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Abstract- Computer vision is regarded as one of the most 
complex and computationally intensive problems. In general, a 
Computer Vision System (CVS) attempts to relate scene(s) in 
terms of model(s). A typical CVS employs algorithms from a very 
broad spectrum such as such as numerical, image processing, 
graph algorithms, symbolic processing, and artificial intelligence. 
This paper presents a multiprocessor architecture+ called “NE- 
TRA,” for computer vision systems. NETFLA is a highly flexible 
architecture. The topology of NETRA is recursively defined, and 
hence, is easily scalable from small to large systems. It is a 
hierarchical architecture with a tree-type control hierarchy. Its 
leaf nodes consists of a cluster of processors connected with a 
programmable crossbar with selective broadcast capability to 
provide the desired flexibility. The processors in clusters can 
operate in SIMD-, MIMD- or Systolic-like modes. Other features 
of the architecture include integration of limited data-driven 
computation within a primarily control flow mechanism, block- 
level control and data flow, decentralization of memory manage- 
ment functions, and hierarchical load balancing and scheduling 
capabilities. This paper also presents a qualitative evaluation and 
preliminary performance results of a cluster of NETRA. 

Index Terms-Computer vision, parallel architectures, parallel 
algorithms, partitionable architectures, performance evaluation. 

I. INTRODUCTION 

A. Computer  k&ion 

C OMPUTER vision has  been  regarded as  one  of the 
most complex and  computationally intensive problems. 

A Computer  Vision System (CVS) employs algorithms from 
a  very broad spectrum such as  numerical, signal processing, 
image processing, graph algorithms, symbolic processing, and  
artificial intelligence. 

A typical CVS using color images requires a  processor 
capable of handl ing 23  Megabytes of input data per  second,  
interpreting it to construct a  three-dimensional model  of the 
environment [S], [38]. An interpretation may require hundreds 
of objects of different types to be  identified [ll]. Estimating 
the motion of and  recognizing a  moving object from a  se- 
quence  of time varying images may further involve motion 
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effects and  employ a  model  based  recognit ion in addit ion to 
the interpretation needed  for static images [7], [9]. 

Vision researchers have  shown that pattern recognit ion 
techniques and  bottom-up processing alone is not adequate  
for the above  tasks [16]. Vision also involves top-down and  
knowledge-based processing. Between these two levels of 
abstraction, another level, known as “intermediate level” is 
normally introduced. It involves symbolic processing. Symbols 
range from extracted image characteristics such as  edges  or re- 
gions through perceptual ly useful groupings such as  geometr ic 
f igures and  surfaces. Hence,  vision algorithms are normally 
classified into three levels: low (sensory, image processing), 
intermediate (symbolic processing), and  high (knowledge- 
based).  

B. Architectural Considerat ions 
From a  mult iprocessor architecture perspective, an  image 

understanding and  computer  vision tasks’ computat ional re- 
quirements can be  descr ibed considering different abstract 
levels of processing. 

Low-Level  Processing-Tasks in this class exhibit mas- 
sive spatial parallelism which is suitable for both SIMD 
and  MIMD computat ions. Computat ions are normally 
simple and  data independent.  Computat ions mainly in- 
volve numeric processing and  manipulat ion of simple data 
structures (such as  pixels). Communicat ion requirements 
are structured. Communicat ion may be  local or global 
in the sense that the output may depend  on  a  spatially 
local ne ighborhood of data (e.g., convolution), or it may 
depend  on  the entire input image data (e.g., 2D-FIT). 
Also, communicat ion requires efficient broadcast  and  
synchronization. 
Intermediate Level Processing-Computat ions in this cat- 
egory manipulate symbolic (e.g., tokens) as  well as  nu-  
meric data [39]. Computat ions are normally data de-  
pendent  and  irregular. They are suitable for medium 
to coarse grain parallelism. The  available parallelism is 
dynamic and  data dependent .  Communicat ion patterns 
can be  regular as  well as  unstructured, depending on  the 
data. Both local and  global communicat ion (including 
broadcasts) are required. Since computat ions are data 
dependent ,  independent  decision making capabilities and  
distributed control are required. 
High-Level Processing-Tasks in this level of processing 
are normally top-down (model directed). Computat ions 
require both numeric as  well as  symbolic processing and  
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are suitable for MIMD coarse-grain parallelism. Com- 
putations are both data and  model  dependent ,  and  are 
irregular. Communicat ion is unstructured and  irregular. 
Processors require accesses to shared data (which stores 
model  and  image information.) Furthermore, distributed 
control of processing as  well as  efficient mechanism to 
coordinate different activities is needed.  

An architecture for CVS’s should be  capable of performing 
tasks from all levels of processing efficiently and  synergisti- 
cally. Hence,  it needs  to be  flexible to be  able to adapt  to the 
required processing. Furthermore, a  flexible communicat ion 
structure is needed  to allow different types of communicat ion 
among  various parts of an  architecture. The  architecture should 
allow a  partition execut ing tasks from one  level of vision to 
be  reconf igured to perform a  task from another level. This 
requires the architecture to be  reconfigurable into the most 
suitable mode  of operat ion (such as  SIMD mode  or MIMD 
mode)  for a  given task. Real-time vision and  high performance 
requirements dictate that tasks from all levels exist and  execute 
simultaneously in the system, and  therefore, the architecture 
should be  divisible into several partitions that can  operate 
independently,  yet interact with each  other to exchange ap- 
propriate data and  information. Top-down processing and  load 
balancing requirements suggest  a  hierarchical and  distributed 
control in the architecture [26]. Time-varying data or different 
sets of data may represent varying and  unevenly distributed 
load. Therefore, efficient resource allocation, topology and  
data size independent  mapping capabilities, and  efficient load 
balancing capabilities are needed  in the architecture. Finally, 
an  architecture for such a  complex problem should be  mod-  
ular. 

