
MPI on the I-WAY:
A Wide-Area, Multimethod Implementation

of the Message Passing Interface

Ian Foster, Jonathan Geisler, Steven Tuecke
Argonne National Laboratory

Argonne, IL 60439, U.S.A.
{foster,geisler,tuecke}Qmcs.anl.gov

Abstract

High-speed wide-area networks enable innovative ap-
plications that integrate geographically distributed com-
puting, database, graphics, and networking resources.
The Message Passing Interface (MPI) can be used as
a portable, high-performance programming model for
such systems. However, the wide-area environment in-
troduces challenging problems for the MPI implemen-
tor, because of the heterogeneity of both the underlying
physical infrastructure and the authentication and soft-
ware environment at different sites. In this article, we
describe an MPI implementation that incorporates so-
lutions to these problems. This implementation, which
was developed for the I- WAY distributed-computing ex-
periment, was constructed by layering MPICH on the
Nexus multithreaded runtime system. Nexus provides
automatic configuration mechanisms that can be used
to select and configure authentication, process creation,
and communication mechanisms in heterogeneous sys-
tems.

1. Introduction

The I-WAY networking experiment [4] provided the
largest testbed developed to date for high-performance
distributed computing. Over sixty groups used this
testbed to develop applications that connected super-
computers, advanced display devices, storage systems,
and/or scientific instruments located across North
America. Many of these applications used an imple-
mentation of the standard Message Passing Interface
(MPI) for process creation, communication, and syn-
chronization. In this article, we describe the techniques
used to develop this MPI implementation.

Our goal in developing an MPI implementation for

the I-WAY was to shield programmers from such low-
level details as the authentication mechanisms, process
startup mechanisms, network interfaces, and commu-
nication protocols to be used at different sites. That is,
we wished to allow programmers to allocate a hetero-
geneous collection of resources spanning multiple sites
and then start an MPI program on these resources
by typing a single command. Achieving this degree
of transparency is challenging for two principal rea-
sons. First, it requires a low-level infrastructure that
supports and permits the coexistence of multiple im-
plementations of low-level mechanisms for authentica-
tion, process creation, communication, and so forth.
Second, it requires access to correct, up-to-date infor-
mation about the software and hardware environment
at different sites.

We addressed these two challenges by layering the
Argonne/Mississippi State MPICH library [14] on top
of a runtime library called Nexus [lo]. MPICH pro-
vides a portable, high-performance implementation of
MPI that incorporates some support for heterogeneous
environments, but that in its current instantiation is
designed primarily for homogeneous massively parallel
processing (MPP) y t s s ems. Nexus is a portable, mul-
tithreaded communication library that we have con-
structed to support wide-area, heterogeneous compu-
tations. Nexus is distinguished from MPI by its sup-
port for dynamic resource management, a global ad-
dress space via global pointers, and a single-sided com-
munication mechanism called a remote service request.
In addition, its implementation incorporates automatic
configuration mechanisms that allow it to use infor-
mation contained in resource databases to determine
which startup mechanisms, network interfaces, and
communication methods to use in different situations.
These mechanisms were not designed explicitly to sup-
port the MPI communication model but, as we ex-

10
O-8186-7533-0/96 $05.00 0 1996 IEEE

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

plain in this paper, can be used to construct a high-
performance, multithreaded IvIPI implementation.

In this article, we first provide an overview of the I-
WAY experiment and the software environment, I-Soft,
that was developed to support application development
on the I-WAY. Then, we introduce Nexus and the tech-
niques that it uses to support multimethod communi-
cation. Subsequent sections describe the Nexus imple-
mentation of MPI and the techniques used to support
automatic configuration of MPI computations on the
I-WAY.

