DAChe: Direct Access Cache System for Parallel I/O

Kenin Coloma Alok Choudhary Wei-keng Liao
Electrical and Computer Engineering Department
Northwestern University

{kcol ona, choudhar, wkliao}@ce. northwestern. edu

Lee Ward Sonja Tideman
Scalable Computing Systems Department
Sandia National Laboratories

{l ee, stidema}@andi a. gov

Abstract somewhat mitigated by the 1/O characteristics of the appli-
cations run. Any application that repeatedly accesses part
One of the largest challenges in client-side caching in of a file either with reads, writes, or some mix, stands to

extremely large-scale environments is consistency and co- gain from caching.
herency. By handling a user-space cache, we can offer ap- In section 2 we describe the potential benefits and chal-
plications much closer control over our client-side cache lenges of file caching in large scale systems. Then in sec-

and scale the cache with the size of the compute resources tion 3 we touch on related research before continuing on to
(i.e. compute nodes). Cache data is shared among each briefly describe a key enabling technology, Remote Mem-
compute node analagous to a traditional shared memory ory Access (RMA) in section 4. DAChe in section 5, its

machine. Our approach to maintaining the integrity of the performance is analyzed in section 6. Finally in section 7,
distributed cache turns out to be quite scalable and offers we summarize what DAChe accomplishes and some excit-
potentially sizable performance gains. ing directions for further research.

_ 2. Client-side Caching Issues
1. Introduction

The core of the cache coherency problem is ensuring

Caching is a well known and proven technique for mask- globally accessible data is up-to-date when used. Two pro-
ing latencies and bottlenecks in the memory hierarchy. In cessesp0 andpl, may read and cache some shared piece of
the context of 1/O, caching can alleviate some of the prob- data. Subsequentlgp may write to the data. When thel
lems with the inherent mechanical limitations of disk dsive rereads the data, it will read directly from cache and not the
and limited number of I/O servers. Client-side file caching new data written by0. This general issue arises at many
in large-scale parallel environments is challenging fromt levels of the memory hierarchy, and is attacked from differ-
maintenance perspective. Depending on end-goals and prient angles depending sprecific features at each level.
orities, a balance must be struck between semantics and If there were no cache, data would always be up-to-
scalability. Relaxing coherency and consistency can byreat date, but caching generally increases performance. In file
improve scalability and performance. By default, DAChe systems, caching can mask the latency of accessing a lo-
enforces cache coherency and supports an optional sequereal or even remote disk by allowing for quicker reads and
tially consistent atomic mode as well. DAChe is designed writes. Another optimization made possible by client-side
and developed with three primary characteristics; scédabl caching is write-behind in which write data is buffered in
ity, coherency, and a passive architecture. the cache while computation continues. For local file sys-

As with any cache system, the usefulness of DAChe is tems, caching masks the poor latency and throughput in-

volved with mechanical disk access speed, and there are no Cache coherency provides fairly intuitive results. With
coherency issues since only local processes use the systensequential consistency so hard to provide at the library or

Distributed file systems use caching to hide the latency file system level, this onus is better left to the application
and bandwidth of the network. With caching in a distributed developer who is much more well equiped to handle order-
environment, there can be multiple cached copies of data,ing than any library could possibly be.
but normal usage in such an environment is such that files
are not usually operated on concurrently. A dls_trlbuted flle 3. Related Work
system really just needs to be able to let one client at a time
cache file data. A typical solution distributed file systems
use to deal with cache coherency is periodic checks with
a central server to find out if some cached file is needed "~ . o .

ssign 1/O responsibilities for each region to one process

by another process. Since checks are only periodic, cached _ i LT
cross multiple I/O operations. By managing file access at

data can sometimes be in an incoherent state. Thefrequenc&e library level, file data cached individually by any pro-

of the checks determines the probability that data is stale. . . .

