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Abstract

Machine Learning (ML) and Deep Learning (DL) have be-

come increasingly popular in the field of materials science for

building property prediction models owing to their ability

to efficiently extract and understand data-driven relation-

ships between materials composition, structure, and prop-

erties. In general, materials property prediction are regres-

sion problems with a vector-based input material representa-

tion. While fully connected layers have been widely used in

deep neural networks to predict materials properties, simply

adding more and more layers to create a deep model often

degrades their performance due to the vanishing gradient

problem, thereby limiting usage. In this paper, we study

and propose architectural principles for building deep regres-

sion neural networks comprising fully connected layers with

numerical vectors that bypass manual feature engineering.

We introduce a novel deep regression neural network with

branched residual learning, BRNet, consisting of branching

of layers to maximize variation of features learned from the

input or previous layer and places skip connections after

each layer to minimize the information loss due to vanishing

gradient. We perform BRNet model training for inorganic

material properties using numerical vectors representing the

elemental fractions of the compositions of the respective ma-

terials and compare its performance against other traditional

ML and DL techniques, including ElemNet and IRNet. Us-

ing multiple datasets (such as OQMD, MP, JARVIS) for

training and testing, we show that BRNet models are signif-

icantly more accurate than the state-of-the-art ML methods

and DL models for all data sizes by using only raw elemen-

tal fractions as input. We also show that BRNet’s branched

residual learning requires fewer parameters and leads to bet-

ter convergence during the training phase than other neural

networks, thus resulting in faster model training.

1 Introduction

Artificial Intelligence (AI) and Machine Learning (ML)
has become increasingly popular in the field of mate-
rials science, which has greatly enhanced property pre-
diction and materials discovery [22,25]. The availability
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of large scale datasets through high throughput density
functional theory (DFT) calculations [4, 5, 13, 17] and
the ease to access and analyze them by using various
data infrastructure and mining tools [11, 37] has led to
the novel paradigm of materials informatics [1,2,26,36]
and has helped materials scientists better understand
materials and predict their properties by using ad-
vanced data-driven ML techniques [7,26,30,34,40]. We
generally perform regression-based predicting modeling
of the properties in materials science by using var-
ious numerical features derived from domain knowl-
edge [7, 15, 26, 27, 30, 34, 40], such as composition-based
and structure-based features, as input for the predic-
tive model. Since the input representation of materials
is usually a 1D numerical vector, neural networks based
deep learning (DL) models composed of fully connected
layers are widely used to perform the regression, in addi-
tion to traditional ML algorithms such as Random For-
est and Support Vector Machines [6, 21, 26, 30, 34, 40].
However, we observe performance degradation due to
the vanishing gradient problem when deeper neural net-
work architectures are used for predictive modeling,
thereby limiting the depth, i.e., the number of layers
that can be used to create the model [15, 24, 41]. Some
research performed domain knowledge-based model en-
gineering within a deep learning context in materials
science for predictive modeling [14, 24, 28]. There also
have been several efforts to learn either the atomic in-
teraction or the material embeddings using graph-based
networks from the crystal structure [23,29,39].

Our goal for this work is to design a deep regression
network that can maximize the predictive ability of the
model by using the available resources and predict ma-
terials properties by using only elemental fraction as in-
put for the model, which can be calculated without the
need for any domain knowledge. We introduce the idea
of deep residual learning with branched architecture for
deep regression networks composed of fully connected
layers. Several works have tried dealing with the vanish-
ing/exploding gradient-based performance degradation
issue [10, 12, 32]. Highway network introduced in [32]
has an LSTM-inspired adaptive gated connection mech-
anism that allows information to flow across layers, pre-
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venting the loss of information. This network consists of
up to 100 layers that can be optimized but double the
number of parameters in the fully connected network
due to the gating connection mechanism. He et al. [10]
introduced stacked residual learning to learn the map-
ping between the output and input and built deep CNN
models composed of 152 layers for the image classifica-
tion problem. This idea reduced the number of parame-
ters compared to Srivastava et al. [32] as it adds input to
the residual output. An elegant approach for a fully con-
nected network is to use the residual mapping approach
as used in ResNet [10]. Jha et al. introduced individ-
ual residual network (IRNet) [16] using deep regression
networks composed of fully connected layers and batch
normalization using numerical vector inputs to predict
materials properties. However, the batch normalization
layer increases the number of parameters and training
time, making it difficult to use with limited GPU mem-
ory. There have been several works where a branched
structure was used to design the neural network’s archi-
tecture [19,38]. However, although residual learning and
branched network architecture have been widely used
in classification networks in different works, no previ-
ous work leverages both residual learning and branched
structure network architecture together by considering
both time and cost effectiveness for building deep re-
gression neural networks composed of fully connected
layers for numerical vector inputs.

