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Abstract 

Data-parallel languages such as High Performance 
Fortran (HPF) p resent a simple execution model in 
which a single thread of control performs high-level op- 
erations on distributed arrays. These languages can 
greatly ease the development of parallel programs. Yet 
there are large classes of applications for which a mix- 
ture of task and data parallelism is most appropriate. 
Such applications can be structured as collections of 
data-parallel tasks that communicate by using explicit 
message passing. Because the Message Passing Inter- 
face (MPI) defines standardized, familzar mechanisms 

for this communication model, we propose that HPF 
tasks communicate by making calls to a coordination 
library that provides an HPF binding for MPI. The 
semantics of a communication interface for sequen- 
tial languages can be anlbiguous when the interface is 
invoked from a parallel language; we show how these 
ambiguities can be resolved by describing one possible 
HPF binding for MPI. We then present the design of 
a library that implements this binding, discuss issues 
that injiYuenced our design decisions, and evaluate the 
performance of a prototype HPF/MPI library using a 
communications microbenchmark and application ker- 
nel. Finally, we discuss how MPI features might be 
incorporated into our design framework. 

1, Introduction 

Message-passing libraries such as the Message Pass- 
ing Interface (MPI) p rovide programmers with a high 
degree of control over the mapping of a parallel pro- 
gram’s tasks to processors, and over inter-processor 
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communications [5]. However, this control comes at 
a high price: programmers must explicitly manage all 
details relating to parallelism, such as synchronization 
and data transfer. In contrast, data-parallel languages 
such as High Performance Fortran (HPF) provide a 
simple programming model in which all processors ex- 
ecute a single, logical thread of control that performs 
high-level operations on distributed arrays; many te- 
dious details are managed automatically by the com- 
piler [7]. 

1.1. Limitations of data parallelism 

While data-parallel languages such as HPF can 
greatly ease development of concise solutions to many 
parallel programming problems, the rate of improve- 
ment of speedup of many data-parallel programs dimin- 
ishes sharply as more processors are used to execute a 
program. This is typically due to increased communi- 
cation overhead. Alternatively, one may say that par- 
allel efficiency, or the ratio of speedup to processors, 
decreases as the number of processors increases. Fig- 
ure 1 depicts an abstract example of this phenomenon. 
Classes of applications that exhibit this effect most 
markedly include those that perform a number of het- 
erogeneous processing steps (such as pipeline codes 
and multidisciplinary simulations) and those that oper- 
ate on irregularly-structured data (such as multiblock 
codes). 

Fortunately, many such programs can be decom- 
posed into independent data-parallel tasks that can ex- 
ecute in parallel on a subset of the available processors 
at higher parallel efficiency than the original program 
running on all processors [2, 61. For example, suppose 
the program of Figure 1 can be reformulated as a pair of 
communicating data-parallel tasks that each run on $ 
processors with a parallel efficiency of 90% (as did the 
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Figure 1. A plot of speedup vlersus number 
of processors for an applicatioln that exhibits 
diminishing parallel efficiency. 

original program). When this mixed task/data-parallel 
version executes on all P processors, it can maintain a 
parallel efficiency of 90%, a significant improvement 
over the 60% of the purely d.ata-parallel version. 

Though this simple analysis neglects the additional 
inter-task communication incurred b,y the task-parallel 
version, in practice this overhead often is dominated 
by the improvement in each task’s parallel efficiency. 
Moreover, in many pipeline applications it is desirable 
to optimize not the time to process a rsingle dataset (l;he 
pipeline latency), but rather the number of datasets 
processed per unit time (the 2hroughput). Through- 
put is bounded not by the time to complete all stages, 
but rather by the processing rate of the slowest stage. 
Therefore, even if communication overhead causes the 
latency of a pipelined version to rise above that of a 
purely data-parallel version, so that the speedup of the 
pipeline at processing one dat,aset is actually lower, the 
pipeline may still be preferable because its throughput 
is higher [l]. 

1.2. MPI in an HPF colntext 

Because HPF is a powerful, high-level notation for 
expressing data-parallel computations, while MPI fa- 
cilitates precise control over task mapping and inter- 
task communication, we propose the use of an H.PF 
binding for MPI as a coordination layer for cou- 
pling together data-parallel ltasks to construct mixed 
task/data-parallel programs. However, the semantics 
of a standard such as MPI that is intended for sequen- 
tial languages are not entirely clear when its mecha- 
nisms are invoked from a parallel language. For ex- 
ample, a “process” in MPI is assumed to be an inde- 