More frequent checks will lower that probability, but in- €SS could be guaranteed the latest version. This solution

crease overhead associated with the constant checking. lgoets notl_acttua_l(ljy |fr_r|1plem(hent a cache system, but uses the

is not unusual for a distributed file system to relax seman—syslgl\r/? mgn Sl IeFI>e Cﬁcl IE;.'I Svst GPES

tics to allow for intermittent incoherence to avoid the ever S eneral Farafel Flie sysiem () manages
cache coherency with its distributed lock manager [1]. On

head of keeping to a strict set of semantics. Typical single- ¢] | ¢ th head and di
user usage of files allows checks with the file server to be extremely flarge scale systems, the overnead and coordina-
tion of the file system level lock manager make it quite a

rather infrequent. Expiring leases can also be used to ensur ; hind
only one client at a time has file data cached. A more sig- performance hinderance.
Panasas [8] maintains cache coherency through a call-

nificant issue in distributed environments is the coherency : g
: back system based on its metadata servers. While file data
of directory caches. " ; :
| el . t th ft flow is directly between I/O servers and clients, a client
N a parallel environment, there are often many more ., o register its read/write intentions with the metadata

clients than t_here are 1/0 SEIVErs. Cl|ent_-5|de caching CaNservers so callbacks can be made should a region of file be-
not only provide cached data quicker, but it also reduces theCome dirty.

load on and contention for I/O server resources. Parallel en DAChe is quite similar to the work on active buffering

viroqment; are similar.to dist_ributeq ones in that there are oo by Maet al. [6], the primary differences being the lack

mul_t|ple clients accessing a single file system. In a pdrall_e of locally attached disks and thread support. DAChe is tar-
environment however, many processes often Work_on a ?'n'geted at very large computers running light weight operat-
gle problem and concurrently access an output or input file. ing systems. In the process of trimming down such a spe-

Allowing a single client at a time to access and cache a file cialized operating system, thread support is often left out
is unreasonable. Either a multiple client-side caches mustg jup - /e buffering and bAChe have the effect of defer-
be carefu_lly 'T“?“”ta‘“e_d’ or_there shoyld be know caqhing ring writes, however active buffering uses threads to ayerl
at all _Mamtamlng a cllent-_5|de cache_m a p_aralle! EMIHO 1,0 with application execution. Local disks in active buffe
ment is far more challenging than doing it in a distributed ing gives each process virtually unlimited cache space (rel
one. ative to memory). Again, trends in large scale architecture

Whenever considering client-side caching, it is neces- ke attaching a disk to each compute node infeasible.
sary to also consider what kind of semantics to follow. The

strict nature of POSIX consistency semantics make themiill-

suited for parallel and distributed computing environrsent 4. Remote Memory Access

Rigid enforcement of POSIX consistency in these environ-

ments is usually at the expense of performance, eitherdisal Remote Memory Access (RMA) interfaces provide what
lowing efficient caching or centralizing cache management. can be thought of as shared-memory emulation for a dis-
MPI semantics are by default slightly more relaxed. After tributed memory environment. RMA in its truest form al-
write completion, data must be visible to all processes in lows for the movement of data to or from a remote pro-
the same communicator. Unless atomic mode is explicitly cess without its active participation. The primary funoso
set, concurrent access to conflicting parts of a file are un-of any RMA interface mirrors shared-memory:

defined. The problematic thing is that in atomic mode, an | Get

atomic access may be noncontiguous. If not for the last bit

about atomic noncontiguous accesses, a POSIX compliant Put

filesystem could provide all that MPI requires semantically e Atomic test-set, atomic swap, or lock

Previously, Colomat al. [3] worked with the collective
I/O operations in MPI to partition files in various ways and

In DAChe, RMA is used to remotely access cache meta-thatdache_open anddache _cl ose be collective in or-
data and cache data. Two RMA interfaces were consideredder to set things up and break things down safely. After
for use in DAChe. One was MPI-2 RMA interface, and the dache_open completes, all communication is one-sided
other was the Portals interface. unless it is with a mutex server described in more detail in

The MPI-2 RMA interface provides two modes. Ac- the Mutual Exclusion 5.2 subsection.
tive one-sided communication requires the use of collec- The three subsystems in DAChe warrant a closer look to
tive fence functions to ensure communications are com-understand how DAChe works. Figure 1 illustrates the basic
plete. The collective nature of this mode rules out its use in interactions between these subsystems.

