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The bulk modulus is one of the important parameters for designing advanced high-performance and

thermoelectric materials. The current work is the first attempt to develop a generalized model for

forecasting bulk moduli of various types of crystalline materials, based on ensemble predictive

learning using a unique set of attributes. The attributes used are a combination of experimentally

measured structural details of the material and chemical/physical properties of atoms. The model

was trained on a data set of stoichiometric compounds calculated using density functional theory

(DFT). It showed good predictive performance when tested against external DFT-calculated and

experimentally measured stoichiometric and non-stoichiometric materials. The generalized model

found correlations between bulk modulus and features defining bulk modulus in specific families of

materials. The web application (ThermoEl) deploying the developed predictive model is available for

public use.

I. Introduction
The bulk modulus of a material is a physical parameter that
reects bonding character in crystals. It is mainly used as an
indicator for crystal hardness1,2 and resistance to fracture
strength.3 The applications of the bulk modulus should not be
seen as limited to the optimization of mechanical performance
of materials. As a parameter dened by elastic properties of the
material, bulk modulus could be involved into tuning other
properties of similar avor. For example, it could be employed
in optimization of nanostructured materials for low thermal
conductivity applications,4 or for estimation of intrinsic charge
carrier mobilities5 in band conductor stoichiometric
compounds. The ability to predict bulk modulus for
a compound or material of a given composition opens up
multiple possibilities for advancing design of novel thermal
barriers, higher efficiency thermoelectric energy convertors,
phase-change memory, heat-assisted magnetic recording,
thermal management of nanoscale electronic devices, and
many more.

The task of addressing the bulk modulus for localized
regions of chemical compound space has been approached
earlier. All prior attempts to generate analytical models for
prediction of bulk modulus could be divided into two groups.
The rst approach uses small size experimentally measured

data sets that is later approximated with linear regression.6,7

The second approach utilizes extensive data sets generated with
help of Density Functional Theory (DFT). The relatively large
size of the data set seems to be a plus since more advanced
analytics such as articial neural networks could be used in
modeling.8 However, the accuracy of DFT-based predictive
analytics is strongly affected by the performance of specic
functional or pseudopotential,9–11 and techniques used during
experimental measurements to evaluate DFT data. In order to
reproduce and predict experimental values correctly, the DFT
training data should account for thermal effects that are rarely
taken into account in standard DFT calculations.

The application of data science techniques in materials
science has given rise to the emerging eld of materials
informatics.12–16 In the current work, we present the rst
attempt to move away from analytical models specic to small
regions of compound space. In order to address our interests in
thermoelectric applications, the publicly available TE Design
Lab database17 was selected for training a predictive model.
Here, thermal effects in bulk modulus values are addressed by
the Birch–Murnaghan t.18,19 Sampling of compound space for
training of predictive model was done evenly across materials
of different composition (from unary to quinary) and space
groups (Fig. S1 and S2 in ESI Part S1†). The random forest
model proposed as solution in the current work utilizes an
ensemble of decision trees which has been proven to generate
state of the art prediction performance for diverse data sets. In
order to allow easy utilization of the proposed predictive model
by rest of the scientic community, we have also deployed it as
a part of our user-friendly web application ThermoEl20 (ESI,
Part S4†).
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II. Methods
In current work we used TE Design Lab database aer it was
cleaned from duplicates and outliers. Density functional theory
was used for calculation of bulk moduli. Those calculations are
not part of this work and could be found elsewhere.21 TE Design
Lab database contains diverse types of experimentally studied
structures such as halides (Cl, Br, I), oxides, chalcogenides (S,
Se, Te), pnictides (N, P, As, Sb, Bi), and so on. The preprocessed
data was separated into ve groups based on its elemental
composition (Table S2 in ESI Part S1†). Approximately 20% of
compounds were randomly withheld from each group for
further estimation of model performance. The rest of
compounds were used for building 10-fold cross validated
regression models. Regression was performed with random
forest algorithm as implemented in the Scikit-Learn library in
Python 2.7 language. Hyper parameters were optimized using
grid search as implemented in Scikit-Learn.22

The optimization of the predictive performance was based
on stepwise reduction of the topN ranked attributes (Table S3 in
ESI Part S1†). A series of 10-fold cross-validated models were
evaluated based on the set of statistical metrics: the correlation
coefficient (R), coefficient of determination (R2), mean absolute
error (MAE), root mean squared error (RMSE), relative absolute
error (RAE), and relative squared error (RSE). The model
utilizing N ¼ 50 attributes was found to have the best predictive
performance. This model was used further in “Results and
discussion” section.