Producer (task 0): 
!HPF$ processors prod-procs(4) 

real A(8, 8) 
!HPI:$ distribute A(BLOCK, *) onto prod-procs 

do i = 1, N 
call produce-data(A) 
call MPI-Send(A, 8*8, MPI-REAL, 1, 99, 

YC MPI-COMM-WORLD, ierr) 
end do 

Consumer (task 1): 
!HPF'$ prucessors cons-procs(2) 

re.al B(8, 8) 
!HPF'$ distribute B(:*, BLOCK) onto cons-procs 

do i = I, N 
call MPI-Recv(A, 8*8, MPI-REAL, 0, 99, 

8C MPI-COMM-WORLD, status, 
81 ierr) 

call consunle-data(B) 
end do 

Figure 2., Producer-consumer example writ- 
ten using HPF/MPI. 

pendent thread of control executing on a single proces- 
sor. This is ambiguous when applied to the execution 
model of HPF, where one logical thread of control is 
replicated1 across many physical processors. Similarly, 
data structures in MPI are assumed to reside within 
a single address space, yet a fundamental premise of 
HPF is that arrays can be distributed across multiple 
address spaces. 

Our defimtion of an HPF binding for MPI attempts 
to resolve these difficulties. In an HPF/MPI program, 
each task constitutes an independent HPF program in 
which one logical thread of control operates on arrays 
distributed a,cross a statically-defined set of processors. 
At the same time, each task is also one logical process 
in an MF’I computation. Therefore, tasks may com- 
municate and synchronize with one another by calling 
standarId MI’1 routines for point-to-point transfer and 
collective operations. The combination of the seman- 
tics of our binding and the implicit nature of paral- 
lelism in HPF yields the following helpful consequence: 
when readin,g an HPF/MPI program one may ignore 
the HPI? directives and treat the remainder as a par- 
allel Fortran 90 program containing explicit message- 
passing calls. 

We use a very simple producer-consumer example 
to illust,rate the usage of the HPF binding for MPI; 
Figure 2 shows the source code for the example. The 
producer task calls the function produce-data, which 
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Figure 3. Movement of distributed data from 
producer to consumer. 

performs a series of data-parallel operations on the ar- 
ray A using four processors. Then the producer calls 
MPISend to transmit the contents of A to the consumer, 
in a message with a tag value of 99. The consumer 
receives this data into an array B, using MPI_Recv. Fi- 
nally, the consumer processes the data in parallel on 
its two processors by calling consume-data. 

What distinguishes this example from an ordinary 
sequential MPI program is that each of the two logical 
MPI processes is an HPF task executing on several pro- 
cessors. Hence the source array being transferred via 
MPI calls is actually distributed across the processors 
of task 0, and the message dest,ination is distributed 
across those of task 1. Figure 3 depicts the complex 
pattern of data movement from source to destination 
required to perform this transfer. Yet from the pro- 
grammer’s perspective, one invokes just a single trans- 
fer operation; all the complexity is encapsulated in the 
HPF/MPI library. 

The example of Figure 2 does not show how the two 
tasks were connected together in a pipeline. This can 
be achieved in two ways: 

1. During execution, tasks may invoke the inquiry 
function MPI-Conunlank to determine their iden- 
tity, and perform conditional processing based on 
the returned value. (This is similar to the opera- 
tion of SPMD programs.) 

2. The startup mechanism of an HPF/MPI imple- 
mentation must permit definition of the size of 
each task. If the startup mechanism also lets 
the user specify different programs to be executed 
by different tasks, then a collection of separately- 
compiled executables may be combined into a sin- 
gle HPF/MPI computation. (Many implementa- 
tions of sequential MPI permit this.) 

In the next section, we present the design of a li- 
brary that implements a subset binding of MPI, based 
on the ideas just presented. In Section 3, we evaluate 
the performance of a prototype HPF/MPI library, and 
determine the sources of overheads that affect its per- 
formance. Section 4 contains a discussion of promising 
techniques for extending our library to include addi- 
tional MPI features. Finally, in Section 5 we compare 
our techniques for introducing task parallelism into 
data-parallel languages with other approaches, state 
our conclusions regarding the effectiveness of our ap- 
proach, and suggest directions for future work. 

2. An Implementation Strategy 

We have designed and implemented a subset of an 
HPF binding for MPI that provides the communication 
operations described above. Because the implementa- 
tion of all of MPI is a daunting task, we have restricted 
our efforts to a small subset so that we can focus on 
analyzing and understanding design and performance 
issues. Our HPF/MPI implementation operates with 
the commercial HPF compiler pghpf, developed by the 
Portland Group, Inc. [9] 

The design of our HPF/MPI library was guided from 
the outset by several underlying assumptions and ob- 
jectives, including the following: 

The primary target platforms on which we would 
run HPF/MPI applications would be distributed- 
memory multicomputers. 

We wished to maintain a high degree of portability 
across hardware and software platforms, including 
across different HPF compilation systems. 

The library should achieve good performance for 
communication patterns typical of the sorts of 
mixed task/data-parallel applications we wished 
to support. 

When users express optimization hints through 
MPI facilities (such as the fact that a particular 
communication pattern is repeated many times), 
HPF/MPI should be able to exploit these oppor- 
tunities. 