DAChe. Because read and write operations are independent,

the only places to call the fence functions deche_open 5.1. Cache Metadata

anddache_cl ose. Between open and close, there is no

way to be sure any one-sided communication has com- Cache metadata maintains basic state for each page in
pleted. The second mode MPI-2 provides is passive one-he file. Most importantly, this metadata provides the where
sided communication. In this mode, remote memory can beabouts of any given file page. File page refers to the logical
remotely locked by another process in the communicator. Inpartitioning of the entire file into blocks of a size match-
MPICHZ2, both modes are thread-based for portability, and ing the page size of the cache. If a page is cached on any
at the time of development, the passive mode was not yetprocess the metadata reflects the caching process as well

complete. as an index location into that process’s cache. cache meta-
Portals is an open source message-passing library dedata is remotely accessible through RMA and distributed
scribed further by Brightwelkt al in [2]. While primar- across the application nodes in a deterministic fashion; in

ily intended as a low-level library foundation for an MPI this case a basic striping algorithm. By striping the meta-
implementation, file systems and other subsystems are aldata array, or table as it will be called, across nodes deter-
lowed to hook directly in. Portals is built on a one-sided ministically, not only is a potential bottleneck avoidedt b
communication model. The implication of this for MPI-2 there is also no communication required to find the meta-
is its RMA interface should be easily developed on top of data associated with any file page.
Portals. Though the Portals v3.3 API specifically calls for Creating metadata for each logical file page brings
an atomic swap function, only Portals v3.0 has been imple-up the issue of metadata allocation. This allocation pro-
mented at the time of development. cess requires explicit coordination amongst the appli-
DAChe currently uses Portals for RMA. While portabil- cation processes, and this is only available at the col-
ity is definitely a factor, the Portals interface is more ma- lective dache_open and dache_cl ose functions.
ture and exists on specific large-scale platforms of interes Ideally, one would want the size of the metadata ta-
Besides which, the platforms of interest do not provide a ble to be directly related to the size of the file. What this
thread-safe environment, making the present implementa-basically entails is some level of cooperation among pro-
tion of MPICH2 infeasible. cesses for growing or shrinking the table size during run
time. Since the write operations are independent, how-
] ever, there is no opportunity to coordinate all the procgesse
5. DAChe design in order to modify the size of the table. Without this co-
ordination opportunity, the last resort would be the apilit
From a design perspective, DAChe can be architecturallyto remotely allocate globally accessible memory. Need-
divided into 3 primary subsystems: cache metadata, lock-€ss to say, remote memory allocation brings its own set
ing, and cache management. Its modular implementationOf challenges. For all the above reasons, the default maxi-
makes it quite easy to port and experiment with given that Mum file size is assumed to be 2 GB, with this value being
the basic RMA requirements are met. One over-archingSettable by the user.
theme always under consideration during the design of Given the distribution and passive nature of cache meta-
DAChe is to keep all aspects of cache management as dedata, one_crucial element is enforcing mutually exclusive
centralized as possible. A secondary theme is minimization@CC€ss to It.
communication where possible. The main tenet of DAChe
is that only a single copy of any file data can reside in any 5.2. Mutual Exclusion
file cache. This single-copy rule ensures cache coherency
and removes the task of maintaining state for replicated The purpose of the mutual exclusion subsystem is to en-
data. Another way to think of it is that there is never more sure safe access to read and modify cache metadata. Ide-
than one usable copy of any given file page. The use ofally, mutual exclusion is directly supported in the RMA in-
RMA keeps I/O operations in DAChe passive, but requires terface. With RMA support for mutual exclusion, the lock-

Client Client Client

Proces: Process Proces:
Locks) (Passive State w (Passive State w (Passive State w
page0 Cache Data Cache Data Cache Data
ngg% - Metadata | ! « Metadata r-- Metadata
page3 | page - page T page
page4 ! page I page T | page
pages | page T page P page
page6 ! b Lo
page’ | Lo P
page8 ‘ e B A
I]
file B2 N | [| I [[|
page ids 0 1 2 3 4 5 6 7 8

Figure 1. DAChe architecture with passive metadata and cach e servers on each client. Metadata is
striped across clients, but a file page can be cached on any cli ent.

ing subsystem can be also distributed across the applicatio not held for the duration of access to the actual cached data.
nodes as passive remote accessible state. Minimizing the time that the metadata is locked, should re-

MPI-2 explicitly provides thevPl "W n_Lock and cor- duce the amount of simultaneous lock requests to the same
responding unlock functions. Grogpal [5] describe how metadata. The exception to short lock times is when a par-
to useMPl W n_Lock for traditional locking. Since the ticular file page is being brought into the cache or a cache
current test platform for DAChe is a threadless environment page is being evicted. In either case, the cache metadata
however, this rules out the use of the MPICH2’'s RMA in- must be locked for entire 1/O phase in order to prevent early
terface. MPICH?2 is focused on portability, and threads are or late cache accesses, respectively.
more commonly available than hardware supported one-
sided communication. At the same time, the atomic swap5.3. Caching
operation in the Portals library has yet to be implemented.

