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Abstract

This paper introduces a dynamic layout optimization
strategy to minimize the number of cycles spent in memory
accesses in a cache-based memory environment. In this ap-
proach, a given multi-dimensional array may have different
memory layouts in different segments of the same applica-
tion if doing so improves data locality (cache behavior) be-
yond the static approaches that fix memory layouts at specific
forms at compile-time. An important characteristic of this
strategy is that different memory layouts that a given array
will assume at run-time are determined statically at compile-
time; however, the layout modifications (transformations),
themselves, occur dynamically during the course of execu-
tion. To test the effectiveness of our strategy, we used it in op-
timizing several array-dominated applications. Our prelimi-
nary results on an embedded MIPS processor core show that
this dynamic strategy is very successful and outperforms pre-
vious approaches based on loop transformations, data trans-
formations, or integrated loop/data transformations.

1 Introduction

Many embedded image and video processing applications
operate on large multi-dimensional arrays of signals using
multi-level nested loops. An important characteristic of these
codes is the regularity in data accesses, which might be ex-
ploited using an optimizing compiler for improving cache
memory performance. For example, the compiler can per-
mute the loops in a given multi-level nest to exploit spatial
and/or temporal reuse in the innermost loop positions. Al-
ternatively, the memory layouts of arrays can be modified to
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make the data organization in memory compatible with the
loop access pattern. Previous research (e.g., [3, 10, 2]) shows
that loop (iteration space) oriented and data space (memory
layout) oriented transformations are complementary.

Previous approaches to layout optimizations are referred
to as static approaches, meaning that there is a single memory
layout associated with each array variable and that this layout
is valid (fixed) throughout execution. Because a data layout
that is good for one segment of code may not be good for an-
other segment, dynamic layout transformations (i.e., associ-
ating more than one layout with an array variable and switch-
ing between different layouts as the code executes) offers a
potentially better alternative.

In this paper, we present and evaluate a compiler-directed
dynamic layout optimization strategy. Our strategy works
on a nest flow graph representation of the code and speci-
fies memory layouts for each array in each nested loop. In
this strategy, the compiler determines the layouts statically
at compile time and inserts dynamic layout conversion code
in the application. However, the layout conversions them-
selves are activated at runtime and layouts are transformed
automatically as the application executes. Consequently, an
array can assume different layouts in the course of execution.
The objective here is to reduce the number of cycles spent in
memory stalls; that is, improving data locality and exploit-
ing on-chip memory space as much as possible. To test the
effectiveness of our strategy, we used it in optimizing sev-
eral array-dominated applications. Our preliminary results
show that this dynamic strategy is very successful and out-
performs previous approaches based on loop transformations,
data transformations, or integrated loop/data transformations.

The rest of this paper is organized as follows. Section 2
introduces components of our framework. Section 3 presents
our optimization strategy which uses both dynamic layouts
and loop transformations. Section 4 presents our experi-
mental methodology and reports preliminary results. Finally,
Section 5 concludes the paper with a summary.

2 Components of Our Framework

Our framework employs a static, integrated locality opti-
mization technique as the key component and uses this static
technique recursively to determine the best combinations of
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local loop transformation and local memory layouts. What
we exactly mean by local will become clear later in the paper.
In this static approach, the key to optimizing cache locality
is to apply loop transformations for exploiting one type of
locality and data transformations for a different type of local-
ity. Specifically, the existing loop transformation theory [14]
is specialized for optimizing temporal locality. To achieve
this, the compiler needs to detect the amount of potential tem-
poral locality in a loop nest and to come up with a suitable
loop transformation matrix to exploit that amount. After this
process, the references within the loop nest are divided into
two groups: the ones with optimized temporal locality, and
the ones that do not exhibit temporal locality. For the latter
group of references, we apply data layout transformations to
enhance their spatial locality.

To handle the case where there are multiple independent
nested loops, the static approach uses profile data and opti-
mizes one nest at a time, starting with the most costly (most
important) nest. After optimizing each nest, new layouts are
determined (for arrays whose layouts have not been deter-
mined so far) and these new layouts along with the old ones
are propagated to the remaining (yet to be optimized) nests.
In other words, the static optimization technique can be made
to target at one, two, or more nests at a time. This framework
can employ row-major and column-major layouts, higher-
dimensional equivalents of them, and more general linear
layouts such as diagonal layouts. Further details of the static
approach are beyond the scope of this paper and can be found
in [7].