2. The I-WAY Experiment

The I-WAY, or Information Wide .4rea Year [4], was
a wide-area computing experiment co’nducted through-
out 1995 with the goal of providing a large-scale testbed
in which innovative high-performance and geographi-
cally distributed applications could be deployed. The
I-WAY linked eleven existing national testbeds based
on ATM (asynchronous transfer molde) technology to
interconnect supercomputer centers, virtual reality re-
search locations, and applications development sites
across North America. When demionstrated at the
Supercomputing conference in San Diego in Decem-
ber 1995, the I-WAY network connected multiple high-
end display devices (including immersive CAVETM and
ImmersaDeskTM virtual reality devices [3]); mass stor-
age systems; specialized instruments (such as micro-
scopes and satellite downlinks); and supercomputers of
different architectures, including distributed-memory
multicomputers (IBM SP, Intel Paragon, Cray T3D,
etc.), shared-memory multiprocessors (SGI Challenge,
Convex Exemplar), and vector multiprocessors (Cray
C90, Y-MP). Th ese devices were located at seventeen
different sites across North America.

The I-WAY distributed supercornputing environ-
ment was used by over sixty application groups for ex-
periments in high-performance computing (e.g., [le]),
collaborative design, and the coupling of remote su-
percomputers and databases into local environments
(e.g., 1171). A P rimary thrust was applications that
use multiple supercomputers and virtual reality devices
to explore collaborative technologies in which shared
virtual spaces are used to perform computational sci-
ence. For simplicity, the I-WAY standardized on the
use of TCP/IP running over ATM Adaptation Layer
5 (AAL5) for application networking; in future exper-
iments, alternative protocols will undoubtedly be ex-
plored. The need to configure both IP routing tables
and ATM virtual circuits in this highly heterogeneous
environment was a significant source of implementation
complexity.

An innovative aspect of the I-WAY project was the
developlment Iof a system management and applica-
tion programming environment called I-Soft [8] that
provided uniform authentication, resource reservation,
process creation, and communication functions across
I-WAY resources. A novel aspect of this approach was
the deplo,yment of a dedicated I-WAY Point of Pres-
ence, or I-POP, machine at each participating site.
These machines provided a uniform environment for
deployment OS management software and also simpli-
fied validation of system management and security so-
lutions lby serving as a “neutral” zone under the joint
control lof I -WAY developers and local authorities.

3. Nexus

We nex.t give a brief introduction to the Nexus com-
municat8ion library used to construct the I-WAY im-
plementation of MPI. Nexus provides a low-level in-
terface to multithreading and communication mecha-
nisms in homogeneous and heterogeneous systems. It
is designed for use by library writers and compiler writ-
ers; in a.ddition to MPI, systems that use Nexus facil-
ities include p,arallel object-oriented languages (for ex-
ample, CC++ [2] and Fortran M [6]), parallel script-
ing languages (nPer1 [ll]), and communication libraries
(CAVEc.omm [5] and a Java library).

3.1. Nexus overview

Nexus is structured in terms of five basic abstrac-
tions: nodes, contexts, threads, global pointers, and
remote service requests. A computation executes on
a set of nodes; and consists of a set of threads, each
executing in a.n address space called-confusingly for
MPI users;-a con2ex2. [(For the purposes of this arti-
cle, it s&ices to assume that a context is equivalent
to a process.) An individual thread executes a sequen-
tial program, which may read and write data shared
with oth[er threads executing in the same context. The
global poi&er (GP) provides a global name space for
objects, while the remote service request (RSR) is used
to initia,te communication and invoke remote compu-
tation. A GP represerns a communication endpoint:
that is, it spe’cifies a destination to which a commu-
nication operation can be directed by an RSR. GPs
can be created dynamically; once created, a GP can
be comrnunica.ted between nodes by including it in an
RSR. A GP can be thought of as a capability granting
rights to operate on the associated endpoint. The re-
mote service request mechanism allows point-to-point
communication, remote memory access, and streaming
protocols to be supported within a single framework.

11

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

Figure 1. The I-WAY network. Figure produced by Linda Winkler and Richard Foster.

3.2. Multimethod communication

From the point of view of the I-WAY, the Nexus fea-
tures that are most interesting are those that support
multimethod communication [7]. These mechanisms
are based around the global pointer construct, which
is used to maintaininformation about the methods that
can be used to perform communications directed to a
particular remote location. Simple protocols allow this
information to he propagated from one node to another
and provide a framework that supports both automatic
and manual selection from among available communi-
cation methods.