In this paper,  we present a  parallel architecture called 
NETRA for CVS’s. The  architecture was originally p roposed 
by Sharma, Patel, and  Ahuja [28]. NETRA is a  recursively 
def ined tree-type hierarchical architecture, each  of whose 
leaf nodes  consists of a  cluster of processors. Processors 
in a  cluster are connected with a  programmable crossbar 
with selective broadcast  capability. The  internal nodes  of the 
architecture are schedul ing processors whose functions are task 
schedul ing, load balancing, and  global memory management .  
The  processors in clusters can operate in SIMD-, MIMD- or 
Systolic-like mode.  Other features of the architecture include 
integration of limited data-driven computat ion within a  pri- 
marily control flow mechanism, block-level control and  data 
flow, decentralization of memory management  functions, and  
hierarchical load balancing and  schedul ing capabilities. 

C. Organizat ion 
Section II contains a  review of architectures proposed for 

image processing and  computer  vision. A brief overview of 
hierarchical, partitionable, and  reconfigurable architectures is 
also presented. Section III presents the architecture of NETRA 
and  descr ibes its components  and  their functions in detail. 
In Section IV, NETRA is critically examined with respect 
to the CVS architectural requirements. Section V contains 
preliminary results on  the cluster performance. Finally, Section 
VI summarizes the paper.  

II. REVIEW OF ARCHITECTURES 

A. SIMD Architectures 

Massively parallel SIMD mult iprocessors are well suited for 
low-level and  well structured vision algorithms that exhibit 
spatial parallelism at the pixel level. However,  such archi- 
tectures are not well suited for high-level vision algorithms 
because these algorithms require nonuniform processing, more 
complex data structures, and  data dependent  decision making 
capabilities. Meshes,  array processors, hypercubes,  and  pyra- 
mids are some of the most common SIMD parallel processors 
proposed for image analysis and  processing. In meshes,  the 
processing elements are ar ranged in a  square array. Examples 
of mesh connected computers include CLIP4 [ 121  and  the MPP 
[3]. The  Connect ion Machine (CM) provides a  NEWS network 
for local communicat ion and  a  hypercube network for long 
distance communicat ion [17], [36]. 

Pyramid architecture was proposed to mimic multidimen- 
sional d iv ide-and-conquer computat ions [ 11. However,  it was 
discovered that while the pyramid structure was efficient for a  
large class of low-level image processing tasks, it was not 
efficient for higher level tasks [28]. Examples of pyramid 
architectures include PAPIA [6], SPHINX [24], MPP pyramid 
[27], and  HCL Pyramid [35]. 

B. HierarchicallPartit ionable/Reconfigurable Architectures 

Several hierarchical, partitionable, and  reconfigurable archi- 
tectures have  been  proposed (and some prototypes built). The  
following is a  brief review of some of these architectures. 

TRAC is an  experimental reconfigurable array computer  pro- 
posed  for scientific computat ions [22]. The  available resources 
can be  partit ioned into several SIMD/MIMD partitions. The  
partitioning in TRAC is done  by  setting switches of the 
interconnection network to partition resources into blocks such 
that each  resource is exactly part of one  block. 

PASM is a  partit ionable SIMDMIMD architecture [31], 
[13]. PASM can be  structured as  one  or more independent  
SIMD and/or MIMD machines of various sizes. PASM’s 
multistage network is a  general ized cube network. PASM 
provides hierarchical control. Partitioning of processors and  
networks is performed by explicitly setting switches to the 
desired configuration. 

ZUA (Image Understanding Architecture) has  been  devel- 
oped  to embed  three abstract levels of vision processing 
into an  architecture [39]. It has  a  hierarchical structure. At 
the high level, IUA is a  MIMD parallel processor.  The  
low level is a  Content Addressable Array Parallel Processor 
(CAAPP) which operates in pure SIMD mode.  It also has  
a  reconfigurable mesh with a  local broadcast  capability. The  
intermediate level operates in synchronous-MIMD or MIMD 
mode.  Communicat ion and  data transfer between different 
levels is achieved using a  shared memory.  

Cedar  is a  mult iprocessor architecture with a  hierarchical 
memory structure [20]. Cedar  unifies distributed and  shared 
memory paradigms. It consists of multiple clusters (each 
cluster being a  mult iprocessor) connected through an  omega  
network to a  global memory.  
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Other proposed multiprocessor architectures that have con- 
sidered flexibility, partitioning and reconfiguration include 
CHiP [33], Non-Von [29], and REPLICA [23]. 

C. Other Architectures 

The CMU Warp processor [14] is a systolic array machine 
proposed and built for image understanding and scientific 
computations. The machine has a programmable systolic array 
of linearly connected cells. iWarp (next in the sequence to 
Warp) is a two-dimensional systolic and distributed memory 
architecture considered for image understanding and scientific 
computations [4]. It supports memory communication and 
systolic communication. Another architecture called “VisTA” 
(Vision Tri-Architecture) has been proposed for integrated 
vision systems which attempts to explicitly embed three levels 
of vision in the architecture [34]. General purpose shared and 
distributed memory multiprocessors have also been considered 
and evaluated [37] for image understanding and computer 
vision. 