Our dynamic optimization technique also employs a cache
miss estimation technique. Our current implementation uses
the approach discussed in Carr et al. [4] with three modi-
fications. First, unlike the original approach, the enhanced
version can estimate the number of misses when different ar-
rays have different memory layouts. Second, the write misses
are also included in miss calculation. Third, we also take the
contribution of conflict misses into account using the tech-
nique proposed by Sarkar et al. [13]. The details of cache
miss estimation techniques can be found in references [4, 13].
We are working on integrating the cache-miss-equation tech-
nique due to Ghosh et al. [6] into our framework.

3 Dynamic Layout Optimization

3.1 Nest Flow Graph

Our optimization strategy uses a procedure representation
called Nest Flow Graph (NFG). An NFG is a directed graph
G(V;E) where each node vi 2 V represents a nest, and a
directed edge eij = (vi; vj) from vi to vj indicates that there
exists a flow of control from the nest represented by vi to the
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Figure 1. (a) An example NFG (nest flow graph).
(b-f) Clusters at different levels.

nest represented by vj .1 Note that this control flow might
be because of an explicit jump (to vj) from within or im-
mediately after the nest represented by vi, or because of the
fact that vj immediately follows vi. In a sense, an NFG is a
coarse-grain control flow graph (CFG), the difference being
that each node in an NFG corresponds to a nest instead of a
basic block (as in the case of CFG).

Figure 1(a) shows an NFG which consists of six separate
loop nests, denoted using v0, v1, v2, v3, v4, and v5. Note
that a path in the NFG indicates a possible execution or-
der for nests. The two nodes involved in a cycle in NFG
(e.g., v1 and v2 in Figure 1(a)) indicate that there is a loop
other than for-loop (e.g., constructed using a while loop or
explicit jumps) in the code that encloses the corresponding
nests. While it is also possible to build a weighted NFG
where the NFG edges are annotated estimated execution fre-
quencies (obtained through static compiler analysis or pro-
file data where available), in this paper, we employ an un-
weighted NFG. It should be noted, however, that adopting a
weighted NFG can greatly impact the success of our dynamic
optimizer. We intend to employ a weighted NFG in our future
work on this topic.

It is important to note that the nodes in the NFG rep-
resent perfectly-nested nests (i.e., the nests where all non-
loop statements reside in the innermost position). A pre-
processing step in our compiler uses loop distribution, loop
fusion, and code sinking [14] to convert imperfectly nested
loops to perfectly-nested one.

1In the remainder of this paper, we use vi to refer to both a node in the
NFG and the corresponding nest in the code.
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3.2 Iterative Algorithm

Our dynamic optimization algorithm starts by calling the
static optimizer for each nest separately. The static optimizer
then determines for each nest a suitable loop transformation
and accompanying memory layouts for the arrays referenced
in it. It also inserts explicit layout conversion loops between
nests. As an example, consider again the NFG given in Fig-
ure 1(a). Let us assume that after optimizing v0 we find that,
for two arrays accessed in this nest, the best memory layouts
are row-major and column-major. Assume further that the
corresponding layouts for the same arrays in v3 are column-
major and diagonal, respectively. Consequently, we need to
transform (using layout conversion loops) the layout of the
first array from row-major to column-major and that of the
second from column-major to diagonal between these two
nests (i.e., along the edge (v0; v3) in Figure 1(a)). Depending
on the dimentionalities and sizes of the arrays, these conver-
sions can be done using a single nest or two separate nests
(one per array).

It should be noted that at this point we have an optimized
code of fine-granularity; that is, each nest works with the
best memory layouts (and loop transformation) when con-
sidered in isolation. Such layouts and loop transformations
are called local in this paper as they are obtained considering
only a single nest, without taking into account the coupling
between nests (due to common arrays accessed). While such
a fine-granularity scheme can generate the best result when
nests are considered in isolation, the cost of layout conver-
sion loops can easily offset the potential benefits. Note that
layout conversion loops incur two major overheads. First,
they consume precious CPU cycles in copying elements from
one array to another (as explained later in the paper). In
particular, in machines without fast memory-to-memory sup-
port, such copies can be quite costly. Second, they incur a
memory overhead. This last overhead manifests itself in two
ways. First, a significant number of cache misses can be ex-
perienced during copying itself. Second, copying can pol-
lute the cache. This is particularly true if the array with the
new layout is not used immediately after copying. Because
of these reasons, it might be a good idea to perform as few
explicit layout conversions as possible. What this means is
that, whenever possible, the same layout should be used for
the same array. Therefore, there is an tradeoff between lo-
cal optimization (best local layouts, and layout transforma-
tions with conversion overhead) and global optimization (no
conversion overhead but potentially locally suboptimal lay-
outs). Note that the extreme case (coarse-granular optimiza-
tion) with a single layout per array throughout the program
execution corresponds to the static optimizer (when targeted
the entire procedure).

