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Abstract

One of the largest challenges in client-side caching in
extremely large-scale environments is consistency and co-
herency. By handling a user-space cache, we can offer ap-
plications much closer control over our client-side cache
and scale the cache with the size of the compute resources
(i.e. compute nodes). Cache data is shared among each
compute node analagous to a traditional shared memory
machine. Our approach to maintaining the integrity of the
distributed cache turns out to be quite scalable and offers
potentially sizable performance gains.

1. Introduction

Caching is a well known and proven technique for mask-
ing latencies and bottlenecks in the memory hierarchy. In
the context of I/O, caching can alleviate some of the prob-
lems with the inherent mechanical limitations of disk drives
and limited number of I/O servers. Client-side file caching
in large-scale parallel environments is challenging from the
maintenance perspective. Depending on end-goals and pri-
orities, a balance must be struck between semantics and
scalability. Relaxing coherency and consistency can greatly
improve scalability and performance. By default, DAChe
enforces cache coherency and supports an optional sequen-
tially consistent atomic mode as well. DAChe is designed
and developed with three primary characteristics; scalablil-
ity, coherency, and a passive architecture.

As with any cache system, the usefulness of DAChe is

somewhat mitigated by the I/O characteristics of the appli-
cations run. Any application that repeatedly accesses parts
of a file either with reads, writes, or some mix, stands to
gain from caching.

In section 2 we describe the potential benefits and chal-
lenges of file caching in large scale systems. Then in sec-
tion 3 we touch on related research before continuing on to
briefly describe a key enabling technology, Remote Mem-
ory Access (RMA) in section 4. DAChe in section 5, its
performance is analyzed in section 6. Finally in section 7,
we summarize what DAChe accomplishes and some excit-
ing directions for further research.

2. Client-side Caching Issues

The core of the cache coherency problem is ensuring
globally accessible data is up-to-date when used. Two pro-
cesses,p0 andp1, may read and cache some shared piece of
data. Subsequently,p0 may write to the data. When thep1
rereads the data, it will read directly from cache and not the
new data written byp0. This general issue arises at many
levels of the memory hierarchy, and is attacked from differ-
ent angles depending sprecific features at each level.

If there were no cache, data would always be up-to-
date, but caching generally increases performance. In file
systems, caching can mask the latency of accessing a lo-
cal or even remote disk by allowing for quicker reads and
writes. Another optimization made possible by client-side
caching is write-behind in which write data is buffered in
the cache while computation continues. For local file sys-
tems, caching masks the poor latency and throughput in-



volved with mechanical disk access speed, and there are no
coherency issues since only local processes use the system.

Distributed file systems use caching to hide the latency
and bandwidth of the network. With caching in a distributed
environment, there can be multiple cached copies of data,
but normal usage in such an environment is such that files
are not usually operated on concurrently. A distributed file
system really just needs to be able to let one client at a time
cache file data. A typical solution distributed file systems
use to deal with cache coherency is periodic checks with
a central server to find out if some cached file is needed
by another process. Since checks are only periodic, cached
data can sometimes be in an incoherent state. The frequency
of the checks determines the probability that data is stale.
More frequent checks will lower that probability, but in-
crease overhead associated with the constant checking. It
is not unusual for a distributed file system to relax seman-
tics to allow for intermittent incoherence to avoid the over-
head of keeping to a strict set of semantics. Typical single-
user usage of files allows checks with the file server to be
rather infrequent. Expiring leases can also be used to ensure
only one client at a time has file data cached. A more sig-
nificant issue in distributed environments is the coherency
of directory caches.

In a parallel environment, there are often many more
clients than there are I/O servers. Client-side caching can
not only provide cached data quicker, but it also reduces the
load on and contention for I/O server resources. Parallel en-
vironments are similar to distributed ones in that there are
multiple clients accessing a single file system. In a parallel
environment however, many processes often work on a sin-
gle problem and concurrently access an output or input file.
Allowing a single client at a time to access and cache a file
is unreasonable. Either a multiple client-side caches must
be carefully maintained, or there should be know caching
at all. Maintaining a client-side cache in a parallel environ-
ment is far more challenging than doing it in a distributed
one.