Nexus incorporates automatic configuration mech-
anisms that allow it to use information contained in
resource databases to determine which startup mecha-
nisms, network interfaces, and communication methods
to use in different situations. These mechanisms allow
Nexus programs to execute unchanged in different en-
vironments, with communication methods selected ac-
cording to default rules, depending on the source and
destination of the message being sent. For example, au-
tomatic selection in Nexus RSRs being performed with
IBM’s Message Passing Library (MPL) within an IBM
SP2 and with TCP/IP between computers. Manual se-
lection is also supported, for example allowing selection
of specialized ATM protocols when appropriate.

Automatic configuration makes sense only if re-
source databases contain up-to-date information. We

discuss below the techniques used to create and main-
tain resource databases in the I-WAY.

4. The I-WAY Implementation of MPI

We now address the question of how Nexus mecha-
nisms were used to construct an MPI implementation.
In this section, we explain how MPICH was layered on
top of Nexus; in the next section, we discuss I-WAY-
specific issues.

4.1. MPI and MPICH

We first review important features of MPI and of the
MPICH implementation on which this work is based.

The Message Passing Interface defines a standard set
of functions for interprocess communication [15]. It de-
fines functions for sending messages from one process
to another (point-to-point communication), for com-
munication operations that involve groups of processes
(collective communication, such as reduction), and for
obtaining information about the environment in which
a program executes (enquiry functions). The commu-
nicator construct combines a group of processes and a
unique tag space and can be used to ensure that com-
munications associated with different parts of a pro-
gram are not confused.

MPICH [14] is a portable, high-performance im-
plementation of MPI. It is structured in terms of an

12

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

MPICH

z
7

AD1
IIZI

Channel Device

P4 i%efj 7:;

multiple communication methods;

Figure 2. The Nexus implementation of MPI is
constructed by defining a Nexus instantiation
of the MPICH channel device, a specializationt
of the abstract device interface.

abstract device interface (ADI) that defines low-level
communication-related functions that can be imple-
mented in different ways on different machines [la, 1.31.
The Nexus implementation of MPI is constructed by
providing a Nexus implementation of this device. The
use of the AD1 simplifies implementaltion but has some
performance implications, which we discuss below.

4.2. The Abstract Device Interface

Figure 2 illustrates the structure of the MPICH im-
plementation of MPI. Higher-level functions such as
those relating to communicators and collective opera-
tions are implemented by a device-independent libra,ry,
defined in terms of point-to-point communication func-
tions provided by the ADI. To achieve high perfor-
mance, the AD1 provides a rich set Iof communication
functions supporting different communication modes.
A typical implementation of the AD1 will map some
functions directly to low-level mechanisms and imple-
ment others via library calls. The mapping of MPICH
functions to AD1 mechanisms is achieved via macros
and preprocessors, not functi’on calls. Hence, the over-
head associated with this organization is often small or
nonexistent [14].

The ADI provides a fairly high-level abstraction of
a communication device: for example, it assumes that
the device handles the buffering and queuing of mes-
sages. The lower-level channel interfalce defines simpler
functions for moving data from one processor to an-
other. For example, it defines MPIDSendControl and
MPID-SendChannel functions that can be used to im-

plement the MPI function MPISend. On the destina-
tion side, the test MPID-ControlMsgAvail and function
MPID-FLecvAnyControl are provided and can be used
to implernent MPLRecv. Different protocols can be se-
lected; th.e best in man,y circumstances sends both the
message Ienvelope (tag, communicator, etc.) and data
in a single message, up to a certain data size, and then
switches lto a ltwo-message protocol so as to avoid copy-
ing dat,a.

The N’exus implementation of the channel device es-
tablishes a fully connected set of global pointers linking
the processes involved in the MPI computation. Then,
it implements channel device send functions as RSRs to
“enqueue message” handlers; these handlers place data
in appropriate queues or copy it directly to a receive
buffer if a receive has already been posted. As this brief
description shows, the mapping from AD1 to Nexus is
quite d-irect; lthe tricky issues relate mainly to avoid-
ing extra copy operations. The principal overheads
relative to MPICH comprise an additional 32 bytes
of Nexus header information, which must be format-
ted and communicated;, the decoding and dispatch of
the Nexu;s handler on the receiving node; and a small
number of additional function calls. We quantify these
costs below. Most are artifacts of version 1 of the
MPICH channel device; we are currently working with
the MPICH developers to investigate a tighter integra-
tion of MPICH and Ne.xus, which we expect to elimi-
nate moslt remaining overheads.

