0318
PyTorch 0.0792 ± 0.0000 1676 ± 91 0.3983 ± 0.0199 0.0767 ± 0.0043 2098 ± 503 0.1766 ± 0.0155

FCN-24 TF-1 0.0825 ± 0.0012 890 ± 332 0.2143 ± 0.0079 0.0853 ± 0.0011 650 ± 83 0.2115 ± 0.0077
TF-2 0.0805 ± 0.0015 1695 ± 588 0.1318 ± 0.0074 0.0799 ± 0.0020 1735 ± 585 0.1328 ± 0.0053

PyTorch 0.1025 ± 0.0000 1567 ± 51 0.3447 ± 0.0075 0.1141 ± 0.0232 1473 ± 245 0.1417 ± 0.1130
FCRN-24 TF-1 0.0750 ± 0.0025 1790 ± 431 0.2746 ± 0.0081 0.0752 ± 0.0013 1820 ± 267 0.2783 ± 0.0024

TF-2 0.0718 ± 0.0008 3384 ± 866 0.1695 ± 0.0039 0.0721 ± 0.0008 2820 ± 1145 0.1729 ± 0.0029
PyTorch 0.0770 ± 0.0000 2612 ± 28 0.4041 ± 0.0049 0.0802 ± 0.0078 2302 ± 314 0.1743 ± 0.1269

the most useful framework for the materials property pre-

diction in terms of accuracy in this analysis. In general,

PyTorch was found to be least accurate among the three

frameworks.

• Reproducibility Interestingly, we found that PyTorch

is fully reproducible (zero standard deviation in MAE),

whereas TF tends to show some variation, although it

is quite small. We believe that random seed in PyTorch

(seed everything) is able to make the training deter-

ministic by eliminating stochasticity altogether, which

helps produce the same result across multiple runs on

a given input data. On the other hand, random seed

used in TF only performs weight initialization, and it

is possible that some internal routines (especially those

run on GPUs) still have some stochasticity. There are

ongoing efforts and libraries [48] that eventually aim to

fix the reproducibility related issues in TF.

B. Time Analysis

Next, we perform time analysis where we compare the

training time to perform model training and test time to

perform prediction by the three frameworks discussed in this

work by using formation enthalpy as the materials property

when model trained on OQMD, MP and JARVIS dataset using

75

TABLE V
PREDICTION PERFORMANCE BENCHMARKING FOR THE PREDICTION TASK

“COMPUTATIONAL ANALYSIS” FOR DIFFERENT FRAMEWORKS.

Model Framework # Model
Size (MiB)

GPU Memory
Usage (MiB)

Model
Params

FCN-10 TF-1 24.8 15265 2166529
TF-2 8.3 15265 2166529
PyTorch 24.8 1124 2166529

FCRN-10 TF-1 33.8 15265 2954977
TF-2 11.3 15265 2954977
PyTorch 33.8 1128 2954977

FCN-17 TF-1 53.0 15265 4631361
TF-2 17.7 15265 4631361
PyTorch 53.0 1157 4631361

FCRN-17 TF-1 62.0 15265 5419809
TF-2 20.8 15265 5419809
PyTorch 62.0 1161 5419809

FCN-24 TF-1 57.0 15265 4982321
TF-2 19.1 15265 4982321
PyTorch 57.0 1176 4982321

FCRN-24 TF-1 66.1 15265 5771297
TF-2 22.2 15265 5771297
PyTorch 66.1 1180 5771297

each of the the deep neural networks, FCN-n and FCRN-n

(n = 10, 17, 24) with EF as model input.

Table IV shows the training time to perform model training

and test time to perform prediction per 1000 entries of the

three frameworks using FCN-n and FCRN-n (n = 10, 17, 24)

across three datasets. We derive the following insights from

Table IV.

• Training time We observe that in general the training

time for TF is faster as compared to Pytorch. However

for large datasets, for some of the cases, we observe that

the model training with PyTorch is faster than with TF.

• Testing time We observe that in general the testing time

with Pytorch is faster as compared to TF. However, when

performing model testing with complex architecture and

small datasets, we observe that the model testing with TF

is faster than with Pytorch.

C. Computational Analysis

Finally, we perform computational analysis by checking the

GPU memory usage, model parameters and size of the saved

model by the three frameworks discussed in this work by using

formation enthalpy as the materials property when the model

trained using each of the the deep neural networks, FCN-n

and FCRN-n (n = 10, 17, 24) with EF as model input.

Table V shows the GPU memory usage, model parameters

and size of the saved model of the three frameworks using

FCN-n and FCRN-n (n = 10, 17, 24). We derive the following

insights from Table V.