In the absence of an RMA solution to mutual exclusion, Pages cached on one process are globally accessible to
one or more processes from the allocated user processes aegy other process through RMA. Although access to meta-
siphoned off from the main group to act as mutex servers.data is carefully mediated, remote access to cache data is
They are spun off durindache_open and returned during basically a free-for-all. Since any file page can be cached
dache_cl ose. During this time, the mutex servers cannot in at most one cache, all accesses to that page are coher-
execute any user application code. So while passive RMAent.
mutual exclusion is preferred, DAChe can still be evaluated = Cache management and eviction is handled locally with
using dedicated mutex servers. Later, these mutex servergne exception to be discussed a little further along. What
will become passive elements on the application processesdata to cache is determined by the local procces’s I/O ac-

Since mutex responsibilities will eventually be moved cesses. If a process accesses a file page that is not yet cached
to the client, the mutex servers are intentionally keptejuit on any of the other processes, it caches it itself and updates
simple. Lock responsibility for each file page is spread the corresponding cache metadata to reflect this change.
across the mutex servers in the same way cache metadai8hould a process run out of cache space locally, it must
is spread across application processes. The mutex serversvict a page based on some local policy such as a least re-
service locks in the order they come, queueing requests tacently used (LRU) policy. Remember that during eviction, a
the same cache metadata. Polling and simple queueing arpage’s metadata cannot be accessed at all. Another precau-
both implementable when the mutex servers become pastion alluded to earlier is that processes accessing a réymote
sive state on remote processes. A process must block untitached page must “pin” the page in cache so the page can-
its lock request is fulfilled by the mutex server. not be evicted while being accessed. This pin is a semaphore

Typically, cache metadata is not “held” for extended pe- contained in the cache metadata along with location infor-
riods of time. It is locked only briefly for modification. Itis mation. While a page is pinned, the process on which the

cache page resides cannot evict the page, and must either i=0, j=0

wait until the page is “un-pinned” or try to evict a differ-

ent page. New data is not written to disk until it is either W
evicted or written out adlache_close.

i=1, j=0
6. Performance Implications w
i=2, j=0
DAChe is evaluated using a synthetic I/O access pat- '
tern that should, by design, benefit from cached data. It is

roughly based on the regular noncontiguous access patterns i=3, j=0
often found in scientific applications and is meant to test th '
performance of DAChe. The benefits a real application may .7
derive from DAChe are also clearly of interest. The basicla-

beling convention is as follows: =0, =1

e mtx-n where n is the number of mutex servers '7

e DAChe clients is the number of clients actu- i=0, j=2

ally caching data (non-mutex servers) '7

e 50:50 refers to an equal mix of clients and mutex
servers

. . . Figure 2. Several iterations of the sliding win-
6.1. Machine Configuration dow I/O pattern for 4 processes.

All of our tests were run on ASCI Cplant [4] at San-
dia National Laboratory. Cplant is an Alpha Linux cluster

with each compute node configured with one 600 MHz Al- Cache Sizelprod 4 MB
pha EV-6, 512(Ross) MB of RAM, no disk, and a 64-bit Page Size 32 KB
Myrinet card. Each compute node runs Red Hat 6.x with Chunk Size 64 KB
kernel 2.4.x. loops 20

6.2. Sliding Window Benchmark o _
Table 1. DAChe and sliding window parame-

The sliding window application uses a repetitive 1/O ac- ters

cess pattern, and the underlying caching library uses the
lock service to gain exclusive access to cache page meta-

data. Figure 2 describes the access pattern of the synthetic It is important to note that since the DAChe system is
benchmark. Each process accesses a contiguous chunk d¢he primary subject of evaluation. As such, actual I/O is re-
data. In each subsequent iteration, processes circular shi moved from DAChe to prevent interference from any spe-
their accesses until all chunks are read before slidingeo th cific filesystem. The sliding window access pattern is such
next set of four chunks. Since there is one lock per page, andhat once a file page is brought into cache, it remains there
the benchmark accesses are page-aligned, the number dhroughoutthe execution and is only remotely accessed over
meta data locks is tied directly to the number I/O operations the network. Though actual I/O would have been performed
The cyclic access pattern makes the amount filesystem call$o bring in the file data, all subsequent accesses reallysacce
increase along a second order function rather than linearly cached data, possibly on remote nodes. Throughput is cal-
as seen in figure 3. Direct filesystem calls that the sliding culated based on the number of I/O calls that would have
window application follows the the “direct” curve, while been made to the file system. Since a fixed number of lock
the number of filesystem calls as mediated by DAChe fol- requests are generated per cache page access, the number of
lows the “DAChe” curve. This reduction is achieved trans- locks requested by each process is directly proportional to
parently from the application point of view. The same could the amount of I/O done.