Whenever considering client-side caching, it is neces-
sary to also consider what kind of semantics to follow. The
strict nature of POSIX consistency semantics make them ill-
suited for parallel and distributed computing environments.
Rigid enforcement of POSIX consistency in these environ-
ments is usually at the expense of performance, either disal-
lowing efficient caching or centralizing cache management.
MPI semantics are by default slightly more relaxed. After
write completion, data must be visible to all processes in
the same communicator. Unless atomic mode is explicitly
set, concurrent access to conflicting parts of a file are un-
defined. The problematic thing is that in atomic mode, an
atomic access may be noncontiguous. If not for the last bit
about atomic noncontiguous accesses, a POSIX compliant
filesystem could provide all that MPI requires semantically.

Cache coherency provides fairly intuitive results. With
sequential consistency so hard to provide at the library or
file system level, this onus is better left to the application
developer who is much more well equiped to handle order-
ing than any library could possibly be.

3. Related Work

Previously, Colomaet al. [3] worked with the collective
I/O operations in MPI to partition files in various ways and
assign I/O responsibilities for each region to one process
across multiple I/O operations. By managing file access at
the library level, file data cached individually by any pro-
cess could be guaranteed the latest version. This solution
does not actually implement a cache system, but uses the
system client-side file cache.

IBM’s General Parallel File System (GPFS) manages
cache coherency with its distributed lock manager [1]. On
extremely large scale systems, the overhead and coordina-
tion of the file system level lock manager make it quite a
performance hinderance.

Panasas [8] maintains cache coherency through a call-
back system based on its metadata servers. While file data
flow is directly between I/O servers and clients, a client
must register its read/write intentions with the metadata
servers so callbacks can be made should a region of file be-
come dirty.

DAChe is quite similar to the work on active buffering
done by Maet al. [6], the primary differences being the lack
of locally attached disks and thread support. DAChe is tar-
geted at very large computers running light weight operat-
ing systems. In the process of trimming down such a spe-
cialized operating system, thread support is often left out.
Both active buffering and DAChe have the effect of defer-
ring writes, however active buffering uses threads to overlap
I/O with application execution. Local disks in active buffer-
ing gives each process virtually unlimited cache space (rel-
ative to memory). Again, trends in large scale architectures
make attaching a disk to each compute node infeasible.

4. Remote Memory Access

Remote Memory Access (RMA) interfaces provide what
can be thought of as shared-memory emulation for a dis-
tributed memory environment. RMA in its truest form al-
lows for the movement of data to or from a remote pro-
cess without its active participation. The primary functions
of any RMA interface mirrors shared-memory:

• Get

• Put

• Atomic test-set, atomic swap, or lock



In DAChe, RMA is used to remotely access cache meta-
data and cache data. Two RMA interfaces were considered
for use in DAChe. One was MPI-2 RMA interface, and the
other was the Portals interface.

The MPI-2 RMA interface provides two modes. Ac-
tive one-sided communication requires the use of collec-
tive fence functions to ensure communications are com-
plete. The collective nature of this mode rules out its use in
DAChe. Because read and write operations are independent,
the only places to call the fence functions aredache open
anddache close. Between open and close, there is no
way to be sure any one-sided communication has com-
pleted. The second mode MPI-2 provides is passive one-
sided communication. In this mode, remote memory can be
remotely locked by another process in the communicator. In
MPICH2, both modes are thread-based for portability, and
at the time of development, the passive mode was not yet
complete.

Portals is an open source message-passing library de-
scribed further by Brightwellet al in [2]. While primar-
ily intended as a low-level library foundation for an MPI
implementation, file systems and other subsystems are al-
lowed to hook directly in. Portals is built on a one-sided
communication model. The implication of this for MPI-2
is its RMA interface should be easily developed on top of
Portals. Though the Portals v3.3 API specifically calls for
an atomic swap function, only Portals v3.0 has been imple-
mented at the time of development.

DAChe currently uses Portals for RMA. While portabil-
ity is definitely a factor, the Portals interface is more ma-
ture and exists on specific large-scale platforms of interest.
Besides which, the platforms of interest do not provide a
thread-safe environment, making the present implementa-
tion of MPICH2 infeasible.