III. AFCHITECTUI~E OF NETRA 
Fig. 1 shows the architecture of “NETRA.” NETRA consists 

of the following components: 
1) A large number (102-104) of Processing Elements 

(PE’s), organized into clusters of 16 to 64 PE’s each. 
2) A tree of Distributing-and -Scheduling- Processors 

(SDP’s) that make up the task distribution and control 
structure of the multiprocessor. 

3) A parallel pipelined shared Global Memory. 
4) A Global Interconnection that links the PE’s and SDP’s 

to the Global Memory. 

A. Processor Clusters 
The clusters consist of 16 to 64 PE’s, each with its own 

program and data memory. They form a layer below the 
SDP-tree, with a leaf SDP associated with each cluster. PE’s 
within a cluster also share a common data memory. The PE’s, 
the SDP associated with the cluster, and the common data 
memory are connected together with a crossbar switch. The 
crossbar switch permits point-to-point communications as well 
as selective broadcast by the SDP or any of the PE’s. 

Fig. 2 shows the cluster organization. A 4x4 crossbar is 
shown as an example of the implementation of the crossbar 
switch. The switches are controlled by control bits indicating 
the connection pattern. If a processor of SDP needs to broad- 
cast, then all the control bits in its row are made one. In order 
to connect processor Pi to processor Pj, control bit (i, j) is set 
to one and the rest of the control bits in row i and column j are 
off. Details of the crossbar are discussed later in this section. 

Clusters can operate in a SIMD-, a systolic-, or an MIMD- 
like mode. Each PE is a general purpose off-the-shelf pro- 
cessor. In a SIMD mode, PE’s in a cluster execute iden- 
tical instruction streams from private memories in a Iock- 
step fashion. Since instruction streams are supplied from 
the PE’s private memory (as opposed to being broadcast 
by a controller), this type of execution represents is SPMD 

-- 

L 
GLOBAL INTERCONNECTION 

SDP : Scheduling and Distributing Pnxeseor 

C : Processor Cluster M : Memory Module 

Fig. 1. Organization of NETRA. 

SYNCHRONIZATION BUS 

TO 

UNIDIRECTIONAL 

CROSSBAR 

DSP 

CDM 

PE : PROCESSOR M : LOCAL MEMORY 

CDM : COMMON DATA MEMORY 

Fig. 2. Organization of processor cluster. 

(Single-Program-Multiple-Data) execution in lock-step. In the 
systolic mode, PE’s repetitively execute a set of instruction 
on data streams from one or more PE’s. In both cases, 
communication between PE’s is synchronous. The advantage 
of providing these two modes of communication is that 
computations and communications can be overlapped and fine- 
grain communication among processors can be obtained. In 
the MIMD mode, PE’s asynchronously execute instruction 
streams resident in their private memories. The streams may 
be different. In order to synchronize the processors in a cluster, 
a synchronization bus is provided which is used by processors 
to indicate to the SDP that a processor(s) has finished its 
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computat ion. The  SDP can either poll the processors or the 
processors can interrupt the SDP using the synchronizat ion 
bus. 

1) Crossbar Design: An interconnection pattern between 
processors must be  programmed in the crossbar before pro- 
cessors can communicate with each  other. That is, there 
is no  arbitration in the crossbar switch. Programming the 
crossbar requires writing a  communicat ion pattern into the 
control memory of the crossbar. In the SIMD mode,  the 
SDP alters the communicat ion patterns during the program 
execut ion as  required by  the communicat ion pattern of the 
computat ions. In the MIMD mode,  a  processor can alter the 
communicat ion pattern by  updat ing the control memory as  
long as  it does  not conflict with the existing communicat ion 
pattern. In case of conflicts, the SDP is responsible to resolve 
them. The  SDP associated with the cluster can  write into the 
control memory to alter the communicat ion pattern. The  most 
common communicat ion patterns such as  linear arrays, trees, 
meshes,  pyramids, shuff le-exchanges, cubes,  and  broadcast  
can  be  stored in the memory of the crossbar. These patterns 
need  not be  suppl ied externally. Therefore, switching to a  
different pattern in the crossbar is fast because switching only 
requires writing the patterns into the control bits of the crossbar 
switches from its control memory.  

The  advantages of such a  crossbar design are the following: 
Firstly, since there is no  arbitration, the crossbar is faster than 
one  which involves arbitration because switching and  arbitra- 
tion delays are avoided. Secondly, switches are simple, easy 
to design and  implement because arbitration is absent.  Such 
a  crossbar is easily scalable. Unlike other interconnections 
(such as  cubes,  shuff le-exchanges etc.), the scalability need  
not be  in powers of 2. A unit scalability is possible. In other 
words, it is possible to provide just one  more processor and  
link in the crossbar, which can replace any  other processor 
and  link upon  a  failure. Hence,  it is easy to provide fault- 
tolerance in a  cluster. This is possible because there is no  
inherent structure that connects the processors. Each processor 
(link) is topologically equivalent to any  other processor (link). 
Finally, the most commonly used  communicat ion patterns can 
be  stored in the on-chip memory of the crossbar. That allows 
a  single-cycle parallel load of a  new pattern, and  therefore, 
switching to a  new pattern can be  achieved in one  cycle. 