• Model Size The saved model from TF-2 is less than one-

third in size as compared to TF-1 and PyTorch.

• GPU Usage TF1 and TF2 tend to use all the memory

available in a GPU to perform the model training whereas

PyTorch uses only the required amount of GPU memory

for the same.

• Model Parameters For a given architecture, the number

of parameters is constant across all the frameworks,

which is expected.

After comparing the accuracy, training time and model

parameters from Table IV and V respectively, we also observe

that large number of model parameters does not always lead

to higher accuracy but it tends to increase the training time.

V. CONCLUSION

The main objective of this work was to provide a com-

parison between three of the most well-known DL frame-

works: TF-1, TF-2, and PyTorch on six different deep neural

network architectures for regression problems in materials

science using three datasets with varying data sizes. Several

important insights were obtained w.r.t. the model accuracy,

training/testing times, reproducibility, and memory usage. We

observe that in general TF-2 gave the best test MAE but

Pytorch is most promising when the aim is reproducibility.

The training and testing time for the frameworks varies with

the dataset size and the size of the saved model. GPU usage

and model parameters for a given architecture are independent

of the dataset used for model training. We believe that these

insights would be interesting to deep learning practitioners to

help make more informed decisions about which deep learning

framework to use for a given problem, data, and available

computational resources.

ACKNOWLEDGMENT

This work was performed under the following financial

assistance award 70NANB19H005 from U.S. Department of

Commerce, National Institute of Standards and Technology

as part of the Center for Hierarchical Materials Design

(CHiMaD). Partial support is also acknowledged from NSF

award CMMI-2053929, and DOE awards DE-SC0019358,

DE-SC0021399, and Northwestern Center for Nanocombina-

torics.

REFERENCES

[1] A. Abugabah, A. A. AlZubi, F. Al-Obeidat, A. Alarifi, and A. Alwadain,
“Data mining techniques for analyzing healthcare conditions of urban
space-person lung using meta-heuristic optimized neural networks,”
Cluster Computing, vol. 23, no. 3, pp. 1781–1794, 2020.

[2] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and
P. Kuksa, “Natural language processing (almost) from scratch,” Journal
of machine learning research, vol. 12, no. ARTICLE, pp. 2493–2537,
2011.

[3] G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly,
A. Senior, V. Vanhoucke, P. Nguyen, T. N. Sainath et al., “Deep neural
networks for acoustic modeling in speech recognition: The shared views
of four research groups,” IEEE Signal processing magazine, vol. 29,
no. 6, pp. 82–97, 2012.

[4] T. Ohki, V. Gupta, and M. Nishigaki, “Efficient spoofing attack detection
against unknown sample using end-to-end anomaly detection,” in 2019
Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC). IEEE, 2019, pp. 224–230.

[5] Z. Jiang and S. Gao, “An intelligent recommendation approach for
online advertising based on hybrid deep neural network and parallel
computing,” Cluster Computing, vol. 23, no. 3, pp. 1987–2000, 2020.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Advances in neural informa-
tion processing systems, vol. 25, 2012.

[7] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning.
MIT press Cambridge, 2016, vol. 1, no. 2.

[8] A. Agrawal and A. Choudhary, “Deep materials informatics: Appli-
cations of deep learning in materials science,” MRS Communications,
vol. 9, no. 3, pp. 779–792, 2019.

76

[9] K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn, C. W.
Park, A. Choudhary, A. Agrawal, S. J. Billinge et al., “Recent advances
and applications of deep learning methods in materials science,” npj
Computational Materials, vol. 8, no. 1, pp. 1–26, 2022.

[10] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:1603.04467, 2016.

[11] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.

[12] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., “Pytorch: An
imperative style, high-performance deep learning library,” Advances in
neural information processing systems, vol. 32, 2019.

[13] S. Shi, Q. Wang, P. Xu, and X. Chu, “Benchmarking state-of-the-art
deep learning software tools,” in 2016 7th International Conference on
Cloud Computing and Big Data. IEEE, 2016, pp. 99–104.

[14] S. Bahrampour, N. Ramakrishnan, L. Schott, and M. Shah, “Comparative
study of caffe, neon, theano, and torch for deep learning,” 2016.

[15] R. Elshawi, A. Wahab, A. Barnawi, and S. Sakr, “Dlbench: a compre-
hensive experimental evaluation of deep learning frameworks,” Cluster
Computing, pp. 1–22, 2021.

[16] A. Agrawal and A. Choudhary, “Perspective: Materials informatics and
big data: Realization of the “fourth paradigm” of science in materials
science,” APL Materials, vol. 4, no. 5, p. 053208, 2016.