Finally, we observe that the Nexus implementation
of MPI is structured so that Nexus thread manage-
ment functions and MPI communication functions can
both be used in the same program. This coexistence
is simplihed by the fact that the MPI specification is
thread s:ajre. That is, there is no implicit internal state
that prevents the execution of MPI functions from be-
ing interleaved. The Nexus library addresses other
thread safety issues, ensuring that only one thread at a
time accesses nonthread-safe system components such
as communication devices and I/O libraries on many
systems.

4.3. Perforimance experiments

We have conducted a. variety of performance exper-
iments to evaluate the performance of both our multi-
method communication mechanisms and the Nexus im-
plement8ation of MPI. All experiments were conducted
on the Argonne IBM SP2, which is configured with
Power 1 rather than the more common Power 2 pro-
cessors. ‘These processors are connected via a high-
speed multistage crossbar switch and are organized
by software into disjoint partitions. Processors in the

13

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

same partition can communicate by using either TCP
or IBM’s proprietary Message Passing Library (MPL))
while processors in different partitions can communi-
cate via TCP only. Both MPL and TCP operate over
the high-speed switch and can achieve maximum band-
widths of about 36 and 8 MB/set, respectively. TCP
communications incur the high latencies typically ob-
served in other environments, and so multiple SP par-
titions can be used to provide a controlled testbed for
experimentation with multimethod communication in
networked systems.

Nexus performance experiments, reported else-
where [lo], reveal that on the Argonne SP2, a “ping-
pong” benchmark that performs RSRs back and forth
between two processors obtains a one-way cost of
82.8 psec for a zero-length message; in contrast,
the SP2’s low-level MPL communication library takes
61.4 psec. The principal sources of the 21.4 psec dif-
ference between NexusLite and MPL are the setup
and communication of the 32-byte header contained
in a Nexus message (about 8 psec) and the lookup
and dispatch of the handler on the receive side (about
7 psec)e[lO].

We evaluated the performance of the Nexus imple-
mentation of MPI by using the ping-pong benchmark
provided by the MPI mpptest program [14]. We ex-
ecuted this program using both “native” MPICH and
the Nexus implementation of MPI, in the later case
comparing performance both with MPL support only
and with MPL and TCP support. Figure 3 shows our
results.

The graph on the left shows that MPICH takes
83.8 klsec for a zero-length message. This is c.ompa-
rable with the 82.8 Ldsec achieved by Nexus alone, sug-
gesting that MPICH and Nexus are implemented at a
similar level of optimization. The Nexus implementa-
tion of MPI incurs an overhead of around 60 psec for a
zero-length message; the graph on the right shows that
for larger messages, the overhead becomes insignificant.
We have outlined the sources of these overheads in Sec-
tion 4.2; as we note there, we believe that most can be
eliminated by improving the MPICH ADI. The jump
in the MPICH numbers at 200 bytes is an artifact of
the protocols used in the low-level MPL implementa-
tion. Notice the corresponding jump in the Nexus plots
at around 170 bytes; the offset is due to the additional
header information associated with a Nexus RSR.

The MPL+TCP results illustrate some performance
issues that can arise when multiple communication
methods must be supported. The Nexus implemen-
tation used in these experiments detects incoming
communications by using a simple integrated polling
scheme. This scheme invokes a method-specific poll

operation for each communication method supported
within a process. This approach can perform badly
when the polling operation for one method is much
slower than the others. For example, on many MPPs,
the probe operation used to detect communication
from another processor is cheap, while a TCP select
is expensive. On the SP2, the mpc-status call used to
detect an incoming MPL operation costs 15 microsec-
onds, while a select costs around 100 microseconds.
This sort of cost differential allows an infrequently
used, expensive method to impose significant overhead
on a frequently used, inexpensive method. These over-
heads can be reduced by using optimizations that, for
example, perform TCP polls less frequently [7].