2) Crossbar Implementation: This crossbar design has  been  
implemented and  is currently being tested [32]. The  crossbar 
chip is a  2-bit-sliced 8x8  crossbar fabricated using 2.0 pm 
CMOS technology with a  die size of 4402  by  6602  /Am This 
was packaged in a  standard 64  pin DIP. The  output ports 
are des igned to be  set to high impedance so that the chip 
can function as  a  building block for larger sized crossbars. 
Commands  sent to the crossbar’s opcode  input pins instruct 
the crossbar as  to which input ports are to be  connect  to which 
output ports. Opcodes  exist for setting individual connect ions, 
pairs of connect ions, and  connect ing a  single input to all eight 
output ports (i.e. the crossbar is set up  for broadcast).  Each 
time a  new connect ion is made  to an  output port, the previous 
connect ion to that output port is over written. 

The  crossbar is capable of storing on  chip the state of the 
input to output port connect ions for later access. The  stored 

state can then be  returned to through the execut ion of a  single 
opcode.  Storing current connect ions state is also done  in a  
single instruction. Up to eight sets of connect ions can be  
stored at any  one  time. Each set is made  up  of eight subsets. 
The  subsets consist of the address of one  output port and  
one  input port. Each subset’s output port address is distinct. 
It should be  noted that the number  of patterns that can  be  
stored on-chip depends  on  the amount  of space available on  
the chip for memory.  Given the current VLSI technology, 
enough  memory can be  put on  the chip to store thousands of 
patterns on  the crossbar itself. Since the first implementation 
was done  to test the proof of concept,  only a  limited amount  
of memory was put on  chip. Further, it should be  noted that 
the size of the memory on  chip is not a  limitation on  how 
many  patterns the crossbar can allow, because the chip allows 
one  to supply a  new pattern externally. The  only drawback 
is that it is much slower than using a  pattern already stored 
on  chip. 

The  chip is provided with a  programmable chip address so 
that the opcode  can be  registered off a  common bus. This 
functions as  a  chip select when  compared with an  incoming 
address off an  address bus. If the address off the address bus 
does  not match that of the chips, the registered opcode  is 
ignored and  a  no-op is performed. The  crossbar’s chip address 
is set via scan. Because the address is 5  bits wide it will take 
five scan operat ions to set the chip’s address.  This is normally 
done  at boot  time. 

Two additional operat ions not specif ied through the opcode,  
that the crossbar is capable of performing, are reset and  test. 
There is a  reset pin that when  activated, tri-states all output 
ports and  sets the chip address to 16. Reset is normally 
executed at boot  time. Test is another operat ion that has  
a  dedicated pin. When  this signal is active several internal 
signals are routed to output pins to provide internal visibility 
dur ing test. 

A larger crossbar can be  obtained using a  concatenat ion of 
smaller crossbars. The  crossbar chip has  been  built to provide 
this scalability. For example, four 32  x 32  crossbar chips can 
be  used to obtain a  64  x 64  crossbar. However,  if the crossbar 
becomes very large, it becomes difficult to support  single-cycle 
transfer of data, or the cycle time must be  increased, thereby 
reducing the bandwidth. 

Some other architectures have  employed programmable 
crossbar switches, most notably among  them are the GFll 
[18] and  ICAP communicat ion switch [25]. The  GFll was 
primarily des igned for QCD (Quantum Chromodynamics)  
computat ions. The  GFll employs a  three stage Benes network 
which connects 576  processors. The  main switch of the 
network is a  24  x 12  one  bit wide crossbar. Each node  of 
the switch consists of a  24  x 24, nine bit crossbar. Each node  
contains memory to store 1024  switch settings. Before a  job 
is run, the appropriate switch settings suitable for the problem 
are loaded. This programmabil i ty allows the switch settings to 
be  changed  after each  word transfer, which takes four cycles. 
Although the GFll crossbar switch is very similar to our  
crossbar switch, our  switch allows both horizontal and  vertical 
expansion,  thereby allowing us  to build larger crossbars from 
smaller chips. 
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The ICAP switch (ICAP is the intermediate level processor 
of the IUA architecture descr ibed earlier) prototype is a  
64  x 64  network which uses 32  x 32  bit serial crossbar chips 
(called PARCOS). The  chip consists of an  on-chip control 
memory capable of storing 32  configurations. Therefore, the 
chip can hold up  to 32  most frequently used  connect ion 
patterns. Changing the connect ion pattern (which uses one  
of the patterns stored on  the chip) requires a  single write 
instruction with the address of the new pattern in the control 
memory.  In this respect, the switch is similar to our  crossbar. 
But in its usage  to build larger networks, this switch is closer to 
the GFll switch. Also note that, like our  design, the number  
of on-chip control words is not a  limitation on  how many  
patterns can be  used in the PARCOS chip. It allows loading 
of new patterns externally, when  needed.  

3) Significance of Crossbar for Reconfigurability: Several 
techniques for implementing reconfigurability between a  set 
of PE’s were studied [lo], [30]. It was concluded that using 
a  crossbar switch to connect  all PE’s was simpler than any  
other scheme. When  designing communicat ion networks in 
VLSI, the primary constraint is the number  of pins and  not 
the chip area. The  number  of pins is governed by  the number  
of ports on  the network and  is independent  of the type of 
network. Furthermore, it was realized that a  crossbar with a  
selective broadcast  capability was not only a  very powerful 
and  flexible structure, but was also simpler, scalable, and  less 
expensive. However,  it must be  noted that the crossbar is 
central ized and  tightly coupled. But at the same time, such 
a  design allows single cycle data transfer across the crossbar. 
Therefore, we have  limited a  cluster size to 64  processors. 
It must be  noted that a  NETRA configuration containing 256  
processors (4 clusters of 64  processors) will have  4  crossbars 
of size 64  and  not 16  crossbars of size 64. 