All attributes used could be classied into three types. A
thorough description of the full set of attributes was given in
our introductory publication on ThermoEl tool kit.23 Elemental
properties we considered fall into three categories: (i) location
of the element in the periodic table, (ii) fundamental properties
of the elements, (iii) experimentally measured properties of
pure elements in their crystalline states. Properties within
category (i) include atomic number, period, and group, and
whether or not the element can be classied as an alkali,
alkaline earth, transition metal, post transition metal, metal-
loid, lanthanide, actinide, non-metal, halogen, or noble gas.
Properties within category (ii) include atomic weight, molar
volume, Pauling's electronegativity, covalent radius, atomic
radius,24 ionic radius,24–26 pseudo-potential radii sum of
Zunger,27 amount of valence electrons by Villars,28 total number
of valence electrons as well as specied by their s-, p-, d-, and f-
character, and overall number of unlled valence orbitals as
well as those of s-, p-, d-, and f-character. Finally, properties
within category29–32 (iii) include crystal radius, melting point,
boiling point, density, heat of vaporization, thermal conduc-
tivity, electron affinity, ionization energy, and ground-state
crystal structure of the element.

For each material we nd if at least one element in the
chemical formula belongs to certain categories in the periodic
table (and subsequently set the corresponding attribute from
group (i) to 1). We also calculate minimum, maximum, sum,
mean, and mean absolute deviation from the mean value of
elemental-based attributes (from groups (ii) and (iii)). The same

set, marked with * symbol (see Table S4, Part S2 in ESI† section
for details), was also calculated for the coefficient-weighted
atomistic-based attributes. The coefficients used for
coefficient-weighted attributes were generated from the chem-
ical formula of the unit cell (data extracted from ICSD database).
In other words, chemical formula of the unit cell is equal to
_cell_formula_units_Zmultiplied by the number of the formula
units as specied by _chemical_formula_structural, _chem-
ical_formula_moiety or _chemical_formula_sum. In order to
account for disorder in experimental samples, the structural
information was extracted from ICSD database (not DFT
calculations). Extraction was possible since corresponding ICSD
codes are available in the TE Design Lab database.

Due to the presence of typos in selected cif-les we had to
recalculate derived attributes such as crystallographic cell
volume and crystal density difference from original crystallo-
graphic parameters. We also introduced a new characteristic of
the crystallographic cell, which we call crystal electronic
density, and is not available in ICSD database.33 It provides
information on overall electron density in the unit cell, and is
calculated as following:

Crystal electronic density ¼
XN

i¼1

number of electronsi " atomic coefficienti

crystallographic cell volume
(1)

where N is total number of atom types in the chemical formula
of the unit cell, number of electronsi is the atomic number of
atom i; atomic coefficienti is coefficient of atom i in the chem-
ical formula; crystallographic cell volume is volume of crystal-
lographic cell.

III. Results and discussion
a. Generalized model and its performance

Our approach in this work is to use machine learning for
building a generalized predictive model for bulk modulus. In
pursuing this goal, we started with (Fig. 1) data selection. Aside
from many earlier attempts, we did not t the selected param-
eters of a linear regression model to the reference data. We
allowed ensemble learning to gure out the relationship
between feature-space of the training data and bulk modulus
values. An initial set of 364 attributes (see Methodology) was

Fig. 1 Workflow of current study. See Table S2 (ESI Part S1†) for details
on splitting into withheld and work sets.
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gradually reduced to 10 by shortening the list at each step of
model optimization. The unique set of attributes ranked at
previous step was used to generate random forest model at the
next step. The accuracy of each model was estimated with 10-
fold cross-validation procedure. Based on the combination of
different statistical parameters (Table S3 in ESI Part S2†), the
model based on 50 attributes was selected as the best general-
ized model.