The objective of our optimization strategy is to strike a
balance between the local optimizations and the global view.

That is, on one hand, we try to make sure that each nest exe-
cutes with the best possible combination of memory layouts
and loop order; on the other hand, we would like to minimize
the number of layout conversion loops.

Next, we informally describe how we achieve this objec-
tive. We start with the fine-granular code and try to eliminate
the conversion loops iteratively (only) if doing so improves
the overall (procedure-wide) performance. To eliminate the
conversion loops, our strategy is to increase the scope of local
optimization. To illustrate the approach using a specific ex-
ample, let us consider the NFG depicted in Figure 1(a) once
more. Let us also assume that we have already run the static
optimizer for each nest and the layout conversion loops have
been determined. In the next step, our dynamic strategy clus-
ters the nests into groups of two. Two nests (two nodes) vi
and vj are placed into the same cluster (named vivj) if there
exists an edge (vi; vj) between them. Note that a given nest
may belong to multiple clusters. After that, the number of
cache misses for each cluster vivj is estimated. Then, we fo-
cus on the cluster with the maximum number of misses. It
should be emphasized that the misses in a cluster vivj has
three components: (i) misses due to vi (denoted mi); (ii)
misses due to vj (denoted mj); and (iii) misses due to the
layout conversion loop(s) between vi and vj (denotedmi!j).
Note that, as far as the compiler’s view of the code is con-
cerned, this cluster is the one which is responsible from the
largest portion of the overall cache misses of the application
(after the application of the static optimizer). Next, we opti-
mize this cluster, which consists of two nests, using the static
optimizer but considering the original (untransformed) forms
of the nests and layouts. Using the miss estimator, we then
calculate the number of misses of this optimized cluster,mij .
Subsequently, we check if the following condition holds:

mij < mi +mj +mi!j (1)

If it does, what this means is that it is better to consider vi and
vj together as a cluster and optimize them using the static op-
timizer, instead of optimizing each of them separately and
using layout conversion loop(s) between them. The com-
piler then updates the NFG in question to reflect this fact and
applies the same strategy recursively to the updated NFG.
Returning to our example, Figure 1(b) shows the clusters
for the NFG in Figure 1(a). Let us assume now that the
cluster v0v3 is the one with the highest number of misses.
Consequently, using the expression (1), the compiler checks
whetherm03 < m0+m3+m0!3 holds true. If so, v0 and v3
are optimized together as a cluster (using the original forms
of the nests). It then updates the NFG as follows. v0 and
v3 are combined into a single node, and all incoming (out-
going) edges to (from) the original nodes v0 and v3 are con-
nected to the new node (denoted v0v3). The dynamic opti-
mizer proceeds recursively by considering this updated NFG.
It first clusters the nodes (including the new combined node)
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as shown in Figure 1(c) and computes the number of misses
for each cluster. Let us assume that v4v5 is the new cluster
with the maximum number of cache misses. The compiler
then checks whether the expressionm45 < m4+m5+m4!5

holds true. If it does, nodes v4 and v5 (the original nests) are
optimized together, the NFG is updated, and the optimization
process proceeds recursively. Figures 1(d) through (f) show
a possible progress of our dynamic optimizer.