be achieved using explicit communication in application, Since scalability is the primary goal of the DAChe, it was

but increases application complexity. tested with various numbers of mutex servers running. In-

Number of Filesystem Calls

—¥—direct (64K)
= Dpache (32K) /

calls

800000 /
600000

400000 /

Clients

Figure 3. The amount of 1/0O grows as a sec-
ond order function on the number of clients.

Filesystem op (32K) Throughput

——mtx-2
8000 1— mtx—4
—A—mtx-6 %
7000 4— X mtx-8
—K—ntx-10 ﬁ/
—@—mtx-12
6000 T—
—+—mtx-50:50 %

3000 /
2000

1000

*
4
p
4

0 16 32 48 64 80 96 112 128 144
DAChe Clients

Figure 4. The number of clients at which
throughput knees over is dependent on how
many lock servers there are.

Queue time per Metadata Lock

2000

——mtx-2 /
1800 T— mtx-4

—A— mtx-6 /
1600 T— % nmtx-8

—K—ntx-10
1400 T——® mtx-12

—+—mtx-50:50 /
1200

1000

ps/lock

800

600

400

0 16 32 48 64 80 96 112 128 144
DAChe Clients

Figure 5. Since the number of locks grows
as a second order function, increasing the
number of mutex servers with the number
of clients should yield a linear increase in
Queue time.

tuitively, the heavier the lock system is taxed, the more mu-
tex servers are needed to accomodate the increased load.
This is illustrated clearly in figure 4 where a larger num-
ber of mutex servers allows a larger number of clients with-
out severely hindering performance when more than the
minimum number of mutex servers is used. From a cost
efficiency perspective, one would like to stay on the out-
side curve using the minimum number of processes at each
point. This client to mutex server ratio is highly depen-
dent on the properties of the specific machine. A 50:50
mix where there are an equal number of clients and mu-
tex servers allows the mutex service to scale with the ap-
plication size. As expected from the growth rate of filesys-
tem calls, this outer bandwidth curve is roughly a square
root function. The usefulness of this will become more ap-
parentin section 7. The most important point from Figure 4
is the number of mutex servers determines at which num-
ber of clients performance will plateau.

Another demonstration of the lock system’s scalability
can be extracted from Figure 5 which describes the queue
time for a lock. An obvious bottleneck, increasing the num-
ber of mutex servers with the number of clients decreases
the average queue time for each lock request. Increasing the
number of lock servers with the number of clients keeps
gueue times reasonable. Because the problem size increases
at second order rate, the 50:50 mix ratio of clients to server

Abbreviation || Function

Meta Lock Obtain access to cache metadata
Meta Unlock || Release access to cache metadatg
Eof (Un)Lock the End-of-file for writing
Get Meta RMA retrieving cache metadata

Put Meta RMA writing cache metadata

Rmt xfr Data transfers to/from remote caches
Application || Application + silent functions

Table 2. DAChe and sliding window parame-
ters

yields the expected linear increase in queue times. The
client service time includes network latency and bandwidth

as well any lock contention generated by the sliding win-

dow application itself.

Figure 6 provides a breakdown of how much time is
spent executing a subset of functions in DAChe. Table 2
provides a brief explanation of each function included in
the timing figure. Indicated by the quickly rising meta lock
times, two mutex servers is obviously not sufficient beyond
16 processes. While the proportion of time spent on locking
increases as the number of processes gradually incretses, i
can be explained by the second order increase in locks gen-
erated by the sliding window application. Since the other
functions in DAChe utilize a fairly constant proportion of
the run time, and all include one-sided communication, the

Functional Analysis
Servers

2 Mutex
100%

N
IFI

IIIII!III
IIIIII’II

III‘FIIIII

Illllllqll
_IIIIIII!II
IIIIIIIIFI

50:50

100%
90%

80%

jENEEEEEEEE
U NN
EpEENENEEN
EjEEEEEEE
ENEEEEEEE
EREEEEEEE
ENEEEEEEE

64 80 96
DAChe Clients

Figure 6. Relative amounts of time spent
on individual DAChe functions for 2 mutex
servers and 50:50 mutex servers.

network is not being saturated. It is worth noting that since
the sliding window application only tests 1/O, its non-ie re
lated computation is extremely limited. The dramatic diffe

ence in relative communication costs are indicative of the
need to scale mutex services with the computation size.