The results presented in this section are for a non-
threaded implementation of Nexus. The results for the
threaded version of Nexus are similar, except that we
see an additional 29.6 psec overhead on a zero-length
message due to locking needed for thread safety and
the use of a probe rather than a blocking receive to
detect incoming messages.

4.4. Discussion

The Nexus implementation of MPI provides three
benefits over and above those provided by MPICH:
multimethod communication, interoperability with
other Nexus applications, and multithreading.

The automatic selection of communication methods
is supported directly in the Nexus implementation of
MPI. An interesting question is how to support man-
ual control of method selection in an MPI framework.
We propose that this be achieved via MPI’s caching
mechanism, which allows the programmer to attach
to communicators and subsequently modify and re-
trieve arbitrary key/value pairs called attributes. An
MPI implementation can be extended to recognize cer-
tain attribute keys as denoting communication method
choices and parameter values. For example, a key
TCP-BUFFERSIZE might be used to specify the buffer
size to be used on a particular communicator.

A second benefit that accrues from the Nexus imple-
mentation of MPI is interoperability with other Nexus-
based tools. For example, on the I-WAY, numerous ap-
plications used the CAVEcomm [5] client-server pack-
age to transfer data among one or more virtual real-
ity systems and a scientific simulation running on a
supercomputer. When the simulation itself was devel-
oped with MPI, the need arose to integrate the polling
required to detect communication from either source.
This integration is supported within Nexus.

The third benefit that accrues from the use of Nexus
is access to multithreading. The concurrent execution

14

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

0 200 400 600 800 lClO0 0 200000 400000 600000 800000 le+06
Size (bytes) Size (bytes)

7ocm

6OC00

5ocoo

30000

zoaoo

1oaoo

cl

MYE’I/Nexus MPL-tTCP -+-
MPI/Nexus MPL +

MPICH--ch-eui .----.-

Figure 3. One-way message latency as a functiion of message size, for various implementations of
MPI described in the text. The two graphs shiow results for slmall and large messages, respectively.

of multiple lightweight threads wi,thin a single pro-.
cess is a useful technique for masking variable laten-.
ties, exploiting multiprocessors, and providing concur-
rent access to shared resources. Various approaches;
to the integration of multithreading into a message-
passing framework have been proposed (see [lo] for a,
discussion). The Nexus implementation of MPI sup-
ports a particularly simple and elegant model that,
does not require that explicit thread identifiers be ex-
ported from MPI processes. Instead, threads are cre-
ated and manipulated with Nexus functions, and in-
terthread communication is performed by using stan-
dard MPI functions, with tags and/or communicators
being used to distinguish messages intended for differ-
ent threads. The MPI/Nexus combi.nation can be used
to implement a variety of interesting communication
structures. For example, we can create two communi-
cators and communicate independently on each from
separate threads, using either point-to-point or collec-
tive operations. Or, several threads can receive on the
same communicator and tag value. In a multiproces-
sor, the latter technique allo,ws us to implement paral-
lel servers that process requests from multiple clients
concurrently.

The multithreaded MPI a,lso has its limitations. In
particular, it is not possible to define a collective op-
eration that involves more than one thread per pro-
cess. This functionality requires extensions to the MPl
model 19, 16, 191.

Finally, we note that Nexus support for dynamic re-
source management and multithreading also provides a

framework for implementing new features proposed for
MPI-2, such as dynamic process management, single-
sided communication, and multicast.

5. Nexus, MPI, and the I-WAY

The I-WAY implementation of MPI was constructed
by extenlding the MPICH/Nexus system described in
the preceding section to support startup mechanisms
provided by t#he I-WAY software environment. The I-
WAY sch.eduler was configured so that, when schedul-
ing resources to users, it would also generate database
entries describing the resources and the network config-
uration [8]. Nexus (and hence MPI) could then use this
information when creating a user computation. This
support made it possible for a user to allocate a hetero-
geneous collection of I-WAY resources and then start
a program sirnply by typing “impirun.”