There are several important points to note here. First, if at
any point in the program, the inequality (1) is not satisfied,
the compiler considers the cluster with the second highest
number of misses and checks the validity of the inequality
(1) for that cluster, and so on. If, when working on a given
NFG, the inequality given by (1) is not satisfied for any clus-
ter, then the dynamic optimization algorithm terminates and
returns the current NFG with transformed arrays and loops
as output. Second, when computing the number of misses
for a cluster, we always consider the original forms of the
nests involved and optimize them collectively using the static
optimizer summarized earlier. Third, it should be noted that,
depending on the degree of coupling between nests, different
loop transformations might be selected when a given nest is
optimized individually and when it is optimized as part of a
cluster. This is because the nests in a given cluster are, in
general, coupled as they might manipulate common arrays.
Recall that the static optimizer finds both the loop transfor-
mations and (static) memory layouts which are most suitable
for a given code fragment (which might consist of a single or
multiple nests), and when multiple nests are involved, it takes
coupling between nests into account by propagating memory
layouts between them. A sketch of the dynamic optimizer
is given in Figure 2. The algorithm stops when the variable
progress remains false during an entire execution of the in-
nermost loop.

3.3 Conversion Code Placement

An important issue in implementing dynamic layout opti-
mizations is deciding where to place the code to change from
one layout to another (i.e., layout conversion loops). As men-
tioned earlier, a conversion loop changes an array layout from
one form to another. In our current approach, for each array
to be layout-transformed, we use two arrays to implement
this idea. The first of these is the original array whose mem-
ory layout is to be transformed and the second one is the new
array which will represent the layout transformed version of
the original array.

There are two objectives in selecting the point to insert the
layout conversion code (nest). First, we would like to min-
imize the number of conversion codes. This is because the
conversion code is pure overhead and should be optimized
away as much as possible. In our current implementation,
we achieve this by (i) not inserting a conversion code un-

INPUT: An array-dominated procedure
OUTPUT: Optimized procedure with transformed loops

and memory layouts

begin
pre-process code to convert imperfectly-nested loops

to perfect nests;
build NFG;
for each nest vi do
optimize vi using the static optimizer;
estimate the number of misses of vi (denoted mi);
endfor
progress = true;
while(progress is true) do
progress = false;
L: cluster the current NFG into groups of two;
order the clusters in a set S according to decreasing value

of mi +mj +mi!j;
for each cluster vivj in S (starting from top) do
optimize the original forms of vi and vj together
using the static optimizer;

compute the number of misses mij;
if (mij < mi +mj +mi!j) then

update the NFG;
progress = true;
goto L;

endif;
endfor;
endwhile;
insert the layout conversion loops and optimize them;
end

Figure 2. Dynamic locality optimizer.

less it is necessary and (ii) trying to perform multiple layout
conversions (associated with multiple arrays) using the same
conversion nest. The second objective is to place the con-
version code as late as possible in the code. The reason for
this is that it might be possible that (because of the flow of
control imposed by conditional program constructs) a con-
version code would not be executed at all. It should be noted
that, in some cases, placing the conversion code early in the
application code might result in this code being unnecessarily
executed.

Figure 3. Percentage execution time improvements
for different versions.
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4 Experiments

4.1 Implementation and Methodology

To evaluate the effectiveness of our approach and com-
pare it to other compiler-based techniques for improving lo-
cality, we used seven complete application codes. adi is an
alternate direction integration code; dvi is a speech decom-
pression algorithm; elux and tsf are two benchmark codes
from Perfect Club; flt is a multi-phase filtering algorithm;
jpeg is an image compression code; and finally, mpeg2 is
a player for MPEG-2 video bit-streams.

We used seven versions of each application code.
version1 is the code obtained using the dynamic optimiza-
tion strategy discussed in this paper. version2 is the fine-
granular approach to dynamic optimization, where each nest
is optimized individually and the layout conversion loops are
inserted between nests whenever necessary. version3 is the
other extreme where the entire procedure is optimized as a
single monolithic code using both loop and data layout trans-
formations. This is the output of the static optimizer dis-
cussed in [7] (when targeted the entire code). Note that all
these three versions use both loop and data layout transfor-
mations. version4 is the result of classical loop optimizer
which uses both unimodular loop transformations (e.g., loop
permutation) and non-unimodular loop transformations such
as tiling and unrolling. The details of this version can be
found in [9]. Note that this version does not employ any
data transformation. The remaining versions use only data
(memory layout) transformations and no loop transforma-
tions. version5 is similar to version3 except that it does
not use any loop transformation. It is a static approach and
selects a single layout for each array considering the whole
procedure at once. version6 is the fine granular form of
version5. It selects the optimal layouts for each nest and
inserts layout conversion code between nests (where neces-
sary). It is different from version2 in the sense that it does
not apply any loop transformation. Finally, version7 is the
layout transform-only version of our approach (version1).
Note that in all versions, the layout conversion loops (if any)
are optimized exactly the same way; therefore, the differ-
ences between performances of different versions are due to
respective high-level optimization strategies.