In this paper, we analyze and propose design prin-
ciples for building time and parameter efficient deep re-
gression networks composed of fully connected layers
when using numerical vectors as inputs. We propose
a novel deep regression network architecture that con-
sists of branched residual learning (BRNet), where we
combine the branched structure with skip connections
after each layer to learn the mapping between output
and input by minimizing the loss. We compare BR-
Net against multiple baseline deep regression networks:
ElemNet with dropout at variable intervals of fully con-
nected layers, branch network (BNet) with branching at
the initial layers of the network, and individual residual
network (IRNet) with shortcut connections and batch
normalization after each layer. We focus on the design
problem for predicting the formation enthalpy of inor-
ganic materials from an input vector composed of 86
features representing composition-based elemental frac-
tion from the OQMD. OQMD contains 345,220 unique
materials from the Open Quantum Materials Database
(OQMD) [17] as of January 2020. We also perform
model training for predicting the formation enthalpy on
MP and JARVIS datasets to analyze the effect of dif-
ferent data sizes. MP contains 89,181 unique materials
from the Materials Project Database [13] as of January

2021, and JARVIS consists of 20,072 unique compounds
from the Joint Automated Repository for Various Inte-
grated Simulations Database [4] as of July 2020.

Our proposed BRNet architecture achieves signif-
icantly better accuracy than the best state-of-the-art
ML approach using AutoML: a mean absolute error
(MAE) of 0.041 eV/atom compared to 0.149 eV/atom
on the OQMD dataset. BRNet and BNet also per-
formed better than ElemNet and IRNet for the design
problem. The use of branching and skip connections in
branched residual learning (BRNet) led to faster conver-
gence than the existing approach of residual learning in
IRNet, while reducing the number of model parameters
significantly. We also evaluated BRNet performance
learning for other materials properties in OQMD, MP,
and JARVIS dataset and found that BRNet consistently
outperforms the networks with and without skip connec-
tions and the traditional ML approach on the predic-
tion tasks. We also performed an in-depth architectural
search on BRNet to extract design principles for optimal
branching conditions based on location and distribution
for a fixed number of network parameters by evaluat-
ing all possible combinations of branching with simple
branching configuration. Finally, we emulated combi-
natorial search without using crystal attributes for ma-
terials discovery using the proposed models. The model
training was performed using the OQMD-ICSD dataset
with 32,111 entries and evaluated by searching for sta-
ble materials with specific crystal structures. Overall,
the proposed BRNet model provided more accurate pre-
dictions than the traditional ML and DL approaches on
datasets of different sizes and is expected to be widely
useful for fast and accurate predictive modeling of ma-
terials properties and to accelerate materials discovery.

2 Background

2.1 Materials Property The prediction of various
materials properties from composition-based elemental
fractions can be strongly related to discovering new ma-
terials as it can automatically capture the chemical in-
teractions and similarities between different elements ef-
fectively [15]. One of the important material properties
is formation enthalpy (also known as formation energy)
which is defined as the change in energy when one mole
of a chemical compound in the standard state (1 atm
of pressure and 298.15 K) is formed from its pure el-
ements under the same conditions i.e. the energy re-
leased when forming a material from the constituent
elements. The knowledge of the formation enthalpy can
help materials scientists determine the stability of the
material if it were to be experimentally synthesized in
the laboratory. When more energy is produced in bond
formation than needed for bond breaking then we have
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negative formation enthalpy and more negative forma-
tion enthalpy leads to more stable material. Materials
databases typically also record various other properties
such as volume, density, band gap, etc. [4, 13,17].