The Nexus implementation of MPI was used ex-
tensiveliy for I-WAY application development. Expe-
riences emphasized the advantages of the Nexus au-
tomatic configuration mechanisms. In many cases,
user were able to develop applications in MPI (or in
other hig:h-level Nexus-based tools such as CC++ or
CAVEcomm) without ;any knowledge of low-level de-
tails relating to the compute and network resources
included in a computation. These applications would
then execute in heterogeneous environments. For ex-
ample, in a virtual machine connecting IBM SP and
SGI Challenge computers with both ATM and Internet
networks, Ne.xus uses lthree different protocols (IBM

:15

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

proprietary MPL on the SP, shared-memory on the
Challenge, and TCP/IP or AAL between comput-
ers) and selects either ATM or Internet network in-
terfaces, depending on network status. Other systems
used Nexus mechanisms in the same manner, notably
the parallel language CC++ [l] and the parallel script-
ing language nPer1 [111, used to write the I-WAY sched-
uler.

A significant difficulty revealed by the I-WAY exper-
iment related to the mechanisms used to generate and
maintain the configuration information used by Nexus.
While resource database entries were generated auto-
matically by the scheduler, the information contained
in these entries (such as network interfaces) had to be
provided manually. The discovery, entry, and mainte-
nance of this information proved to be time consuming,
in particular because I-WAY network status proved to
be highly changeable. Clearly, this information should
be discovered automatically whenever possible. Auto-
matic discovery would make it possible, for example,
for a parallel tool to use dedicated ATM links if these
were available, but to fall back automatically to shared
Internet if the ATM link was discovered to be unavail-
able. The development of such automatic discovery
techniques remains a challenging research problem.

The Nexus communication library provides mecha-
nisms for querying the resource database, which users
could have used to discover some properties of the ma-
chines and networks on which they were executing. In
practice, few I-WAY applications were configured to
use this information; however, we believe that this sit-
uation simply reflects the immature state of practice
in this area and that users will soon learn to write
programs that exploit properties of network topology,
etc. Just what information users will find useful re-
mains to be seen, but presumably enquiry functions
that reveal the number of machines involved in a com-
putation and the number of processors in each machine
will be required. Our MPI implementation could use
information about network topology to optimize col-
lective operations, which are currently performed by
using algorithms designed for multicomputer environ-
ments; presumably, communication costs can often be
reduced by using communication structures that min-
imize intermachine communication.

6. Summary

We have describe an implementation of the Message
Passing Interface designed to execute in wide area, het-
erogeneous environments. This implementation was
used by numerous groups to develop applications for
the I-WAY networking experiment. We developed this

implementation by layering MPICH on the Nexus com-
munication library and by integrating Nexus into the
I-WAY software environment. This produced a sys-
tem that can deal with heterogeneous authentication,
process creation, and communication mechanisms. In
particular, support for multimethod communication al-
lowed an MPI application to use different communica-
tion mechanisms depending on where it was communi-
cating. In future work, we expect to extend our MPI
system so that programmers can use existing and fu-
ture Nexus mechanisms to vary method selection ac-
cording to what is being communicated or when com-
munication is performed.

Microbenchmark studies provide insights into the
costs associated with the Nexus implementation of
MPI. The results presented here are promising in that
they show that overheads associated with multimethod
communication are small and manageable. However,
we know that these overheads can be reduced further.
The only unavoidable overheads associated with the
Nexus implementation of MPI seem to be the few mi-
croseconds associated with handler lookup and the use
of probe rather than blocking receive.

Acknowledgments

Our work on multimethod communication is a joint
effort with Carl Kesselman and has also benefited
greatly from discussions with Steve Schwab. Our MPI
implementation was made possible by the outstand-
ing MPICH implementation constructed by Bill Gropp,
Ewing Lusk, Nathan Doss, and Tony Skjellum; we are
grateful for their considerable help with this project.
This work was supported by the National Science Foun-
dation’s Center for Research in Parallel Computation,
under Contract CCR-8809615, and by the Mathemati-
cal, Information, and Computational Sciences Division
subprogram of the Office of Computational and Tech-
nology Research, U.S. Department of Energy, under
Contract W-31-109-Eng-38.