From the mean absolute error (MAE ¼ 13.58 GPa) of the
generalized model and visualization of predicted values (Fig. 2)
one could see overall good performance of the model. It has
uniform predictive power for all groups of compounds as well.
For example, mean absolute error for unary, binary, ternary,
quaternary, and quinary groups is equal to 8.51 GPa, 16.61 GPa,
12.53 GPa, 9.82 GPa, 9.8 GPa, respectively. We also report that
MAE < 50 GPa is observed for 100%, 92.34%, 95.78%, 98.59%,
and 100% of aforementioned group types. The general feature
of outliers (MAE $ 50 GPa) is dominance of oxygen containing
species regardless of group type.

Now we would like to address two concerns typical for
machine learning models. Those are accuracy of the model
within the same compound space, and transferability to
compounds from materials space not sampled by the training
set. In order to address accuracy of the model within the same
compound space as in training set, the subset of data was
collected from each group of compound in the TE design
database before we start working on the model (Fig. 1 and ESI
Part S1†). In addition to cross validation, our generalized model
was also tested against the withheld set of 356 compounds
(Fig. 3) and showed good quality predictions (R ¼ 0.93; R2 ¼
0.86; MAE ¼ 11.80; RMSE ¼ 18.75; RAE ¼ 30.45%; RSE ¼
14.20%). The only seven outliers (MAE > 50 GPa) aremembers of
binary and ternary groups and possess different space groups.
Six out of seven have oxygen element in their composition.

On the transferability point, it is worth noting that the
predictive capabilities are limited to bulk modulus values up to
250 GPa (Table S1, ESI Part S1†). Therefore, bulk modulus for
materials such as diamond and SiO2 will be underestimated. If
the entire materials space is represented by clusters of unary,
binary, ternary, quaternary, and quinary compounds, then our
model is expected to produce less accurate predictions for unary
and quinary compounds, since those are the least sampled

groups in the training data set. However, from the distribution
of bulk modulus values within different types of compounds
(Fig. S3 in ESI Part S1†), one can see that such envisioning of
materials space is incorrect. Therefore, the only way for us to
discuss transferability is to test our model against the experi-
mental data whenever available. It is especially an interesting
exercise, since bulk modulus ground truth values in TE design
lab database (and therefore in our model) are based on theo-
retical estimations coming from DFT-based calculations.

The main problem we faced here is to nd studies reporting
both experimentally measured bulk modulus value of the
material, and information on its crystallographic structure
(space group and crystallographic cell dimensions). On top of it,
most experimentally reported values of bulk modulus are
measured for non-stoichiometric doped materials or poly-
crystalline materials. For the cases when the space group is
determined or suggested, we supplemented structural infor-
mation from appropriate entries in the inorganic crystal struc-
ture database (ICSD). For the polycrystalline samples with
unknown structural information, we made predictions for all
available ICSD entries of the same chemical formula. If exact
compound was not listed in the ICSD, we used the next similar
composition compound. All details on this comparison are
available in Table S5 (ESI Part S3†).

For this test, we avoided any compound used for model
training. In addition, experimental set used here has few
elements (F, Dy, Yb, Sm, Nd, Lu, Ho, Gd, Eu, Er) absent in the
training set. Visualization of predicted values (Fig. 4) revealed
good performance (deviation from experiment <50 GPa) for 85%
of experimentally studied materials with exception of lantha-
nide oxides. It might be partially explained by the fact that
among all lanthanoid elements, only lanthanum was present in
training set. At the same time, we see very good predictions for
calcium uoride and strontium uoride despite the absence of
alkaline halides in the training set. It seems that model trained
on transitional metals forecasts well for alkaline halides, and
for uorides in particular.

Intermediate scale deviation from ground truth (red line in
Fig. 4) is detected for polycrystalline thin slabs and multi-phase
materials (Al1Ru1 and C1B2Ni2Y1). A possible reason for this
could be that we assessed attributes with single space group
structures due to lack of representatives in the ICSD. The last onFig. 2 Performance of the best generalized model according to 10

fold cross-validation.