2.2 Materials Representation Most traditional
ML approaches require manually engineered materials
representation incorporating domain knowledge as in-
puts to the model [9, 20, 31, 35]. However, these studies
emphasize more on the importance of the manual or
domain knowledge-based feature engineering for train-
ing models for a specific materials property, and less
on the generalizability of the solution. Hence, in this
work, we use raw elemental fractions (EF) as input, as
they are simple to calculate and have shown remark-
able promise using powerful DL techniques that have
consistently shown to excel on raw inputs [15]. EF rep-
resentation used in this work is composed of 86 compo-
sition based-attributes where each attribute represents
an element in the periodic table. For example, NaCl is
represented as a 1D vector of 86 numbers, with the Na
and Cl columns containing 0.5 and everything else as 0.
Leveraging elemental fractions as an input for the model
not only simplifies the input for the different properties
in this work, thereby demonstrating good generaliza-
tion, but is also expected to facilitate the development
of such models on other datasets and properties in the
future.

3 Design

We next describe the deep residual regression models
used in this work and how we build them using different
types of neural network components. Here, we introduce
our novel branch residual network (BRNet) made from
branch network (BNet), which consists of skip connec-
tions added after every layer to fully connected layers
stacked sequentially with a branched structure for the
initial layers. We use the ElemNet [15], IRNet [16] and
different architectural combinations as baseline models
for comparison against BNet and BRNet. ElemNet [15],
a network with fully connected layers with dropout at
variable intervals and, IRNet [16], a network with fully
connected layers and batch normalization with skip con-
nections after each layer are pre-existing deep neural
networks commonly used for materials property predic-
tion.

3.1 Branch Residual Learning He et al. [10] in-
troduced the idea of using skip connections after a
stack composed of multiple convolutional layers. Work
in [19,33,38] uses branched architecture for image clas-
sification. In our case, the stacks are composed of fully
connected layers, Leaky ReLU and skip connections,

which is highly non-linear compared to image classifi-
cation problem with CNN models. Also, learning the
mapping from input to output in regression tasks is com-
paratively more challenging than the residual learning
for classification tasks.

FC1024-LeakyReLU FC1024-LeakyReLU

FC1024-LeakyReLU FC1024-LeakyReLU

FC512-LeakyReLU

FC512-LeakyReLU

FC512-LeakyReLU

FC256-LeakyReLU

FC256-LeakyReLU

FC256-LeakyReLU

FC128-LeakyReLU

FC128-LeakyReLU

FC128-LeakyReLU

FC64-LeakyReLU

FC64-LeakyReLU

FC32-LeakyReLU

FC1

Output

Input

Merge Layer (Add)

Top

Middle1

Middle2

Middle3

Bottom

Figure 1: Proposed Branch Residual Network (BRNet).
Each “layer” is a fully-connected neural network layer
with size depicted in each of the blocks followed by
Leaky-ReLU. BRNet has a branched structure in the
beginning to learn diverse features, with each branch
consisting of layers with the same number of neurons,
and places a shortcut connection after every layer.

To address this challenge we first introduce a novel
neural network architecture which comprises of a series
of stacks, each composed of a fully connected layer and
Leaky ReLU with a branched structure in the initial
layers to build a neural network which we refer to
as branched network (BNet). Next, we use BNet as
our base network and add skip connections after each
stack to introduce a neural network which we refer to
as branched residual network (BRNet). The detailed
architecture for the network is illustrated in Figure 1.
As our goal is to design a general purpose network
framework for regression task rather than optimizing
the network for a specific task for prediction as in
[33, 38], we will explore more sophisticated branching
in future work.
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4 Empirical Evaluation

We present a detailed analysis of the design and eval-
uation of the proposed branched deep regression net-
work with skip connections. We will proceed in several
steps. First, we perform our evaluation of the proposed
branched deep regression model BNet and BRNet for
the design problem and compare its performance against
ElemNet, IRNet and traditional ML approaches when
applied to the OQMD dataset. Next, we evaluate the
proposed model architecture by performing model train-
ing for different materials properties for compounds in
the OQMD, MP and JARVIS datasets using elemental
fractions as model input. Finally, we perform time and
computational parameter evaluation for different mod-
els by training on different datasets to predict formation
enthalpy. Before presenting the results, we discuss the
experimental settings and datasets used in this work.