B. The  SDP Hierarchy 

The  SDP-tree is an  n-tree with nodes  corresponding to 
SDP’s and  edges  to bi-directional communicat ion links. Each 
SDP node  is composed of a  processor,  a  buffer memory,  and  
a  corresponding controller. 

The  tree structure has  two primary functions. First, it 
represents the control hierarchy for the multiprocessor. A SDP 
serves as  a  controller for the subtree structure under  it. Each 
task starts at a  node  on  an  appropriate level in the tree, and  is 
recursively distributed at each  level of the subtree under  the 
node.  At the bottom of the tree, the subtasks are executed on  
a  processor cluster in the desired mode  (SIMD or MIMD) and  
under  the supervision of the leaf SDP. 

The  second function is that of distributing the programs 
to leaf SDP’s and  the PE’s. Low-level vision algorithms are 
character ized by  a  large number  of identical parallel processes 
that exploit spatial parallelism and  operate on  different data 
sets. For global algorithms such as  connected component  
labeling, multidimensional d iv ide-and-conquer can be  used.  It 
involves two phases,  1) computat ions within partitions (e.g., 
labeling within partitions) and  merging the partial results. The  
first phase  involves execut ion of the same program for each  
processor on  different data sets. The  second phase  involves 

execut ion of programs that merge partial results. The  body  of 
the programs is normally the same. The  difference occurs in 
execut ion where the control flow is data dependent .  It would be  
highly wasteful if each  PE issued a  separate request for its copy 
of the program block to the global memory because it would 
result in unnecessari ly high traffic through the interconnection 
network. Under  the SDP-hierarchy approach,  one  copy of the 
program is fetched by  the controll ing SDP (the SDP at the root 
of the task subtree) and  then broadcast  down the subtree to the 
selected PE’s. Also, SDP hierarchy provides communicat ion 
paths between clusters to transfer control information or data 
from one  cluster to others. The  SDP-tree is also responsible 
for Global Memory management .  

The  SDP hierarchy provides a  hierarchical control and  
resource and  process management  functions, which is specif- 
ically useful for high-level vision algorithms. High-level vi- 
sion exhibits functional parallelism where tasks have  a  loose 
coupling. For example, a  collection of tasks may work on  
obtaining the best match of hypotheses with the models. A 
SDP controll ing a  cluster can  dynamically schedule these tasks 
as  and  when  necessary.  Since the outcome of such computa-  
tions is normally nondeterministic, and  computat ions change  
depending on  the data, schedul ing and  resource allocation 
cannot  be  done  in advance.  A SDP, therefore, can  perform 
efficient resource management ,  schedul ing, and  coordination 
functions by  controll ing the initiation and  execut ion of the 
tasks from its task queues.  

C. Global Memory 
The  multiport global memory is a  parallel-pipelined struc- 

ture as  introduced in [5]. Given a  memory-access-t ime of T  
processor-cycles, each  line has  T memory modules. It accepts 
a  request in each  cycle and  responds after a  delay of T  cycles. 
Since an  L-port memory has  L  lines, the memory can support  
a  bandwidth of L  words per  cycle. 

Data and  programs are organized in memory in blocks. 
Blocks correspond to “units” of data and  programs. The  size 
of a  block is variable and  is determined by  the underlying 
tasks, their data structures, and  data requirements. A large 
number  of blocks may together constitute an  entire program 
or an  entire image. Memory requests are made  for blocks. 
The  PE’s and  SDP’s are connected to the Global Memory 
with a  multistage interconnection network. Each line also 
incorporates a  secondary storage device, thus support ing a  
large paged  virtual memory.  

The  global memory is capable of queueing requests made  
for blocks that have  not yet been  written into. Each line (or 
port) has  a  Memory-l ine Controller (MLC) which maintains 
a  list of read requests to the line and  services them when the 
block arrives. It maintains a  table of tokens corresponding to 
blocks on  the line, together with their length, virtual address,  
and  full/empty status. The  MLC is also responsible for virtual 
memory management  functions. 

Two main functions of the global memory are: input-output 
of data and  program, to and  from the SDP’s and  processor 
clusters; to provide intercluster communicat ion between var- 
ious tasks as  well as  within a  task if a  task is mapped  onto 
more than one  cluster. 
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D. Global Interconnection 

The PE’s and the SDP’s are connected to the Global 
Memory using a multistage circuit-switching interconnection 
network. Data is transferred through the network in pages. 
A page is a unit of data or instruction. A page is transferred 
from the global memory to the processors which is given in the 
header as a destination port address. The header also contains 
the starting address of the page in the global memory. When 
the data is written into the global memory, only the starting 
address must be stated. In each case, end-of-page may be 
indicated either by using an extra flag bit appended to each 
word (which may be expensive but is the most flexible), or 
by containing the length of the page in the header (which 
requires a capability to count, and therefore, additional logic, 
in the MLC). 