[17] R. Pollice, G. dos Passos Gomes, M. Aldeghi, R. J. Hickman, M. Krenn,
C. Lavigne, M. Lindner-D’Addario, A. Nigam, C. T. Ser, Z. Yao et al.,
“Data-driven strategies for accelerated materials design,” Accounts of
Chemical Research, vol. 54, no. 4, pp. 849–860, 2021.

[18] J. Westermayr, M. Gastegger, K. T. Schütt, and R. J. Maurer, “Perspec-
tive on integrating machine learning into computational chemistry and
materials science,” The Journal of Chemical Physics, vol. 154, no. 23,
p. 230903, 2021.

[19] K. Choudhary and B. DeCost, “Atomistic line graph neural network for
improved materials property predictions,” npj Computational Materials,
vol. 7, no. 1, pp. 1–8, 2021.

[20] D. Jha, V. Gupta, W.-k. Liao, A. Choudhary, and A. Agrawal, “Moving
closer to experimental level materials property prediction using ai,”
Scientific reports, vol. 12, 2022.

[21] Y. Mao, H. Lin, C. X. Yu, R. Frye, D. Beckett, K. Anderson,
L. Jacquemetton, F. Carter, Z. Gao, W.-k. Liao et al., “A deep learning
framework for layer-wise porosity prediction in metal powder bed fusion
using thermal signatures,” Journal of Intelligent Manufacturing, pp. 1–
15, 2022.

[22] Y. Mao, Z. Yang, D. Jha, A. Paul, W.-k. Liao, A. Choudhary, and
A. Agrawal, “Generative adversarial networks and mixture density
networks-based inverse modeling for microstructural materials design,”
Integrating Materials and Manufacturing Innovation, pp. 1–11, 2022.

[23] A. Seko, H. Hayashi, K. Nakayama, A. Takahashi, and I. Tanaka, “Rep-
resentation of compounds for machine-learning prediction of physical
properties,” Physical Review B, vol. 95, no. 14, p. 144110, 2017.

[24] D. P. Tabor, L. M. Roch, S. K. Saikin, C. Kreisbeck, D. Sheberla,
J. H. Montoya, S. Dwaraknath, M. Aykol, C. Ortiz, H. Tribukait et al.,
“Accelerating the discovery of materials for clean energy in the era of
smart automation,” Nature Reviews Materials, vol. 3, no. 5, pp. 5–20,
2018.

[25] K. T. Butler, D. W. Davies, H. Cartwright, O. Isayev, and A. Walsh,
“Machine learning for molecular and materials science,” Nature, vol.
559, no. 7715, pp. 547–555, 2018.

[26] B. Sanchez-Lengeling and A. Aspuru-Guzik, “Inverse molecular design
using machine learning: Generative models for matter engineering,”
Science, vol. 361, no. 6400, pp. 360–365, 2018.

[27] G. Pilania, “Machine learning in materials science: From explainable
predictions to autonomous design,” Computational Materials Science,
vol. 193, p. 110360, 2021.

[28] Z. Qin, G. S. Jung, M. J. Kang, and M. J. Buehler, “The mechanics and
design of a lightweight three-dimensional graphene assembly,” Science
advances, vol. 3, no. 1, p. e1601536, 2017.

[29] N. Nusran, K. R. Joshi, K. Cho, M. A. Tanatar, W. R. Meier, S. Bud’ko,
P. C. Canfield, Y. Liu, T. A. Lograsso, and R. Prozorov, “Spatially-
resolved study of the meissner effect in superconductors using nv-
centers-in-diamond optical magnetometry,” New Journal of Physics,
vol. 20, no. 4, p. 043010, 2018.

[30] D. Morgan and R. Jacobs, “Opportunities and challenges for machine
learning in materials science,” Annual Review of Materials Research,
vol. 50, pp. 71–103, 2020.

[31] A. Mannodi-Kanakkithodi and M. K. Chan, “Computational data-driven
materials discovery,” Trends in Chemistry, vol. 3, pp. 79–82, 2021.

[32] P. Friederich, F. Häse, J. Proppe, and A. Aspuru-Guzik, “Machine-
learned potentials for next-generation matter simulations,” Nature Ma-
terials, vol. 20, no. 6, pp. 750–761, 2021.

[33] Y. Saad, D. Gao, T. Ngo, S. Bobbitt, J. R. Chelikowsky, and W. An-
dreoni, “Data mining for materials: Computational experiments with a
b compounds,” Physical Review B, vol. 85, no. 10, p. 104104, 2012.

[34] L. M. Ghiringhelli, J. Vybiral, S. V. Levchenko, C. Draxl, and M. Schef-
fler, “Big data of materials science: Critical role of the descriptor,”
Physical Review Letters, vol. 114, no. 10, p. 105503, 2015.