4.1 Experimental Settings We implement deep
learning (DL) models with Python using Keras frame-
work. We performed extensive hyperparameter tuning
and architecture search for all DL and other ML mod-
els used in this study. For traditional ML models, we
used Scikit-learn implementations and used mean abso-
lute error (MAE) as loss function and the error met-
ric. We also used an AutoML library called as hyperopt
sklearn [18] to find the best performing ML model. For
DL models, we performed the experiments with different
activation functions for all the intermediate regression
layers. We explored learning rates, mini-batch sizes and
different optimizers. We also experimented with differ-
ent loss functions for our regression problem.

4.2 Datasets In this work, we used four datasets to
evaluate our models: OQMD [17], MP [13], JARVIS [4]
and OQMD-ICSD [3, 17]. Detailed description of
datasets can be found in supplementary information.
Each property value corresponds to the lowest formation
enthalpy among all compounds with the same composi-
tion in each of the datasets, representing its most sta-
ble crystal structure. The datasets are randomly split
with stratification based on the number of elements in a
compound (to make the model train, validate, and test
on the same proportion of compound with variable no.
of elements) and a fixed random seed of 1234567 into
training, validation, and test sets in the ratio of 81:9:10.

4.3 Design Problem First, we analyze the impact
of different architectural choices by evaluating the pro-
posed models on the design problem. We perform for-
mation enthalpy prediction from an input vector com-
posed of 86 composition-based elemental fractions using
the OQMD, MP and JARVIS datasets for the design

Table 1: Prediction performance benchmarking for
the prediction task of ”Optimal Architecture Search”
for the design problem. We show the comparison in
performance between the proposed models and existing
models.

Dataset
(Size)

#Model Test
MAE

Training
Time (s)

#Model
Parameters

OQMD ElemNet 0.049 70,851 4,631,361
(345,134) BNet 0.042 97,587 3,670,849

IRNet 0.042 258,367 5,461,473
BRNet 0.041 106,658 4,548,385

MP ElemNet 0.118 5,428 4,631,361
(89,181) BNet 0.112 8,367 3,670,849

IRNet 0.117 25,249 5,461,473
BRNet 0.106 15,677 4,548,385

JARVIS ElemNet 0.083 2,036 4,631,361
(19,994) BNet 0.071 1,913 3,670,849

IRNet 0.094 3,547 5,461,473
BRNet 0.070 4,467 4,548,385

problem. An extensive architecture search and hyper-
parameter tuning is performed to search for the best
deep regression model for the design problem.

4.3.1 Basic Components We experimented with
different components of the neural network architecture
to narrow down the vast space of possible architectures.
Here, we use the base architecture consisting of 17 stacks
of fully connected layers, which is same as what was used
in ElemNet [15] and IRNet [16], in order to facilitate
comparison. Detailed description of model components
used for the analysis can be found in supplementary
information. After initial exploration, we narrowed our
hyperparameters for the neural network to be Adam
as the optimizer, ReLU and LeakyReLU as activation
function (and final regression layer with linear or no
activation function), mini-batch size as 32, learning rate
as 0.0001, mean absolute error as loss function.

4.3.2 Optimal Architecture Search Next, we ex-
perimented with different combinations of architectural
components selected in the previous analysis for neural
network to find the optimal architecture for the neural
network which increases the accuracy and decreases the
training time of the model. We explored different com-
binations of five architectural components: Activation
Function (ReLU or LeakyReLU), Drop Out, Batch Nor-
malization, Skip Connection, and Branching, where the
neural network can have one or more of these architec-
tural components. For Drop Out and Batch Normaliza-
tion we use the same values and layer arrangement as
ElemNet and IRNet respectively. We did not perform
experiments using both Drop Out and Batch Normal-
ization within the same neural network as it does not
perform well as shown in [16].

Table 1 and Figure 2 illustrate that the neural
network consisting of Branching, Skip Connection and
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(a) (b) (c)

Figure 2: The bubble charts indicate the performance of the DL models based on the training time on the x-axis,
MAE (eV/atom) on the y-axis and model parameters as the bubble size for (a) OQMD (b) MP and (c) JARVIS.