7. Conclusions and Future Directions

The most glaring problem with the current implemen-
tation of DAChe is the use of separate processes as mutex
servers. A fully implemented RMA system which provides
one of the necessary atomic operations should remedy this.
RMA allows the lock responsibilities of the lock servers
to be taken up by client nodes, eliminating the extra cost
of seperate lock processes and leveraging the performance
characteristics of single-sided communication, see Eigur
The algorithms involved have been explored chiefly by
Mellor-Crummeyet al. [7] in the context of shared memory
machines. Another reason for the move to a passive RMA
solution is the architectural trend of parallel computers t
wards running stripped down threadless operating systems
on compute nodes. A drawback of moving to a completely

Client
Process

Passive State
Cache Data

Metadata Locks

page E

pagei
page

Figure 7. With proper support in the RMA in-

terface, it will be possible to implement locks

passively on the clients.

>

passive lock system is implementing distributed queues in

an efficient manner. A distributed waiting queue will re- [4] CPLANT: A commodity-based, large-scale computing re-

sult in additional communication costs, but these cost will source.ht t p: // ww. cs. sandi a. gov/ cpl ant .

hopefully be more than compensated for by performance([5] W. Gropp, E. Lusk, and R. ThakukJsing MPI-2: Advanced

enhancemence elsewhere in the system. This passive goal Featuresof the Message-Passing Interface. MIT Press, Cam-

is the reason behind the lock system’s straight-forward de- bridge, MA, 1999.

sign. A passive environment prevents any computation onlé] X.Ma, M. Winslett, J. Lee, and S. Yu. Faster collectivemut

the server side and limits the server to remote accessable through active buffering. Ifroceedings of the 2002 IEEE In-

state. ternguonal Parallel and Distributed Processing Symposium,
The least recently used cache eviction policy is com- April 2002. .

monly accepted as the best general purpose policy. In them J. M. Mellor-Crummey and M. L. Scott. Algorithms for

. . . scalable synchronization on shared-memory multiprocesso
current implementation, the LRU queue is stored locally, Technical Report TR 342

D. Nagle, D. Serenyi, and A. Matthews. The panasas ac-
tiveScale storage cluster - delivering scalable high baatithw
storage. InProceedings of the 2004 ACM/IEEE Supercom+-

and is only affected by local accesses to cache pages. N°f8]

only should the basic eviction performance of DAChe be
evaluated, but further research is planned in how taking re-

mote accesses into account in the eviction policy may af-
fect overall cache performance. A further extension would
be to migrate cache pages frequently accessed by a par-
ticular process to that node for dynamic load rebalancing.
Adaptive applications may intermittently redistributenko

ing sets and domains, causing substantial shifts in the 1/0
access patterns of individual processes.

Tighter integration with MPI is also planned with sup-
port for MPI-2 RMA. By moving away from the Por-
tals interface, DAChe will benefit from the portability of
MPICH2.

Preliminary performance results for DAChe sug-
gest scales well. The extremely distributed charactesisti
of DAChe get around a number of potential bottle-
necks. The most interesting feature of DAChe is its efficient
use of the increasingly common one-sided communica-
tion architecture.

puting Conferencence, November 2004.

Acknowledgements

This work was supported in part by Sandia National
Laboratories and DOE under Contract 28264, DOE’s SCi-
DAC program (Scientific Data Management Center), award
number DE-FC02-01ER25485, NSF's NGS program under
grant CNS-0406341, and NSF/DARPA ST-HEC program
under grant CCF-0444405.

References

[1] An introduction to GPFS 1.2.
http://wwe+1.i bm con servers/eserver
[cl usters/software/gpfs. ht M, December 1998.

[2] R. Brightwell, B. Lawry, A. Maccabe, and R. Riesen. Por-
tals 3.0: Protocol building blocks for low overhead communi
cation.

[3] K. Coloma, A. Choudhary, W. Liao, L. Ward, E. Russell, and
N. Pundit. Scalable high-level caching for parallel i/o. In
Proceedings of the 2004 |EEE International Parallel and Dis-
tributed Processing Symposium, April 2004.