IV. CVS REQUIREMENTS AND 
ARCHITECTURAL FEATURES OF NETRA 

A. Reconfigurability (Computation Modes) 

The clusters in NETRA provide SIMD, MIMD, and systolic 
capabilities. It is important to provide these modes of opera- 
tions in a multiprocessor system for CVS’s so that processor 
configuration can be adapted to suit the best implementation 
for each algorithm. Consider matrix multiplication. We will 
show how it can be performed in SIMD and systolic modes. 
Let us assume that the computation requires obtaining the 
matrix C = A x B. For simplicity, let us assume that the cluster 
size is P and the matrix dimensions are P x P. In general, 
any arbitrary size computation can be performed independent 
of the data or cluster size. 

I) SZMD Mode: The algorithm can be mapped as follows. 
Each processor is assigned a column of the B matrix, i.e., 
processor Pi is assigned column Bi (0 < i 5 P - 1). The SDP 
broadcasts each row to the cluster processors which compute 
the inner product of the row with their corresponding column 
in lock-step fashion. Note that the elements of the A matrix 
can be continuously broadcast by SDP, row by row without 
any interruptions, and therefore, efficient pipelining of data 
input, multiply, accumulate operations can achieved. Fig. 6(a) 
illustrates a SIMD configuration of a cluster. The following 
pseudo code describes the SDP and processor (9’s program, 
0 < Ic 5 P - 1) program. 

SIMD Computation 
SDP 
1. FOR i=O to i=P-1 DO 
2. connect(SDP,Pi) 
3. out(column Bi) 
4. END-FOR 
5. connect(SDP, all) 
6. FOR i=O to i=P-1 DO 
7. FOR j=O to j=P-1 DO 
8. out(aij) 
9. END-FOR 
10. END-FOR 

pk 
1. - 
2. NO-OP 
3. in(column B;) 
4. - 
5. NO-OP 
6. c;k = 0 
7. FOR j=O to j=P-1 DO 
8. in(aij) 
9. Cik = c,k + ~Xij X bjk 
10. END-FOR 

In the above code, the computation proceeds as follows. 
In first three lines, the SDP connects with each processor 
through the crossbar and writes the column (one word at 
a time) on the output port. That column is input by the 
corresponding processor. In statement 5, the SDP connects 
with all the processors in a broadcast mode. Then from 
statement 6 onwards, the SDP broadcasts the data from matrix 
A in row major order and each processor computes the inner 
product with each row. Finally, each processor has a column 
of the output matrix. It should be mentioned that the above 
code describes the operation in principle, and does not give 
exact timing of operations. 

2) Systolic Mode: The same computation can be performed 
in systolic mode. Fig. 3 illustrates a linear systolic configu- 
ration of a cluster. The SDP can reconfigure the cluster in 
a circular linear array after distributing columns of matrix 
B to processors as before. The SDP is not shown in the 
figure. The SDP assigns row Ai of matrix A to processor 
Pi. Each processor computes the inner product of its row 
with its column. At the same time, a processor writes the 
element of the row on the output port. This element of the 
row is input to the next processor (through the programmed 
crossbar connections). Therefore, each processor receives the 
rows of matrix A in a systolic fashion and the computation 
is performed in a systolic fashion. Note that the computation 
and communication can be efficiently pipelined. In the code, 
statements 7-10 illustrate the systolic computation. Each 
element of the row is used by a processor and immediately 
written on to the output port. At the same time, the processor 
receives an element of the row of the previous processor (in 
the circular linear array) on its input port. Therefore, every P 
cycles a processor computes a new element of the C matrix. 

Systolic Computation SDP Pi 
1. FOR i=O to i=P-1 DO 1. - 
2. connect(SDP,P;) 2. NO-OP 
3. out(column Bi) 3. in(column Bi) 
4. out(row Ai) 4. in(column Ai) 
5. END-FOR 5. - 
6. connect(Pi to Pi+lmodP) 6. cii = 0 
7. - 7. FOR j=O to j=P-1 DO 
8. - 8. Cii = cii + aij * bji 
9. - 9. OUt(Uij)y in(Ui-lj) 
10. - 10. END-FOR 
11. - 11. repeat 7-10 for each new 

row 

B. Partitioning and Resource Allocation 

There are several tasks with vastly different characteristics 
in a CVS. The required number of processors for each task 
may be different as well as each task may need a different 
computational mode and partition. Hence, partitionability and 
dynamic resource allocation are keys to high performance. 

Partitionability of interconnection networks has been stud- 
ied by many researchers [40], [30], [22], [lo], [19]. These 
approaches are, however, relevant only to systems of tightly 
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Fig. 3. An example of SIMD and systolic modes of computation in a cluster. 

coupled processes wherein tasks require specific interconnec- 
tion patterns. In the above  cases, links are reserved for specific 
point-to-point communicat ion while a  process executes. When-  
ever a  new process is instantiated, the required resources 
should be  free and  l inked together in a  specif ied manner.  A 
partition is, in effect, isolated from the rest of the system. 

Partitioning in NETRA is achieved as  follows. When  a  task 
is to be  allocated, the set of subtrees of SDP’s is identified 
such that the required number  of PE’s is available at their 
leaves. One  of these subtrees is chosen on  the basis of 
load balancing (discussed later), locality considerations, and  
characteristics of the task. The  chosen SDP represents the root 
of the control hierarchy for the task. Together  with the SDP’s 
in its subtree, it manages  the execut ion of the task. Once  the 
subtree is chosen,  the processes may execute in SIMD, MIMD, 
or systolic mode  when  they get to the head  of the Ready  
Queues  at the PE’s or clusters. Further, MIMD processes may 
exhibit widely varying execut ion times as  processing required 
often depends  on  input data characteristics. If rigid partitions 
are used,  processors would have  to wait until all complete 
processing before they start execut ing another task. Finally, 
locality is maintained within the control hierarchy, which 
limits the intratask communicat ion to within the subtree. 