Fig. 3 Machine predicted vs. DFT calculated bulk moduli for withheld
set of 356 materials.
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the list of outliers is ZrB2. The bulk modulus for this compound
is underestimated despite the presence of binary compounds of
zirconium with other non-metal elements (S, C, O) in training
set. Finally, we would like to highlight the striking advantage of
our model over any other published predictive model on bulk
modulus. Despite training only on stoichiometric compounds,
the current algorithm allows to predict non-stoichiometric
materials as well. As proof of concept, we refer to the
outstanding predictions of bulk modulus for Pb0.71Sn0.29Te,
Hg0.7Mn0.3Te, and Dy0.73Fe2Tb0.27 materials (difference with
experimental values from 3 GPa to 36 GPa). This is especially
encouraging since a vast majority of bulkmodulus experimental
measurements are done for non-stoichiometric compounds.
Our model opens up a possibility to step ahead from idealized
DFT-based compounds space into the actual world of experi-
mental materials.

b. Key-features of bulk modulus according to generalized
model

Next, we analysed most important features (Fig. 5) in the model.
It would be interesting to see if our generalized model can nd
trends reported by prior works that studied specic families of
materials. For example, it was reported34–36 that bulk modulus
has reverse correlation with molar cell volume or the cell
volume for doped cobaltate perovskites, alkaline earth chalco-
genides, ionic halides, and transition metal diborides. Some
groups also reported35,37,38 linear correlation between the bulk
modulus and the bond length in binary semiconductors. Some
features found to be correlated with bulk modulus in experi-
mental or theoretical studies are excluded in the present study.
For example, earlier discovered correlation between bulk
modulus and Debye temperature,37,39 the bulk modulus–
volume–ionicity relationship,40,41 between bulk modulus and
plasma energy,42–44 and so on. The reason for not using some
known to be important features in the current machine learning
study is their sporadic availability for majority of compounds.

It is interesting to note that our machine learning technique
did not select (Fig. S4 and Table S4 in ESI Part S2†) the same
descriptors to be as important as they were stated in earlier
studies specic to selected groups of materials. For example, the
cell volume, coded here as crystallographic cell volume, is found
to be only ranked 18th in the list of important parameters as
determined by the random forest regression model. Instead, we
found that the most important is the parameter reecting
average difference between atomic molar volumes and their
average value in the compound, molar volume_mean abs devi-
ation from mean. This parameter could be used as character-
ization of heterogeneity in the crystal, and an analogue of upper
bound estimation of atomic packing in the cell.

The rst-principles calculations done by Niu et al.1 revealed
the correlation between the brittle/high-strength properties of
Al12W-type compounds and the specic character of their
chemical bonding. They showed importance of electron
induced covalent strengthening mechanism, which alters
chemical bonding upon the introduction of extra-valence elec-
trons in the matrix of parent materials. In line with Niu's
discovery, our model also stressed the importance of chemical
bonding for prediction of bulk modulus. The top 2nd to 4th
important attributes are minimum values of covalent, ionic,
and atomic radii of chemical elements comprising the
compound. A bit lower on the rank, the 7th attribute labeled as
crystal radius_mean abs deviation from mean characterizes
distribution of crystal radii in a compound. We believe that the
model could not limit itself to single radius type because
compounds of various bonding types and crystal structures are
presented in the training set.

An earlier theoretical study35 performed on diamond and
zinc-blende solids suggested that bulk modulus should scale as

Fig. 4 Experimental vs. predicted values of bulk modulus. Here pre-
dicted bulk modulus value for each compound was obtained through
averaging over all values predicted on the set of structures of the same
formula. Experimentally measured bulk modulus is either averaged
(whenever available) or the most recent value is taken if huge deviation
among measurements is reported. We exclude cases where exact
formula of the compound could not be found in the ICSD.