It should be possible to build upon the subset li- 
brary to extend it into a full implementation of all 
of the MPI standard. 

These guiding principles carry with them a number 
of important consequences for our design. For exam- 
ple, the characteristics of our intended target platforms 
imply that to achieve high transfer bandwidth for large 
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arrays, during communication we should try to utilize 
the high connectivity of the target’s network by per- 
forming multiple transfers in parallel. As a result, we 
have developed a design bas’ed on EL parallel strategy 
(described below). 

Furthermore, as a result of our desire for portability, 
we chose a sequential implementation of MPI as the uln- 
derlying communication substrate, because it is avatil- 
able on many multicomputers and utilized by many 
HPF compilers. We note, however, that HPF/MPI 
can be layered atop other communication substrates. 
In Section 4, we discuss how functionality beyond that 
provided by MPI could aid in extending our subset li- 
brary. 

Many of the applications we wish to support re- 
quire low latency for certain communications which 
are repeated frequently [l]. MPI includes the func- 
tions MPISend-init and MPI-Recv-init for defining 
persistent requests for sends and receives; persistent 
requests allow an implementa.tion to recognize and op- 
timize such repeated operations. Therefore we selected 
persistent requests as the first MPI optimization facil- 
ity to add to our library. The ‘difficulty of incorporating 
this feature into the library ,also served as a measure 
of the modularity of our design: the more modular the 
design, the easier it will be to extend HPF/MPI to 
support the entire MPI standard. 

2.1. Details of the implementation 

When an HPF task invokes an HPF/MPI communi- 
cation function, the library takes a number of actions to 
effect the data transfer. Here we examine the sequence 
of steps taken by the producer (task 0) in Figure 2 as it 
calls MPISend to transfer distributed source array A to 
destination array B in task 1. The steps are as follows: 

1. Distribution inquiry: Standard Fortran 90 and 
HPF intrinsic inquiry functions are called to cre- 
ate an array descriptor fi3r A thaht specifies its size 
and distribution. 

2. HPF extrinsic call: A C language data transmis- 
sion routine mpi-send-c is invoked. Because the 
routine is not written in HPF, it must be invoked 
in local mode: for the dluration of the call, each 
processor in task 0 has :a separate thread of con- 
trol (SPMD-style execution) rather than the single 
thread of control implied by HPF. 

3. Array descriptor exchange: Processors in task 0 
join in a c.ollective operation with those of task 1. 
This operation has the effect of broadcasting the 
array descriptor of A to all processors in task 1, and 

‘1 

that of 13 to all processors in task 0. (We exploit 
the fact that each descriptor is initially present 
on all. processors of one task by implementing this 
opera,tion using a set of point-to-point transfers; 
this iis typically moire efficient than a broadcast.) 

Communications scheduling: Using the array de- 
script,ors for A and B, each processor of task 0 com- 
putes a communications schedule, that is, the sets 
of e:lements of its local portion of A that must be 
sent to each processor of task 1. The schedule is 
computed by algorithms based on the FALLS rep- 
resentation of Ramaswamy and Banerjee [$I. 

Transfer buffer packing: The elements to be sent 
to a Isingle processor of task 1 are packed (gath- 
ered) into a single contiguous transfer bufler. 

Dal!a transmission: The contents of the transfer 
buffer prepared in Step 5 are transmitted to the 
receiving process using point-to-point operations 
of the underlying communication substrate. 

Note that St,eps 5 and 6 are performed by a sending 
processor once for each receiving processor that re- 
quires array elements from the sender. 

In the case of a task receiving data using MPIRecv 
(such as the consumer task of Figure 2), the sequence of 
steps is essentially the same through the end of Step 4. 
In Step 5, each processor receives data from a sending 
processor into a transfer buffer, using the sequential 
version OS MPI-Recv. Finally, in Step 6 the contents 
of the transfer buffer are unpacked (scattered) to their 
final locations in the destination array. As in the case 
of a sending task, Steps 5 and 6 are repeated once for 
every sending process from which elements must be re- 
ceived. The iteration ordering for each receiver over its 
set of senders is chosen to match the iteration ordering 
for send:ers over their receivers, so that the send and 
receive operations comprising a data transfer match 
correctly. 

When a task creates a persistent request for a send 
or receive using MPISendinit or MPIRecv-init, its 
processors execute Steps 1 through 4 of the sequence 
presented above, and the resultant communications 
schedule is cached in an MPI-Request object. When the 
request is subsequently (executed using MPIStart, this 
communil:ations schedule is used to perform Steps 5 
and 6. ‘Tlherefore the delay incurred by descriptor ex- 
change ;snd the processing overhead of communications 
scheduling can be amortized over many operations. 
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2.2. Properties of the implementation 

To obtain the best performance, it is important that 
transfers between different senders and receivers pro- 
ceed in parallel. This implies that two senders should 
not try to send to the same receiver at the same time. 
As transfers are performed iteratively by each sender, 
the parallelization of transfers depends on the iteration 
ordering of each sender over its set of receivers, which 
is selected by the FALLS-based algorithms. Transfers 
generally proceed in parallel if both of the following 
conditions are met: 

1. There are at least as many receivers as senders. 
This condition depends on the sizes of the sending 
and receiving tasks. 