Since all tasks are assigned in this manner,  the partitioning 
is only virtual. The  PE’s are not required to be  physically 
isolated from the rest of the system. Therefore, unlike physical 
partitioning of a  network, in the above  approach,  communica- 
tion and  data exchange is possible between tasks operat ing in 
different partitions. For example, suppose there are two tasks 
in the system execut ing on  different partitions, one  working 
on  matching models of objects to the models developed 
from the image data (a high-level vision task), and  the other 
working on  probing the image data to resolve disambiguities 
(using low-level vision tasks, e.g., Hough  transform) [38]. For 
normal operat ion both tasks can execute within their respective 
partitions. But they need  to provide feedback to each  other as  
the computat ion progresses. If partitions are isolated, it will 

be  very difficult to achieve this cross-communicat ion between 
tasks of two partitions. TRAC architecture provides “shuttle- 
memory” which can be  used for such communicat ions [22], 
[21]. In NETRA, cross-partit ion communicat ion is provided 
through shared memory for partitions on  different clusters, 
and  through the common data memory if different partitions 
are on  the same cluster. 

C. Flexible Communicat ion 
Availability of flexible communicat ion is critical to achiev- 

ing high performance. For example, when  a  partition operates 
in a  SIMD mode,  there is a  need  to broadcast  the programs. 
When  a  partition operates in an  MIMD mode,  where proces- 
sors in the partition cooperate in the execut ion of a  task, one  
or more programs need  to be  transferred to the local memories 
of the processors. Performing the above  justifies the need  
for selective broadcast  capability. In order to take advantage 
of spatial parallelism in vision tasks, processors working 
on  neighbor ing data need  to communicate quickly amongst  
themselves in order to obtain high performance. The  pro- 
grammability and  flexibility of the crossbar provides fast local 
communicat ion. A large number  of vision algorithms need  a  
broad range of processor connectivit ies for efficient execution. 
These connectivit ies include arrays, pipelines, several systolic 
configurations, shuff le-exchanges, cubes,  meshes,  pyramids 
etc. Each of these connectivit ies may perform well for some 
tasks and  badly for others. Therefore, using a  crossbar with a  
selective broadcast  capability, any  of the above  configurations 
can be  achieved, and  consequent ly,  optimal per formance can 
be  achieved within clusters. 

The  need  for global communicat ion is relatively low and  
infrequent. Global communicat ion is needed  for intertask 
communicat ion in a  CVS execut ing on  different clusters. It 
is also needed  to input and  output data, to transfer data 
within subtasks of a  task when  a  task is executed on  more 
than one  cluster, and  finally, it is needed  to load programs. 
The  global communicat ion is performed through the global 



CHOUDHARY et al.: NETRA: ARCHITECTURE FOR COMPUTER VISION SYSTEMS 1099 

ComputeSystem_Load; 

If RDOTSDP 
System-Load = 0; 
For i = 1 to numzhild(ROfJTSDP) do I* rum-child is the number of children of the 

RDOTSDP tf 
Receive Load[child(i)l ; 
SystemLoad = SystemLoad + Load[child(i)l ; 

End_For 
Compute AverageLoad; 
Broadcast Averagelad; 

Else If LEAFSDP /GDP associated with one cluster*/ 
Send ClusterLoad to Parent SDP; 
Recsive AverageLoad; 

Else /*Internal SDP*/ 
Sub-TreeLoad - 0; 
For i = 1 to num-child(ThisSDP) /* nun-child ia the no. of children of this 

SDP*/ 
Receive Load[child(i)] ; 
Sub-Tree-Load = Sub-TreeLoad + Load[child(i)l ; 

EndSor 
Send Sub-TrooJnad to Parent SDP; 
Receive Averago3.oad; 

End ComputeSystem-Load. 

Fig. 4. Algorithm for periodic computation of system load. 

memory using the interconnection network. Global memory is 
used  for coarse-grain communicat ion where data is transferred 
in blocks as  descr ibed below. 

D. Load  Balancing and  Task Schedul ing 

In NETRA, a  hierarchical load balancing scheme is pro- 
posed.  Here, a  “load balancing system” executes on  the SDP- 
tree as  a  hierarchy of identical processes. Two levels of load 
balancing are employed, namely, global load balancing and  
local load balancing. Global load balancing aids in partitioning 
and  allocating the resources for tasks as  discussed earlier. 
Local  load balancing is used  to distribute computat ions (or 
data) to processors execut ing parallel subtasks of a  task. Local  
load balancing is a  central ized scheme in which the cluster 
SDP is responsible for local load balancing. The  local load 
balancing can be  either static or dynamic or a  combinat ion 
of both. 

Using the information from local load balancing and  other 
measures of computat ions, global load balancing is achieved 
hierarchically by  using the SDP hierarchy. A similar approach 
has  been  proposed in [15]. In this scheme, each  controller 
SDP maintains the following. 

1) A measure of load on  the subtree below it. For example, 
an  average number  of processes in the Active Queues  of 
PE’s and  cluster in the subtree can serve as  the measure.  