Leaky ReLU as the activation function performs the
best. The detailed results on the analysis can be found
in Table S1. We see that the novel approach of skip con-
nections with branching significantly improved model
performance by creating a smooth flow of gradients from
output to input and decreasing the model parameters
and convergence time. The use of dropout does not
contribute much towards improving the model’s accu-
racy. As for batch normalization, its use in the neural
network resulted in a significant increase in the train-
ing time and the model parameters. Although earlier
work uses batch normalization for image classification
problems to produce better results, we find here that it
is better not to use it in the neural network for regres-
sion problems, as was also observed in [8]. Hence, our
design problem’s best architecture consists of 17 stacks
containing fully connected layers, branching, skip con-
nections and Leaky ReLU as activation for the initial
layers. We refer to this as the 17-layer branched resid-
ual network, as shown in Figure 1.

4.3.3 Optimal Branching Search Till now, we
have presented the results of neural networks that
consist of branching at the initial layers with an equally
distributed two-branched structure. Here, we perform
two separate analysis with variation in the branching
by changing the branching location and number of
branches by keeping the number of parameters constant
to find the optimal configuration for branching.

Table 2 shows the performance of BRNet with vari-
ation in the branching based on location and distribu-
tion of the layers for branching. Here, we perform the
distribution of the branching by fixing a location as de-
picted in Figure 1. Here we limit our analysis to a sin-
gle occurrence of branching, which can be configured at
multiple locations in various distributions. More sophis-

Table 2: Prediction performance benchmarking for the
prediction task ”Optimal Branching Search” for the
design problem. We analyze the effect of branching by
changing the location and distribution of branching.

Dataset
(Size)

Branching
Location

Branching
Distribution

Test
MAE

#Epochs

OQMD Top [2, 2] 0.041 954
(345,134) [3, 1] 0.043 714

[2, 1, 1] 0.041 960
[1, 1, 1, 1] 0.041 721

Middle 1 [2, 1] 0.041 1057
[1, 1, 1] 0.041 770

Middle 2 [2, 1] 0.040 1442
[1, 1, 1] 0.042 682

Middle 3 [2, 1] 0.041 1501
[1, 1, 1] 0.041 787

Bottom [1, 1] 0.041 1233
MP Top [2, 2] 0.106 514
(89,181) [3, 1] 0.113 458

[2, 1, 1] 0.107 501
[1, 1, 1, 1] 0.108 659

Middle 1 [2, 1] 0.113 824
[1, 1, 1] 0.111 581

Middle 2 [2, 1] 0.111 1557
[1, 1, 1] 0.113 493

Middle 3 [2, 1] 0.108 1007
[1, 1, 1] 0.114 316

Bottom [1, 1] 0.112 672
JARVIS Top [2, 2] 0.070 471
(19,994) [3, 1] 0.069 710

[2, 1, 1] 0.068 478
[1, 1, 1, 1] 0.069 556

Middle 1 [2, 1] 0.068 1488
[1, 1, 1] 0.070 564

Middle 2 [2, 1] 0.069 1102
[1, 1, 1] 0.071 320

Middle 3 [2, 1] 0.069 854
[1, 1, 1] 0.070 466

Bottom [1, 1] 0.067 780

ticated branching with simultaneous multiple branching
at different locations is not analyzed in this work. From
Table 2, we can observe that changing the configura-
tion of the branching does not significantly vary the
performance of the model for large datasets. For small
datasets, the variation in model accuracy is somewhat
higher, which is not surprising. We also observe that
placing the branching structure at the later layers of
the network or for the layers with small number of neu-
rons and increasing the number of branches by keeping
the number of model parameters constant increases the
number of epochs it takes to train the model for most
of the cases. Overall, we do not observe a significant
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variation in model accuracy by changing the location
and distribution of branching. Since evenly distributed
branching at the initial layers consistently gives the best
or near-best performing models both in terms of accu-
racy and time, we use the same as the default configu-
ration for branching in rest of this paper.

4.3.4 Comparison with Other ML Approaches
Next, we compare the performance of the proposed deep
learning models with traditional ML models, which are
shown in Table 3.

Table 3: Prediction performance benchmarking for
the prediction task of ”Comparison with Other ML
Approaches”. We benchmark the proposed BRNet
architecture against all the best traditional ML models
with extensive grid search for hyperparameter tuning
and AutoML. The existing DL models (ElemNet and
IRNet) are also included in the table for reference.