2. All senders possess the same set of receivers. This 
condition holds for most common redistributions. 

Because there is no synchronization between senders as 
they iterate over receivers, it is possible for one sender 
to overtake another, with the result that both send 
to the same receiver at the same time. The receiver 
then becomes a hotspot, and parallelism is reduced. 
However, if each transfer is of roughly the same size 
(as is the case for many common redistributions), this 
is unlikely to occur. 

As noted above, portability across platforms and 
HPF compilation systems was one of our major goals. 
To this end, we defined a simple link-level interface 
which we believe permits our library to work with the 
run-time system of any HPF compiler that uses MPI 
as its communication substrate. The key to portability 
is that the interface does not require access to the HPF 
system’s internal data structures. When we tested this 
interface with pghpf, only minimal modifications to the 
source code of pghpf’s run-time system were necessary. 

High-quality implementations of HPF may store the 
local portion of a distributed array in a non-contiguous 
format denoted by an internal run-time array descrip- 
tor: this permits optimization of compiler-synthesized 
cdmmunication (e.g. by padding arrays with “ghost el- 
ements”), and efficient operation on array subsections. 
To avoid dependenc,e on pghpf's array descriptor for- 
mat, we explicitly declare HPF/MPI communication 
routines to be ex2rinsics, or routines not written in 
HPF. This declaration causes array arguments to be 
copied into a contiguous temporary array before enter- 
ing the extrinsic, and copied back from the temporary 
upon return. The temporary array possesses the prop- 
erty of sequence association currently required by the 
HPF/MPI library. As a result, the library remains 

a Point-to-point /22& 
Transfer 

Scatter 

Gather 

Figure 4. Communication operations per- 
formed for the centralized strategy. Ovals 
are tasks, small circles are individual proces- 
sors. 

portable across HPF compilation systems. Unfortu- 
nately, this portability comes at a cost in performance; 
see Section 3. 

2.3. An alternative strategy 

The parallel strategy presented above involves all 
processors in simultaneous transfers of sections of the 
array. This reduces transfer time for large arrays at 
the expense of requiring all array descriptors to be 
distributed to all processors, which can increase total 
transfer time for small arrays. Therefore, for trans- 
fers of small arrays, or when executing on networks 
with low connectivity where parallel transfers are not 
appropriate, we have developed an alternative design 
based on a centralized strategy. This design does not 
require global distribution of descriptors and does not 
attempt parallel transfers. This scheme is depicted in 
Figure 4; it operates as follows: 

The entire array is gathered at a single sending 
processor using a sequential MPI collective opera- 
tion. 

The entire array is transmitted to a single receiv- 
ing processor using sequential MPI functions. 

The array is scattered to all receivers using a se- 
quential MPI collective operation. 

3. Performance Results 

In this section we evaluate the performance of an 
implementation of a subset of the HPF binding of MPI 
that relies on the parallel strategy. We use a standard 
synthetic benchmark to identify sources of overhead in 
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the implementation and to investigate the effectiveness 
of the optimization for persistent operations. We su,g- 
gest techniques for reducing the overh.eads revealed by 
these measurements. Then, we compare the execution 
times of pure HPF and HPF/MPI versions of a 2D FFT 
application kernel, to judge the utility of HPF/MPI for 
accelerating real data-parallel programs. 

All experiments were performed on Argonne’s IBM 
SP system, which consists of 128 Power 1 processors 
linked by an SP2 interconnection network. The un- 
derlying sequential MPI library was MPICH [4]. A.11 
HPF programs were compiled with pghpf, using what 
we determined to be the most effective optimization 
switches. 

3.1. Communication performance 

To evaluate the performance of our library at trans- 
ferring distributed arrays between tasks, we use a data 
parallel variant of the standard “ping-pang” communi- 
cation benchmark. This program consists of two tasks 
with equal numbers of processors that alternately send 
and receive 2D arrays of a fixed size a large number 
of times. The arrays are distributed (BLOCK, *> on 
the sending side and (* , BLOCK) on the receiving side. 
Hence a worst-case redistribution is performed during 
each transfer, as each sending processor must commu- 
nicate with all receivers. 