5. DAChe design

From a design perspective, DAChe can be architecturally
divided into 3 primary subsystems: cache metadata, lock-
ing, and cache management. Its modular implementation
makes it quite easy to port and experiment with given that
the basic RMA requirements are met. One over-arching
theme always under consideration during the design of
DAChe is to keep all aspects of cache management as de-
centralized as possible. A secondary theme is minimization
communication where possible. The main tenet of DAChe
is that only a single copy of any file data can reside in any
file cache. This single-copy rule ensures cache coherency
and removes the task of maintaining state for replicated
data. Another way to think of it is that there is never more
than one usable copy of any given file page. The use of
RMA keeps I/O operations in DAChe passive, but requires

thatdache open anddache close be collective in or-
der to set things up and break things down safely. After
dache open completes, all communication is one-sided
unless it is with a mutex server described in more detail in
the Mutual Exclusion 5.2 subsection.

The three subsystems in DAChe warrant a closer look to
understand how DAChe works. Figure 1 illustrates the basic
interactions between these subsystems.

5.1. Cache Metadata

Cache metadata maintains basic state for each page in
the file. Most importantly, this metadata provides the where-
abouts of any given file page. File page refers to the logical
partitioning of the entire file into blocks of a size match-
ing the page size of the cache. If a page is cached on any
process the metadata reflects the caching process as well
as an index location into that process’s cache. cache meta-
data is remotely accessible through RMA and distributed
across the application nodes in a deterministic fashion; in
this case a basic striping algorithm. By striping the meta-
data array, or table as it will be called, across nodes deter-
ministically, not only is a potential bottleneck avoided, but
there is also no communication required to find the meta-
data associated with any file page.

Creating metadata for each logical file page brings
up the issue of metadata allocation. This allocation pro-
cess requires explicit coordination amongst the appli-
cation processes, and this is only available at the col-
lective dache open and dache close functions.
Ideally, one would want the size of the metadata ta-
ble to be directly related to the size of the file. What this
basically entails is some level of cooperation among pro-
cesses for growing or shrinking the table size during run
time. Since the write operations are independent, how-
ever, there is no opportunity to coordinate all the processes
in order to modify the size of the table. Without this co-
ordination opportunity, the last resort would be the ability
to remotely allocate globally accessible memory. Need-
less to say, remote memory allocation brings its own set
of challenges. For all the above reasons, the default maxi-
mum file size is assumed to be 2 GB, with this value being
settable by the user.

Given the distribution and passive nature of cache meta-
data, one crucial element is enforcing mutually exclusive
access to it.

5.2. Mutual Exclusion

The purpose of the mutual exclusion subsystem is to en-
sure safe access to read and modify cache metadata. Ide-
ally, mutual exclusion is directly supported in the RMA in-
terface. With RMA support for mutual exclusion, the lock-
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Figure 1. DAChe architecture with passive metadata and cach e servers on each client. Metadata is
striped across clients, but a file page can be cached on any cli ent.

ing subsystem can be also distributed across the application
nodes as passive remote accessible state.

MPI-2 explicitly provides theMPI Win Lock and cor-
responding unlock functions. Groppet al [5] describe how
to useMPI Win Lock for traditional locking. Since the
current test platform for DAChe is a threadless environment,
however, this rules out the use of the MPICH2’s RMA in-
terface. MPICH2 is focused on portability, and threads are
more commonly available than hardware supported one-
sided communication. At the same time, the atomic swap
operation in the Portals library has yet to be implemented.

In the absence of an RMA solution to mutual exclusion,
one or more processes from the allocated user processes are
siphoned off from the main group to act as mutex servers.
They are spun off duringdache open and returned during
dache close. During this time, the mutex servers cannot
execute any user application code. So while passive RMA
mutual exclusion is preferred, DAChe can still be evaluated
using dedicated mutex servers. Later, these mutex servers
will become passive elements on the application processes.

Since mutex responsibilities will eventually be moved
to the client, the mutex servers are intentionally kept quite
simple. Lock responsibility for each file page is spread
across the mutex servers in the same way cache metadata
is spread across application processes. The mutex servers
service locks in the order they come, queueing requests to
the same cache metadata. Polling and simple queueing are
both implementable when the mutex servers become pas-
sive state on remote processes. A process must block until
its lock request is fulfilled by the mutex server.

Typically, cache metadata is not “held” for extended pe-
riods of time. It is locked only briefly for modification. It is

not held for the duration of access to the actual cached data.
Minimizing the time that the metadata is locked, should re-
duce the amount of simultaneous lock requests to the same
metadata. The exception to short lock times is when a par-
ticular file page is being brought into the cache or a cache
page is being evicted. In either case, the cache metadata
must be locked for entire I/O phase in order to prevent early
or late cache accesses, respectively.