Dataset
(Size)

Model Test MAE

OQMD Trad. ML 0.166
(345,134) AutoML 0.149

ElemNet 0.049
IRnet 0.042
BRNet 0.041

MP Trad. ML 0.178
(89,181) AutoML 0.167

ElemNet 0.118
IRnet 0.117
BRNet 0.106

JARVIS Trad. ML 0.135
(19,994) AutoML 0.129

ElemNet 0.083
IRnet 0.094
BRNet 0.070

To find the best MAE for the traditional ML
models, we performed an extensive hyperparameter
search to optimize hyperparameters for all the mod-
els as given in Table S2 as well as used AutoML.
Among all of the traditional ML approaches we per-
formed to create the model, AutoML achieved the
best MAE of 0.149eV/atom (OQMD), 0.167eV/atom
(MP) and 0.129eV/atom (JARVIS). On the other hand,
BRNet achieved an MAE of 0.041eV/atom (OQMD),
0.106eV/atom (MP) and 0.07eV/atom (JARVIS),
thereby significantly outperforming AutoML for the de-
sign problem. Our proposed deep learning models pro-
vide a more robust and accurate prediction model than
the state-of-the-art ML approaches while predicting the
formation enthalpy, reducing the test error by more
than 70% for the largest dataset (OQMD) for the design
problem. These results demonstrate that deep learning,
along with our proposed BRNet model, can help con-
struct a robust model for predicting formation enthalpy
from materials composition alone.

4.4 Summary of design insights We derive the
following insights from our experiments with different
deep learning architectures for performing deep regres-
sion from numerical vector inputs for materials proper-
ties.

• Basic Components We observe that not using
batch normalization and dropout performs the best
for performing regression for predicting materials
properties. It is also advisable to use Adam as
the optimization function and LeakyReLU as the
activation function as the basic components for the
neural network.

• Residual Learning Residual learning using skip
connections to perform deep regression for predict-
ing materials properties always helps improve the
predictive ability of the model compared to per-
forming model training without skip connections,
as it helps the model to fit the underlying mapping
from the input vector to the regression output with-
out suffering from the vanishing gradient problem.

• Branching Structure Branching the architecture
of the neural network helps improve the regression
model by increasing the accuracy of the model
and decreasing the training time and number of
parameters of the model as compared to not using
branching. Branching when combined with skip
connections can help build a more robust model.

We believe that the proposed BRnet model can
help build more accurate and robust predictive models
than traditional ML/DL approaches for other data
mining problems as well that use a numerical vector
as input. BRNet can also be easily adapted to perform
classification by modifying the architecture, i.e., using
softmax as the activation of the last layer and cross-
entropy as the loss function.

4.5 Other Materials Properties We evaluated the
proposed deep neural network architecture for learn-
ing and predicting other materials properties present in
OQMD, MP and JARVIS datasets. We use the Elem-
Net, IRNet, and AutoML for comparison. Architecture
search and hyperparameter tuning were not performed
for BRNet here to evaluate and illustrate its effective-
ness and generalization.

From Table 4, we can observe the following things.
First, the deep learning framework outperforms Au-
toML for almost all the materials properties. Second,
the proposed branched network performs better than
all the other deep neural networks used for compari-
son. Third, as we can see that for the same materials
property across different datasets, the accuracy of the
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Table 4: Prediction performance benchmarking for the
prediction task of ”Other Materials Properties”. We
benchmark the proposed BRNet model against AutoML
for ML model and ElemNet, IRNet, BNet model for DL
model.

Dataset Property
(Size)