The performance achieved by HPF/‘MPI depends in 
part on the performance of th.e underlying sequential 
MPI implementation. There is a simple, widely-used 
model that accurately characterizes the behavior of 
point-to-point transfer operations by many message- 
passing libraries running on multicomputers. This 
model assumes that for a message N bytes long, the 
time TN to transfer the messa,ge between two proces- 
sors is governed by the equation 

TN = t, + A+’ X  t,, 

where t, is the communication istartup time, or latency, 
and tb is the time to transfer one byte of the message 
(inversely related to the bandwidth). For the MPICH 
layer used in our experiments, we measured a latency 
t, of 87.9 psec and a per-byte cost tb of 0.0326 psec, 
which corresponds to a bandwidth of 30.7 Mbytes/set. 

Figure 5 shows the time mleasured using the ping- 
pong benchmark for one-way non-persistent and persis- 
tent transfers of small and large messages, with varying 
numbers of processors P  per task. In general, for short 
messages we find that transfer time increases with in- 
creasing P, while transfer time decreases as P  rises 
for large messages. In terms of the above model, for 
small non-persistent transfers, t, is 85.3 X P  + 1290 

psec; for persj.stent transfers, t, is 60.0 x P  + $27 psec. 
Both are Iroughly proportional to the latency of the 
sequential MPH substrate. (These values were deter- 
mined using <a least-squares fit.) For large messages, 
the per-byte cost is 0.081 psec, which yields a peak 
bandwidth of 12.4 Mbytes/set. The persistent opti- 
mization decreases transfer time by 26-32% for small 
messages, (depending on P, while for large messages it 
has negligible effect. 

By examining the time spent in each of the six pro- 
cessing steps of our design, we can often identify the 
sources of overheads that contribute to the transfer 
time. Such a breakdown of the total time is repre- 
sented by lthe shaded regions within each vertical bar 
of Figure 5. The time for each step appearing here is 
the maxi:mum among all processors (the variance across 
processors was low). Since we are interested in the end- 
to-end time to transfer data from a sender to a receiver, 
the times for corresponding steps for sending and re- 
ceiving me:ssages have been summed together. 

From this breakdown, we find that distribution in- 
quiry (Step1 1) h as a small, fixed cost, never more than 
10% of the total. The time to compute a communica- 
tion schesdule (Step 4) also has a modest cost, though 
it rises with 1’. This is because the FALLS-based al- 
gorithms require time proportional to the larger of the 
number of senders or receivers. For small messages, 
descriptor exchange (Step 4) requires about 500 psec, 
which is l&30% of the total (depending on P). For 
large messages, a long time is spent in this step (up 
to 20 mil.lisec:, or 22%). This phenomenon is not due 
to a messatge-size-dependent cost for exchanging de- 
scriptors, but rather because of synchronization delays 
resulting from. a load imbalance: after a sender com- 
pletes transmission of a message, it immediately ini- 
tiates a receive, and waits at the descriptor exchange 
step-a synchronization point-while the receiver fin- 
ishes receiving and unpacking data messages. All three 
of these steps are skipped when persistent communica- 
tions are performed; however, for large messages most 
of the time spent in descriptor exchange shifts to data 
transmission (Step S), whiich is the other point of syn- 
chronization during a transfer. 

The cost, of the HPF extrinsic call (Step 2) includes 
both a fixed overhead of about 200 psec (mostly sub- 
routine call overhead) and a per-byte cost for argument 
copying, ,as nclted in the previous section. As a result, 
this step takes lo-20% of the total time. Presumably 
much of this overhead would disappear if our library 
were able to operate directly on pghpf’s internal rep- 
resentation of arrays, so that it would not need to be 
invoked u.sing the HPF extrinsic mechanism. 

Buffer packing and unpacking (Step 5) includes a 
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Figure 5. One-way message transfer times for small (4 kilobyte) and large (1 megabyte) messages, 
using non-persistent and persistent operations. The time spent in different processing steps is 
denoted by the shaded regions within each vertical bar. 

per-byte cost that causes this step to consume about 
20% of the total time for large messages. The process- 
ing in this step is a kind of scatter-gather operation. 
Because data is always copied to an intermediate buffer 
before being transferred to its final location, we will re- 
fer to this operation as an indirect scatter-gather. The 
user-defined datatype facilities of MPI make it possi- 
ble to specify a direct scatter-gather, in which data 
can be transferred directly between the network inter- 
face and non-contiguous locations within a program’s 
data structures, without buffering. However, not all 
MPI implementations can actually perform this direct 
transfer. Therefore, in principle it should be possible 
for HPF/MPI to specify a direct scatter-gather in this 
step, which could result in a large reduction in over- 
head on some platforms. However, for many redistri- 
butions the complexity of the required MPI datatypes 
is quite high. (The creation of these datatypes is even 
more complex if one performs the direct scatter-gather 
on the HPF run-time system’s non-contiguous inter- 
nal representation of arrays.) Hence modifying the 
library to perform a direct scatter-gather on general 
distributions would require extensive enhancements to 
the FALLS-based scheduling algorithms, though there 
are common, simpler redistributions that are easier to 