5.3. Caching

Pages cached on one process are globally accessible to
any other process through RMA. Although access to meta-
data is carefully mediated, remote access to cache data is
basically a free-for-all. Since any file page can be cached
in at most one cache, all accesses to that page are coher-
ent.

Cache management and eviction is handled locally with
one exception to be discussed a little further along. What
data to cache is determined by the local procces’s I/O ac-
cesses. If a process accesses a file page that is not yet cached
on any of the other processes, it caches it itself and updates
the corresponding cache metadata to reflect this change.
Should a process run out of cache space locally, it must
evict a page based on some local policy such as a least re-
cently used (LRU) policy. Remember that during eviction, a
page’s metadata cannot be accessed at all. Another precau-
tion alluded to earlier is that processes accessing a remotely
cached page must “pin” the page in cache so the page can-
not be evicted while being accessed. This pin is a semaphore
contained in the cache metadata along with location infor-
mation. While a page is pinned, the process on which the



cache page resides cannot evict the page, and must either
wait until the page is “un-pinned” or try to evict a differ-
ent page. New data is not written to disk until it is either
evicted or written out atdache close.

6. Performance Implications

DAChe is evaluated using a synthetic I/O access pat-
tern that should, by design, benefit from cached data. It is
roughly based on the regular noncontiguous access patterns
often found in scientific applications and is meant to test the
performance of DAChe. The benefits a real application may
derive from DAChe are also clearly of interest. The basic la-
beling convention is as follows:

• mtx-n where n is the number of mutex servers

• DAChe clients is the number of clients actu-
ally caching data (non-mutex servers)

• 50:50 refers to an equal mix of clients and mutex
servers

6.1. Machine Configuration

All of our tests were run on ASCI Cplant [4] at San-
dia National Laboratory. Cplant is an Alpha Linux cluster
with each compute node configured with one 600 MHz Al-
pha EV-6, 512(Ross) MB of RAM, no disk, and a 64-bit
Myrinet card. Each compute node runs Red Hat 6.x with
kernel 2.4.x.

6.2. Sliding Window Benchmark

The sliding window application uses a repetitive I/O ac-
cess pattern, and the underlying caching library uses the
lock service to gain exclusive access to cache page meta-
data. Figure 2 describes the access pattern of the synthetic
benchmark. Each process accesses a contiguous chunk of
data. In each subsequent iteration, processes circular shift
their accesses until all chunks are read before sliding to the
next set of four chunks. Since there is one lock per page, and
the benchmark accesses are page-aligned, the number of
meta data locks is tied directly to the number I/O operations.
The cyclic access pattern makes the amount filesystem calls
increase along a second order function rather than linearly,
as seen in figure 3. Direct filesystem calls that the sliding
window application follows the the “direct” curve, while
the number of filesystem calls as mediated by DAChe fol-
lows the “DAChe” curve. This reduction is achieved trans-
parently from the application point of view. The same could
be achieved using explicit communication in application,
but increases application complexity.
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Figure 2. Several iterations of the sliding win-
dow I/O pattern for 4 processes.

Cache Size/proc 4 MB
Page Size 32 KB
Chunk Size 64 KB
loops 40

Table 1. DAChe and sliding window parame-
ters

It is important to note that since the DAChe system is
the primary subject of evaluation. As such, actual I/O is re-
moved from DAChe to prevent interference from any spe-
cific filesystem. The sliding window access pattern is such
that once a file page is brought into cache, it remains there
throughout the execution and is only remotely accessed over
the network. Though actual I/O would have been performed
to bring in the file data, all subsequent accesses really access
cached data, possibly on remote nodes. Throughput is cal-
culated based on the number of I/O calls that would have
been made to the file system. Since a fixed number of lock
requests are generated per cache page access, the number of
locks requested by each process is directly proportional to
the amount of I/O done.