References

[l] K. M. Chandy and C. Kesselman. CC++: A declar-
ative concurrent object-oriented programming nota-
tion. In Research Directions in Concurrent Object-
Oriented Programming. MIT Press, 1993.

[2] K. M. Chandy and C. Kesselman. CC++: A declara-
tive concurrent object oriented programming notation.
In Research Directions in Object Oriented Program-
ming. MIT Press, 1993.

[3] C. Cruz-Neira, D. Sandin, T. DeFanti, R. Kenyon, and
J. Hart. The CAVE: Audio visual experience auto-
matic virtual environment. CACM, 35(6):65%72, 1992.

16

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

[4] T. DeFanti, I. Foster, M. Papka., R. Stevens, and
T. Kuhfuss. Overview of the I-WAY: Wide area visual
supercomputing. Intl J. Supercomputer Applications,
1996. in press.

[5] T. L. Disz, M. E. Papka, M. Pellegrino, and
R. Stevens. Sharing visualization experiences among
remote virtual environments. In International Worlc-
shop on High Performance Completing for Computer
Graphics and Visualization, pages 217-237. Springer-
Verlag, 1995.

suplercomputing. Intl J. Supercomputer Applications,
19916. in press.

[19] A. Skjellum, N. Doss, K. Viswanathan, A. Chow-
dapp(z, and P. Bangalore. Extending the message pass-
ing interface. In Proc. 1994 Scalable Parallel Libraries
Coinf. 1EE.E Computer Society Press, 1994.

[6] I. Foster and K. M. Chandy. Fortran M: A language for
modular parallel programming. J. Parallel and Dis-
tributed Computing, 25(l), 1994.

[7] 1. Foster, J. Geisler, C. Kesselmatn, and S. Tuecke.
Multimethod communication for high-performance
networked computing systems. Preprint, Mathemat-
ics and Computer Science Division, Argonne National
Laboratory, Argonne, Ill., 1996.

[8] I. Foster, J. Geisler, W. Nickless, W. Smith, and
S. Tuecke. Software infrastructure for the I-WAY
high-performance distributed com;puting experiment.
In Proc. 5th IEEE Symp. on High. Performance Dis-
tributed Computing. IEEE, 1996.

[9] I. Foster, C. Kesselman, and M. Snir. Generalized
communicators in the Message Passing Interface. In
Proc. MPI Developers Cor$. IEEE, 1996.

[lo] I. Foster, C. Kesselman, a.nd S. Tuecke. The Nexus
approach to integrating multithreading and communi-
cation. J. Parallel and Distributed Computing, 1996.
To appear.

[ll] I. Foster and R. Olson. A guide to paral-
lel and distributed programming in nPer1. Tech-
nical report, Argonne National Laboratory, 1995.
http://www.mcs.anl.gov/‘nexus/nperl/.

[la] W. Gropp and E. Lusk. An abstract device definition
to support the implementation of a high-level point-
to-point message-passing interface. Technical Report
MCS-P342-1193, Argonne National Laboratory, 1994.

[13] W. Gropp and E. Lusk. MPICH working note: Cre-
ating a new MPICH device using the channel inter-
face. Technical Report ANL/MCS-TM-213, Argonne
National Laboratory, 1995.

[14] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable implementation of the MPI
message passing interface standard. Technical Re-
port ANL/MCS-TM-213, Argonne National Labora-
tory, 1996.

[15] W. Gropp, E. Lusk, and A. Skjellum. Using MPI:
Portable Parallel Programming with the Message Pass-
ing Interface. MIT Press, 1995.

[16] M. Haines, P. Mehrotra, and D. Cronk. Ropes:
Support for collective operations among distributed
threads. Technical Report 95-36, ICASE, 1995.

[17] C. Lee, C. Kesselman, and S. Schwab. Near-real-time
satellite image processing: Metacomputing in CC++.
Computer Graphics and Applications, 1996. to appe.ar.

[18] M. Norman et al. Galaxies collide on the I-WAY:
An example of heterogeneous wide-area collaborative

17

Proceedings of the Second MPI Developers Conference (MPIDC '96)
0-8186-7533-0/96 $10.00 © 1996 IEEE