handle. 
The time spent performing data transmission 

(Step 6) varies in a predictable manner with N and 
P. For small messages, the time is roughly propor- 
tional to P; this is to be expected, as each processor 
must send and receive P messages. The constant of 
proportionality is about the same as the value of t, 
for the underlying sequential MPI library. For large 
messages, the time is proportional to the amount of 
data per processor (hence inversely related to P). The 
achieved bandwidth per processor ranges from 16 to 26 
Mbytes/set, always at least half that of the underlying 
MPI substrate. The bandwidth generally drops with 
increasing P. We suspect that this decrease in band- 
width is due to the domination of startup overhead 
as the amount of data per processor drops, as well as 
synchronization delays, but further investigation is re- 
quired. 

3.2. Application performance 

Synthetic communication microbenchmarks such as 
the ping-pong program are an inadequate means of 
gauging the effectiveness of a parallel programming 
system for speeding up real programs, because the 
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Figure 6. Time to perform 20 FFT on a single input dataset, as ;a function of the number of processors. 
Varying dataset sizes arle shown. 

dynamic computation and communication behavior 
of real programs is often different from that of mi- 
crobenchmarks. Therefore, we have measured the per- 
formance of HPF/MPI using a number of application 
kernel benchmarks, such as pipeline codes and a multi-- 
block code. Here we compare the performance of a 
pure HPF (data-parallel) and an HPF/MPI (mixed 
task/data-parallel) version of a two-dimensional fast, 
Fourier transform (2D FFT) kernel. 

The structure of the HPF/MPI version of 2D FFT is 
a pipeline containing two tasks of equal size, with one 
performing a (sequential) 11) FFT on each row of a 
matrix, then passing the matrix to a second task that 
performs a 1D FFT on each column. Therefore ,the 
matrix is distributed (BLOCK, *) in the first task, atnd 
(*, BLOCK) in the second, and a worst-case redistribu- 
tion between tasks is required. (The structure is quite 
similar to that of the producer-consumer example in 
Figure 2, with routine produce-data performing row-- 
wise FFTs, and consume-da’ta column-wise ones.) In 
the pure HPF version, there is just one matrix which is 
distributed (BLOCK, *) across all processors and trans- 
posed between the two phasels of 1D FFTs. 

Figure 6 shows the time required by the two versions 
of the program to perform a 2D FFT on a single N >: N 
matrix, for varying values of N and P. The time rep- 
resents an average per dataset when a large number of 
datasets are processed in a single run; hence taking the 
reciprocals of these times yields the throughput. The 
performance of the HPF/MPI version is generally blet- 
ter. In particular, for a fixed matrix size, HPF/MPI 
provides an increasing improvement in speedup as: P 
increases; for fixed P, the relative improvement in 
speedup of the HPF/MPI version decreases as N in- 
creases. 

The perfclrmance diflference between the pure HPF 
and HPF,/MPI versions is due to higher communication 
overhead in the HPF version. During the matrix trans- 
pose stage c’f the HPF program, a message of length 
N2/P2 is, exchanged between each pair of processors, 
so each processor sends and receives P - 1 messages. In 
contrast, each processor of the HPF/MPI version must 
send or rleceive P/2 messages of length 4N2/P2. For 
smaller IL’ or larger P, rnessage startup costs dominate 
total communication time, causing the HPF version 
with its larger number of messages to run more slowly. 

On the largest matrix size plotted (128 x 128), 
HPF/MPI provides an improvement of up to 30% over 
pure HIPF. While these results are promising, we be- 
lieve they could be improved significantly if the over- 
heads we have identified were reduced through further 
performance tuning. Another approach is to incorpo- 
rate additional MPI features that let library users tune 
communication performance. We discuss some of these 
features in the next section. 

4. Extending the HPF/MPI Subset 

The subset MPI binding presented above includes 
only a small portion of the functionality of the MPI 
standard--just non-blocking, standard mode point-to- 
point communications, persistent operations, and a 
few simple inquiry functions such as MPI-Commlank. 
Clearly HPE‘/MPI ‘s utility to programmers would be 
enhanced by the addition of other MPI functionality. 
Here we briefly consider techniques for extending the 
prototype design of Section 2 to incorporate features 
that we feel are most likely to ease development or 
improve per-formance of typical task/data-parallel ap- 
plications. 
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of return value 

Figure 7. A collective operation involving 
three tasks and no distributed arguments, 
with task 1 the root. The return value is 
received only by the root task. 

4.1, Collective operations 

lJnlike point-to-point operations, in which there is 
precisely one sender and one receiver, collective oper- 
ations permit groups of arbitrary size to communicate 
using a single operation. In addition, collective oper- 
ations encapsulate patterns of communication and co- 
operative computation such as broadcast and reduc- 
tion that occur frequently in parallel applications- 
including HPF/MPI programs. 