[35] J. Lee, A. Seko, K. Shitara, K. Nakayama, and I. Tanaka, “Prediction
model of band gap for inorganic compounds by combination of density
functional theory calculations and machine learning techniques,” Phys-
ical Review B, vol. 93, no. 11, p. 115104, 2016.

[36] A. D. Sendek, Q. Yang, E. D. Cubuk, K.-A. N. Duerloo, Y. Cui, and
E. J. Reed, “Holistic computational structure screening of more than
12000 candidates for solid lithium-ion conductor materials,” Energy &
Environmental Science, vol. 10, no. 1, pp. 306–320, 2017.

[37] D. Jha, L. Ward, A. Paul, W.-k. Liao, A. Choudhary, C. Wolverton, and
A. Agrawal, “ElemNet: Deep learning the chemistry of materials from
only elemental composition,” Scientific reports, vol. 8, no. 1, p. 17593,
2018.

[38] V. Gupta, K. Choudhary, F. Tavazza, C. Campbell, W.-k. Liao, A. Choud-
hary, and A. Agrawal, “Cross-property deep transfer learning framework
for enhanced predictive analytics on small materials data,” Nature
communications, vol. 12, no. 1, pp. 1–10, 2021.

[39] R. E. Goodall and A. A. Lee, “Predicting materials properties without
crystal structure: Deep representation learning from stoichiometry,”
Nature communications, vol. 11, no. 1, pp. 1–9, 2020.

[40] A. Y.-T. Wang, S. K. Kauwe, R. J. Murdock, and T. D. Sparks, “Com-
positionally restricted attention-based network for materials property
predictions,” npj Computational Materials, vol. 7, no. 1, pp. 1–10, 2021.

[41] D. W. Oxtoby, H. P. Gillis, and L. J. Butler, Principles of modern
chemistry. Cengage Learning, 2015.

[42] S. Kirklin, J. E. Saal, B. Meredig, A. Thompson, J. W. Doak, M. Aykol,
S. Rühl, and C. Wolverton, “The open quantum materials database
(oqmd): assessing the accuracy of dft formation energies,” npj Com-
putational Materials, vol. 1, p. 15010, 2015.

[43] A. Jain, S. P. Ong, G. Hautier, W. Chen, W. D. Richards, S. Dacek,
S. Cholia, D. Gunter, D. Skinner, G. Ceder, and K. a. Persson,
“The Materials Project: A materials genome approach to accelerating
materials innovation,” APL Materials, vol. 1, no. 1, p. 011002, 2013.
[Online]. Available: http://link.aip.org/link/AMPADS/v1/i1/p011002/s1\
&Agg=doi

[44] K. Choudhary, K. F. Garrity, A. C. E. Reid, B. DeCost, A. J. Biacchi,
A. R. H. Walker, Z. Trautt, J. Hattrick-Simpers, A. G. Kusne, A. Cen-
trone, A. Davydov, J. Jiang, R. Pachter, G. Cheon, E. Reed, A. Agrawal,
X. Qian, V. Sharma, H. Zhuang, S. V. Kalinin, B. G. Sumpter, G. Pilania,
P. Acar, S. Mandal, K. Haule, D. Vanderbilt, K. Rabe, and F. Tavazza,
“JARVIS: An integrated infrastructure for data-driven materials design,”
2020.

[45] D. Jha, V. Gupta, L. Ward, Z. Yang, C. Wolverton, I. Foster, W.-k. Liao,
A. Choudhary, and A. Agrawal, “Enabling deeper learning on big data
for materials informatics applications,” Scientific reports, vol. 11, no. 1,
pp. 1–12, 2021.

[46] V. Gupta, W.-k. Liao, A. Choudhary, and A. Agrawal, “Brnet: Branched
residual network for fast and accurate predictive modeling of materials
properties,” in Proceedings of the 2022 SIAM International Conference
on Data Mining (SDM). SIAM, 2022, pp. 343–351.

[47] L. T. Ward, A. R. Dunn, A. Faghaninia, N. E. R. Zimmermann,
S. Bajaj, Q. Wang, J. E. P. Montoya, J. Chen, K. Bystrom, M. T.
Dylla, K. Chard, M. Asta, K. A. Persson, G. J. Snyder, I. T. Foster, and
A. Jain, “Matminer: An open source toolkit for materials data mining,”
Computational Materials Science, vol. 152, pp. 60–69, 2018.

[48] B. B. Christoph Angerer et al., “Tensorflow determinism,” https://github.
com/NVIDIA/framework-determinism, 2019.

77