Fig. 5 Top 10 important attributes in the generalized random forest
model. The attribute labels are self-explanatory. Full description of
labels could be found in (Fig. S4 and Table S4 ESI Part S2†).
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the Fermi energy divided by the volume per electron. In other
words, besides other factors, bulk modulus might correlate with
the electron concentration. We introduced a somewhat analo-
gous attribute, crystal electronic density, which, in our opinion,
is also a great parameter to characterize electronic effects
mentioned by Niu in the material matrix. The crystal electronic
density is a universal density parameter that provides macro
characterization of the cell regardless of its bonding character
and composition. This parameter appears to be the top 5th
contributor to bulk modulus. It is followed by NUnlled_mean

attribute that estimates average amount of unlled valence
orbitals. The NUnlled_mean does not relate to molecular orbitals
as a linear combination of atomic orbitals. It is calculated by
simple arithmetic averaging of unlled orbitals of all atom types
in a compound. Despite the fact that Sekar et al.45 speculated
about the signicance of empty orbitals for the bulk modulus in
some semi borides, and NUnlled_mean attribute seems to support
them, it should be noted that this attribute is a rather rough
characterization of such electronic property of a material.

Going down the list of importance one could see attributes
that logically should be linked with mechanical properties.
Those are space group and crystal density of material. We
anticipated bulk modulus correlation with crystal density, since
crystal density is affected by radii present in the structure. The
correlation “cationic radii / bulk density / bulk modulus”,
was known for lanthanide sequioxides.46 The 10th attribute is
based on the heat of vaporization or enthalpy of vaporization of
chemical elements averaged within compound composition.
Heat of vaporization is the energy needed to be added to the
substance in order to transform it into a gas. It is directly
proportional to the bond strength in the solid.

We see a steady decline of importance aer 10th attribute.
Among those we would like to briey mention attributes not
based on already discussed parameters. Despite their lesser
importance, these properties provide characterization of struc-
ture and composition of the material: electronegativity, ioniza-
tion energy, the melting and boiling point of elements, location
of elements in the periodic table, presence of alkali elements in
the material, as well as experimentally measured crystallo-
graphic cell dimensions. The signicance of electronegativity
was also reported47 for modelling of bulk moduli in ANB8#N as
well as in binary AmBn and polymorphic ABO4 type of
compounds. We would like to stress that our generalized model
indeed captured most physical trends known from various
empirical models specic for localized regions of the compound
space.

IV. Conclusions
In this work, we successfully employed machine learning
techniques to the problem of bulk modulus prediction. The
decision trees-based algorithm together with a unique set of
attributes resulted in the development of a useful tool for pre-
dicting this mechanical property of stoichiometric and non-
stoichiometric materials. Forecasted bulk moduli were close
to experimental ones despite the fact that our model was
trained using DFT calculated data. We have implemented the

current algorithm into our online tool ThermoEl20 for further
utilization by rest of the materials community. The ThermoEl
toolkit is an example of a generic tool unifying knowledge from
different experimental and theoretical databases into a single
computational representation. Here we attempted to produce
a user friendly tool for prediction of mechanical properties
across multiple (from bulk to nanostructured materials) spatial
scales.

The current work provides machinery for advancing expen-
sive and highly inefficient trial-and-error experimental
approach for screening potential candidates for novel applica-
tions. Despite obvious success one shall not stop at current
model level. It is clear now that structural features at different
scales are crucial for properties of materials. Details of struc-
turing in a material is subject to intrinsic properties of its
elements and synthesis conditions. We believe that extension of
our model with details on materials production will signi-
cantly improve its accuracy. To the best of our knowledge,
information on different materials production in a standard
format is not available. If such information is collected and
combined with machine learning, one can potentially end up
with a fully automatic approach for screening of novel
materials.

Acknowledgements
This work is supported in part by the following grants: DARPA
award N66001-15-C-4036, NIST award 70NANB14H012; AFOSR
award FA9550-12-1-0458; NSF award CCF-1409601; DOE awards
DE-SC0007456, DE-SC0014330. The access to TE design lab
database has been provided through Citrination in accordance
with requirements of the SIMPLEX project.

References
1 H. Niu, X.-Q. Chen, P. Liu, W. Xing, X. Cheng, D. Li and Y. Li,
Sci. Rep., 2012, 2, 718.

2 J. Haines, J. M. Leger and G. Bocquillon, Annu. Rev. Mater.
Res., 2001, 31, 1–23.

3 L. S. Dimas, D. Veneziano, T. Giesa and M. J. Buehler, J.
Mech. Phys. Solids, 2015, 84, 116–129.
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