The complexity of performing a collective operation 
in HPF/MPI depends critically upon whether any of its 
arguments are distributed. First, we note that because 
barriers do not involve any transfer of user data, an 
HPF/MPI version may be obtained trivially through 
a call to the sequential version of MPIEarrier by all 
processors that are members of tasks participating in 
the barrier. 

The next case to consider is that in which the collec- 
tive call transfers data, but none of its arguments are 
distributed arrays. Then one may rely on the following 
simple technique, illustrated by Figure 7: 

1. One distinguished processor from each participat- 
ing task joins in a call to the sequential version of 
the operation, passing its local copy of the argu- 
ments. 

2. Within each participating task that is to receive 
the return value from the operation, the distin- 
guished processor broadcasts the return value to 
all of the task’s other processors. For example, 
for MPI-Reduce there is a broadcast within just 
the root task, while for MPLAllreduce there is a 
broadcast within all participating tasks. 

This approach is efficient for most cases and scales well. 

The last case occurs when any of a collective call’s 
arguments are distributed arrays. Such calls could be 
implemented as a composition of point-to-point calls 
using standard techniques such as combining trees, 
with HPF/MPI calls replacing sequential ones, where 
needed, to handle distributed arguments. But this sim- 
ple approach misses many opportunities for optimiza- 
tion, because the cost of transferring a distributed ar- 
ray between two tasks varies greatly depending on the 
data distributions within each task. 

As a simple illustration of the problem, suppose that 
Figure 7 instead depicts a single call to MPI_Reduce 
that performs a pointwise vector addition of three dis- 
tributed vectors VQ, VI, and Vz, with Vi owned by 
task i. Suppose further that Vo and V2 share the same 
distribution, VI’S is different, and it is expensive to 
convert, between the two distributions. A naive im- 
plementation based on standard combining tree tech- 
niques might transfer VO and Vz to task 1, so that task 1 
must participate in two expensive redistributions. In 
many cases it will be more efficient to: 

1. Transmit Vz to task 0 (a best-case transfer involv- 
ing no redistribution). 

2. Compute the sum of Vo and V2 within task 0. 

3. Transmit the partial sum to task 1, which com- 
putes the final sum. 

This approach requires just one expensive redistribu- 
tion. 

Much more complex examples may arise in prac- 
tice, as the number of ways of performing the operation 
grows exponentially with the number of participating 
tasks. To be useful, a general algorithm for selecting an 
efficient mapping and ordering of processing steps for 
a collective operation must not consume an inordinate 
amount of processing time or perform a large amount 
of communication. Development of such an algorithm 
appears to us to be a fundamentally hard problem. 

4.2. Non-blocking communications 

MPI provides many facilities for optimizing point- 
to-point communications. As many task/data-parallel 
applications depend heavily on the performance of 
inter-task array transfers, it is worthwhile to consider 
techniques for incorporating analogs of these facilities 
into HPF/MPI. We have already discussed the imple- 
mentation of an HPF/MPI version of one such facility, 
namely persistent operations. We now examine non- 
blocking communications, which allow a sender or re- 
ceiver to continue processing after a send or receive 
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operation has been posted, or initiated. This feature 
provides two major benefits:: 

1. It makes possible the overlap of computation and 
communication. 

2. It makes it easier for a receiver to specify a receive 
buffer in advance of the arrival of the message, 
which reduces buffer copying in some instances. 

For the purposes of this discussion, we will assume that 
the non-blocking operations of the underlying sequen- 
tial MPI implementation cart provide these benefits; in 
practice, not all can. Given this assumption, for trans- 
fers of large arrays a non-blocking variant of the design 
presented in Section 2 can allso provide these benefits if 
the data transmission step is implelmented using non 
blocking sequential MPI calls. 

At first sight, extension of the design to provide 
non-blocking operations appears problematic, because 
there is synchronization between sending and receiving 
tasks during descriptor exchange. Modifying this step 
to use the non-blocking operations of the underlying 
sequential MPI library removes this synchronization, 
but exposes a more fundamental problem: each side 
can only compute a communication schedule (Step 4) 
after it has received the other’s descriptor. Similarly, a 
receiver can only perform the unpack.ing of Step 6 after 
the data to be unpacked has arrived in Step 5. 

In general, what is needed to permit maximum over- 
lap between HPF/MPI library processing and appli- 
cation processing is some form of message-driven ez- 
ecution: the ability for some computation specified 
by HPF/MPI to occur upon arrival of certain mes-, 
sages [lo]. Wh en a message with an array descriptor 
arrives (Step 3), communication schedule computation 
should begin (Step 4), and whLen a data message arrives 
at a receiver (Step 5), it should be unpacked (Step 6). 
IJnfortunately, within the current MPI standard the 
only means by which this can occur is if the apphca- 
tion itself polls for message arrival (e.g. using MPI-Wa.it 
or MPI-Test), which is cumb8ersome for the program- 
mer. Proposed support for message-driven execution 
in MPI-2 might alleviate this problem. 