All results presented in the next subsection are obtained
using an in-house execution-driven simulator that simulates
an embedded MIPS processor core (5Kf). 5Kf is a synthe-
sizable 64-bit processor core with an integrated FPU. It has
a six-stage, high-performance integer pipeline optimized for
SoC design that allows most instructions to execute in 1 cy-
cle and individually configurable instruction and data caches.
The default configuration contains separate 8KB instruction
and data caches. Both caches are two-way set-associative and
have a line (block) size of 32 bytes. The simulator takes a C

Figure 4. Contribution of conversion code misses.

code as input, simulates its execution, and produces statistics
including hit/miss behavior and execution time.

4.2 Results

Figure 3 shows the execution time improvements brought
about by different versions over the original code without any
optimization. We observe that average improvements due
to version1 through version7 are 27.9%, 16.6%, 19.6%,
15.2%, 13.7%, 11.3%, and 16.5%, respectively, showing
that our dynamic optimization strategy outperforms the other
versions. In fact, we see that, except for one case (tsf),
our strategy generates the best results for all benchmarks.
In tsf, our approach, the coarse-granular (procedure-wide
single layout), and the fine-granular strategy generated the
same result. It can also be seen that in two codes, namely,
eflux and flt, the loop transformation part of our strat-
egy did not bring any additional benefit over the data lay-
out transformation part. Therefore, in these two codes,
version1, version2, and version3 resulted in the same code
as version7, version6, and version5, respectively. In the
remaining benchmarks, we observe a clear superiority of
our optimization strategy over others. We also observe that
version3 performed better than version2. This is due to
the excessive performance bottleneck exhibited by the lay-
out conversion codes in the fine-granular optimization strat-
egy. It should also be mentioned that the cache miss im-
provements due to version1 to version7 are 34.4%, 23.0%,
26.1%, 20.4%, 21.4%, 17.8%, and 21.1%, respectively.

To study this last point further, Figure 4 gives the percent-
age of overall cache misses due to layout conversion loops
in version1 and version2. It can be seen that in version1
these misses constitute only 8.4% (on an average) whereas
the corresponding number for version2 is 20.3%. This re-
sult indicates that it is extremely important to adopt a global
view in layout-optimizing a given code.

As discussed in previous section, it might also be criti-
cal to optimize the layout conversion loops as much as pos-
sible. To evaluate this issue quantitatively, we also experi-
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Figure 5. Performance degradation due to less op-
timized conversion code placement.

mented with three alternate (less optimized) conversion loop
placement strategies. Recall that our default conversion code
placement method is highly optimized, meaning that the con-
version loops have been placed as late as possible (in the ap-
plication code) unless this leads to an extra increase in code
size, multiple conversions (for different arrays) have been
performed using a single nest if it is possible to do so, and
the conversion loops themselves have been optimized using
loop tiling as much as possible. Figure 5 gives the percent-
age (execution time) degradations (for version1) when we
use less-optimized alternatives. Alternativea1 gives percent-
age degradation when the conversion loops are not optimized
using iteration space tiling. The results indicate that using
tiling is critical, and not using it degrades performance by
13.5%, on average. a2 shows percentage degradation when
conversion loops are placed as early as possible instead of
our default placement, which is as late as possible. We ob-
serve a 8.4% performance degradation on average. Finally,
alternative a3 gives the degradation in performance when no
conversion loop reuse is employed, i.e., when separate con-
version loops are used for each layout-transformed array. We
can see that the average performance degradation in this case
is 8.2%. Overall, based on these results, we can conclude
that all three aspects of our conversion code placement strat-
egy are critical.

5 Conclusions

Researchers working on hardware and software systems
have made a number of important recent advances in mem-
ory optimizations. One of these is the use of techniques for
enhancing data locality enhancing techniques to improve pro-
gram performance. Previous compiler-based techniques to
optimizing data locality are either pure loop-oriented strate-
gies, pure layout-based strategies, or integrated (loop plus
data layout) strategies that use static (fixed) program-wide

data layouts for arrays. In this paper, we presented a dy-
namic optimizer using which it is possible to obtain further
performance gains over current techniques.
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