Since scalability is the primary goal of the DAChe, it was
tested with various numbers of mutex servers running. In-
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Figure 5. Since the number of locks grows
as a second order function, increasing the
number of mutex servers with the number
of clients should yield a linear increase in
Queue time.

tuitively, the heavier the lock system is taxed, the more mu-
tex servers are needed to accomodate the increased load.
This is illustrated clearly in figure 4 where a larger num-
ber of mutex servers allows a larger number of clients with-
out severely hindering performance when more than the
minimum number of mutex servers is used. From a cost
efficiency perspective, one would like to stay on the out-
side curve using the minimum number of processes at each
point. This client to mutex server ratio is highly depen-
dent on the properties of the specific machine. A 50:50
mix where there are an equal number of clients and mu-
tex servers allows the mutex service to scale with the ap-
plication size. As expected from the growth rate of filesys-
tem calls, this outer bandwidth curve is roughly a square
root function. The usefulness of this will become more ap-
parent in section 7. The most important point from Figure 4
is the number of mutex servers determines at which num-
ber of clients performance will plateau.

Another demonstration of the lock system’s scalability
can be extracted from Figure 5 which describes the queue
time for a lock. An obvious bottleneck, increasing the num-
ber of mutex servers with the number of clients decreases
the average queue time for each lock request. Increasing the
number of lock servers with the number of clients keeps
queue times reasonable. Because the problem size increases
at second order rate, the 50:50 mix ratio of clients to servers



Abbreviation Function
Meta Lock Obtain access to cache metadata
Meta Unlock Release access to cache metadata
Eof (Un)Lock the End-of-file for writing
Get Meta RMA retrieving cache metadata
Put Meta RMA writing cache metadata
Rmt xfr Data transfers to/from remote caches
Application Application + silent functions

Table 2. DAChe and sliding window parame-
ters

yields the expected linear increase in queue times. The
client service time includes network latency and bandwidth
as well any lock contention generated by the sliding win-
dow application itself.

Figure 6 provides a breakdown of how much time is
spent executing a subset of functions in DAChe. Table 2
provides a brief explanation of each function included in
the timing figure. Indicated by the quickly rising meta lock
times, two mutex servers is obviously not sufficient beyond
16 processes. While the proportion of time spent on locking
increases as the number of processes gradually increases, it
can be explained by the second order increase in locks gen-
erated by the sliding window application. Since the other
functions in DAChe utilize a fairly constant proportion of
the run time, and all include one-sided communication, the
network is not being saturated. It is worth noting that since
the sliding window application only tests I/O, its non-io re-
lated computation is extremely limited. The dramatic differ-
ence in relative communication costs are indicative of the
need to scale mutex services with the computation size.

7. Conclusions and Future Directions

The most glaring problem with the current implemen-
tation of DAChe is the use of separate processes as mutex
servers. A fully implemented RMA system which provides
one of the necessary atomic operations should remedy this.
RMA allows the lock responsibilities of the lock servers
to be taken up by client nodes, eliminating the extra cost
of seperate lock processes and leveraging the performance
characteristics of single-sided communication, see Figure 7.
The algorithms involved have been explored chiefly by
Mellor-Crummeyet al. [7] in the context of shared memory
machines. Another reason for the move to a passive RMA
solution is the architectural trend of parallel computers to-
wards running stripped down threadless operating systems
on compute nodes. A drawback of moving to a completely
passive lock system is implementing distributed queues in
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an efficient manner. A distributed waiting queue will re-
sult in additional communication costs, but these cost will
hopefully be more than compensated for by performance
enhancemence elsewhere in the system. This passive goal
is the reason behind the lock system’s straight-forward de-
sign. A passive environment prevents any computation on
the server side and limits the server to remote accessable
state.

The least recently used cache eviction policy is com-
monly accepted as the best general purpose policy. In the
current implementation, the LRU queue is stored locally,
and is only affected by local accesses to cache pages. Not
only should the basic eviction performance of DAChe be
evaluated, but further research is planned in how taking re-
mote accesses into account in the eviction policy may af-
fect overall cache performance. A further extension would
be to migrate cache pages frequently accessed by a par-
ticular process to that node for dynamic load rebalancing.
Adaptive applications may intermittently redistribute work-
ing sets and domains, causing substantial shifts in the I/O
access patterns of individual processes.

Tighter integration with MPI is also planned with sup-
port for MPI-2 RMA. By moving away from the Por-
tals interface, DAChe will benefit from the portability of
MPICH2.

Preliminary performance results for DAChe sug-
gest scales well. The extremely distributed characteristics
of DAChe get around a number of potential bottle-
necks. The most interesting feature of DAChe is its efficient
use of the increasingly common one-sided communica-
tion architecture.
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