Finally, the provision of nlon-blocking receive opser- 
ations in HPF/MPI may increase the library’s buffer 
space requirements. Depending on the mechanism for 
message-driven execution, on each processor there may 
need to be one transfer buffer per remote processor 
from which data messages are to be received. This is 
because data messages could arrive at any time and 
initiate their own upacking into the destination array; 
hence, each message must be stored in a separate buEer 
to prevent corruption of one mlessage’s data by another. 
We address this difficulty below. 

4.3. (h&o1 over system buffering 

The desi.gn appearing in Section 2 provided just 
standard1 mode communications, in which the user 
leaves decisions about buffering and synchronization 
between sender and receiver up to the MPI imple- 
mentation. The MPI standard includes other sending 
modes that provide more control over system policies, 
allowing the user to reduce buffer copy overhead or 
guarantee sufficient buffer space. 

HPF/MF’I can provide similar control over its re- 
source management policies. Here we consider buffered 
mode, in which the user supplies the library with mem- 
ory for buffering outgoing messages. This permits the 
library to complete send operations without blocking, 
using bufFer space as necessary. The amount of space 
require’d for a message of a given size may be deter- 
mined using the routine MPI-F’ack-size. Our design for 
HPF/MF’l requires a transfer buffer for packing mes- 
sages; fhe underlying sequential version of MPI must 
also be supplied with a buffer if messages are sent us- 
ing this mode. Therefore, one scheme for incorporating 
buffered lmode sends into HPF/MPI works as follows: 

. 

. 

To 

The HF’F/MPI version of MPLPack-size returns 
a size twice that returned by the underlying se- 
quential MPI. 

When the user supplies a buffer to the HPF/MPI 
library by calling MPI-Buff er-attach, half is used 
by HPF/MPI for packing messages, and the other 
half is supplied to the underlying sequential MPI. 

meet increased buffering requirements resulting 
from non-blocking receive operations, HPF/MPI could 
also use p,art of any user-supplied buffer space for trans- 
fer buffers for incoming data messages. 

5. Conclusions 

By utilizing a mixture of both task and data par- 
allelism in parallel applications, one may extend the 
range of problems that can be solved efficiently beyond 
what is possible with pure data-parallel programming 
languag’es alone. We have proposed an approach for in- 
troducing task parallelism into data-parallel languages 
such as High Performance Fortran that makes use of 
a coordination library for coupling data-parallel tasks. 
In our case, the coordination library is a subset binding 
of the Message Passing Interface. 

To our knowledge, this coordination library-based 
approach for constructing mixed task/data-parallel 
programs is unique. However, many other techniques 
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have been used to introduce task parallelism into data- 
parallel languages. These other techniques fall into 
two major categories: compiler-based approaches and 
language-based approaches. Approaches based on com- 
pilers rely on sophisticated source code analyses and 
programmer-supplied directives to extract implicit task 
parallelism from programs [6]. In language-based ap- 
proaches, language extensions permit programmers to 
explicitly specify the division of a computation into 
tasks, the mapping of tasks to processors, and commu- 
nication between tasks [a]. Further comparison with 
other approaches appears in [3]. 

We have presented a design for the subset binding of 
MPI. Our evaluation of the performance of a prototype 
HPF/MPI library is encouraging: compared to a pure 
data-parallel HPF code for the 2D FFT, a task-parallel 
HPF/MPI version achieves superior performance under 
many parameters of execution which are of interest. 
However, a detailed analysis of the behavior of our li- 
brary during execution of a communication-intensive 
microbenchmark reveals that its performance would 
benefit from a tighter binding with the run-time system 
of the HPF compiler used in our experiments, and from 
algorithmic extensions that would permit the library to 
exploit direct scatter-gather capabilities of the under- 
lying sequential MPI substrate. An alternative is to in- 
corporate additional MPI performance-tuning features 
into the library; we have suggested design techniques 
for several of these. 

There are many promising directions for future 
work. Two have already been discussed: modifica- 
tions to the existing prototype library to enhance per- 
formance, and extension of’the current subset bind- 
ing with additional MPI features that ease application 
development (such as collective operations) and appli- 
cation tuning (such as non-blocking communications). 
In addition, to evaluate more thoroughly the value of 
our techniques, we wish to construct more ambitious 
task/data-parallel applications than the kernels we 
have written up to this point. Finally, HPF/MPI pro- 
vides just an explicit message-passing mechanism for 
inter-task interaction, yet there are many other useful 
mechanisms, such as single-sided operations (message- 
driven execution) and client-server protocols. We wish 
to investigate the issues involved in extending our li- 
brary to incorporate some of these other mechanisms. 
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