Model Test
MAE

OQMD Volume AutoML 21.02
(345,134) ElemNet 19.56

IRNet 20.09
BNet 17.92
BRNet 16.91

Band Gap AutoML 0.075
(345,134) ElemNet 0.143

IRNet 0.054
BNet 0.050
BRNet 0.048

Stability AutoML 0.113
(345,134) ElemNet 0.051

IRNet 0.047
BNet 0.045
BRNet 0.043

MP Volume AutoML 205.9
(89181) ElemNet 248.8

IRNet 238.6
BNet 233.8
BRNet 227.4

Density AutoML 0.446
(89181) ElemNet 0.373

IRNet 0.373
BNet 0.349
BRNet 0.344

Band Gap AutoML 0.435
(89181) ElemNet 0.342

IRNet 0.316
BNet 0.317
BRNet 0.315

JARVIS Band Gap Optb AutoML 0.345
(17,924) ElemNet 0.306

IRNet 0.301
BNet 0.267
BRNet 0.257

Bulk Modulus AutoML 13.46
(8,199) ElemNet 11.40

IRNet 11.37
BNet 11.10
BRNet 10.45

Shear Modulus AutoML 10.75
(8,199) ElemNet 10.51

IRNet 10.87
BNet 11.01
BRNet 9.88

Band Gap Mbj AutoML 0.630
(5,287) ElemNet 0.544

IRNet 0.551
BNet 0.462
BRNet 0.453

deep learning framework decreases with the decrease in
the size of the dataset, which is consistent with the
general observation that deep learning performs bet-
ter with bigger datasets. The results demonstrate that
our proposed BRNet architecture which was originally
modeled for the design problem, performs better than
other DL and ML models used by domain experts for
multiple materials properties across different materials
databases. These results illustrate that BRNet can serve
as a general-purpose deep learning architecture for dif-
ferent predictive modeling problems in materials sci-
ence, and possibly other domains as well.

4.6 Application to Materials Discovery Since
the proposed model significantly improved the predic-
tive performance for most materials properties across
datasets of various sizes compared to state-of-the-art
ML approaches and well-known DL models, we can ap-
ply it for high throughput materials discovery. To test
the ability of the proposed model architecture to iden-

tify new materials, we emulated combinatorial search
without using crystal attributes as done in [16, 35].
We use the OQMD-ICSD dataset as a training set
and evaluate the models by predicting the formation
enthalpy (stability) of materials from three different
datasets of commonly occurring crystal structure types:
orthorhombically-distorted perovskite, L10 and B2.

Table 5: Prediction performance benchmarking for
the prediction task of ”Application for Materials Dis-
covery”. We benchmark the proposed BRNet model
against AutoML for ML model and ElemNet, IRNet
model for DL model.

Dataset
(Size)

Model Test
MAE

B2 AutoML 0.578
(2784) ElemNet 0.568

IRNet 0.530
BRNet 0.500

L10 AutoML 0.542
(3467) ElemNet 0.577

IRNet 0.538
BRNet 0.509

Perovskite AutoML 1.728
(1302) ElemNet 0.482

IRNet 0.478
BRNet 0.459

Table 5 shows the comparison of the performance of
proposed BRNet model against AutoML, ElemNet and
IRnet for dataset of each type of crystal structures. Al-
though we do not repeat the entire combinatorial search
workflow here with the proposed models, the results
demonstrates that our proposed BRNet model performs
better on the evaluation candidates than other models.
This suggests that BRNet model can improve the qual-
ity and robustness of the combinatorial search workflow.
It is quite encouraging that despite a small training data
size, the BRNet model can improve the performance of
the combinatorial search for high-throughput materials
discovery.

5 Conclusion and Future Work

In this paper, we analyzed and proposed design prin-
ciples for building time and parameter effective deep
regression networks composed of fully connected lay-
ers when there are numerical vectors as inputs. We
introduced the use of branching of the network layers
and the residual learning using skip connections in a
deep regression network by proposing BRNet, which
leverages the concept of branching and skip connec-
tion in each layer. The proposed BRNet not only
outperforms ML/DL existing approaches for predic-
tive modeling of several materials properties across
multiple materials databases of different size but
also shows time and computational efficiency during
the model training phase. For the design problem,
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the proposed BRNet significantly reduced the MAE
from 0.149eV/atom (OQMD), 0.167eV/atom (MP) and
0.129eV/atom (JARVIS) to 0.041eV/atom (OQMD),
0.106eV/atom (MP) and 0.07eV/atom (JARVIS). The
proposed deep learning architecture and design insights
obtained from this work can significantly help build
predictive models for other applications with numer-
ical vector inputs. The code, data, and models de-
veloped in this work are publicly available at https:

//github.com/GuptaVishu2002/BRNet to the commu-
nity to facilitate reproducibility and further building
upon this work.

In the future, we plan to explore the effect of in-
creasing the branching both horizontally and vertically
on model accuracy and convergence and applying the ar-
chitecture to other data mining problems. It will also be
interesting to study the effect of more sophisticated mul-
tiple branching configurations. We also plan to study
the model’s performance on experimental datasets by
using transfer learning techniques.
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