2) A measure of average load over the entire system. This is 
computed periodically over the entire tree and  broadcast  
to all the SDP’s. 

Each SDP sends its measure of load to its parent SDP 
and  the root SDP receives the load information for the entire 
system. The  root SDP then broadcasts the measure of load 
of the entire system to the SDP’s. The  procedure for periodic 
computat ion of system load is illustrated in Fig. 4. When  a  
task is to be  allocated, these measures can be  used to select a  
subtree for its execut ion as  follows: 

If any subtree corresponding to the child of the current 
SDP has  an  adequate  number  of processors, then the task 

is transferred to a  child SDP with the lowest load, else if 
the current subtree has  enough  resources and  the load is not 
significantly greater than the average system load, then the 
task is al located to the current subtree, else the current SDP 
transfers the task to the parent SDP. 

In NETRA, a  SDP is not confronted with a  large volume 
of information to schedule a  task since it needs  to consider 
the average load on  the subtree below it and  the overall 
average load of the system. In systems like PASM, REPLICA 
or PM4, fragmentation can be  minimized only if schedul ing 
is static or done  considerably in advance of execution. This 
is because schedul ing would involve global considerat ions 
such as  partitionability of the network and  availability of 
resources. However,  since the scheduler cannot  determine in 
advance,  what resources will be  available at a  later time, 
processes cannot  be  easily prescheduled.  NETRA allows for 
easy allocation of dynamically created tasks because they 
are generated on  the basis of load balancing and  locality 
considerat ions alone. 

E. Block-Level Data and  Control Flow 
A CVS system consists of a  collection of tasks, each  of 

which can be  executed in parallel in an  SIMD, systolic or 
MIMD mode  over a  number  of processors. Each task can 
be  considered a  functional block. A Functional Block thus 
corresponds to a  block of instructions executed on  one  or 
more clusters, copies of which are broadcast  to several PE’s 
to be  executed as  a  set of distributed processes. Similarly, 
data is also organized as  Data Blocks, which represent “units” 
of data. For example, in a  graph matching algorithm, a  
record containing all the information about  one  node  can be  
considered a  block. 

Each function block requires one  or more input data blocks 
and  produces one  or more output data blocks. Tokens are used  
to specify both function blocks and  data blocks. A token is 
composed of the following fields: 

<  Job ID > < Task ID > < Block Number  >  
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Since the token corresponding to given tasks will differ in 
their less significant bits, these bits are used to specify port 
numbers for the global memory. Blocks corresponding to a 
task are, thus, uniformly distributed over the global memory, 
and therefore, can be accessed with minimal conflicts. 

Processes are explicitly assigned to clusters and PE’s. 
When a task is to be executed in an SIMD-like mode on 
a cluster, the corresponding token is sent to the leaf SDP 
controlling the cluster. For MIMD tasks, tokens are assigned 
to the individual PE’s. Tokens corresponding to the tasks 
are, however, transferred only to an Active Queue at the PE 
or the leaf SDP controlling the cluster. Function blocks are 
broadcast to the selected PE’s or clusters by parent SDP’s. 
Simultaneously, requests for input-data-blocks are issued. The 
tokens are moved to the Ready Queue only after all input- 
data-blocks are available at the PE or cluster. An explicit 
control flow scheme is used here because we believe that at the 
function level, control flow is simple and data dependencies are 
easily recognized. An interesting approach is that of combining 
explicit control flow and block level data flow schemes. The 
memory can queue requests for “empty” blocks and service 
them when blocks are “full.” 

F. Intelligent Memory 
NETRA requires that a PE or a cluster issue requests for 

input-data-blocks as soon as a process token enters its Active 
Queue. The required data may not be available in the global 
memory at that time. Instead of waiting for the data, the 
processor should proceed with tasks already in the Ready 
Queue. Therefore, the memory should be capable of queueing 
requests and responding when data is available. 

The scheme employed is similar to the I-structure storage 
technique used for dataflow computers [2]. Each block has 
associated with it a jklllempty bit. The bit is set to 1 if the 
required data has been written into the page and is set to 0 
otherwise. When a request is made for the block, this bit is 
examined. If the block is marked full, the request is serviced; 
otherwise it is queued. There is a controller on each line 
called Memory Line Controller (MLC). MLC is responsible 
for accepting requests, queueing them if required, and selecting 
them for service when appropriate. For this purpose, the MLC 
maintains a table containing the following information for each 
block on the line: 

< Virtual Address > <Length> <full/empty status > 

Higher order bits of the block are used to index into the table. 
Lower order bits are used to select the global memory port. 

G. Distributed Memory Management 
The task of managing the global memory is distributed over 

the SDP-tree and the MLC’s. Two factors greatly simplify the 
memory management task. First, the blocks are distributed 
over the memory ports by using LSB’s of tokens to select 
the port. This represents block level interleaving of data. For 
low-level vision algorithms, where equal blocks of data are 
assigned to tasks, data blocks corresponding to a task are 
expected to be similar in size, this distribution is expected 

to be very even. For other tasks such as high-level vision 
tasks, where the distribution of data sets may not be even, 
interleaving in the manner described above scatters the data 
uniformly among memory modules, thereby reducing the 
correlation in access patterns Second, a large locally managed 
virtual space is provided at each port. The local controller is 
free to place a block anywhere in its virtual space. Specifically, 
blocks corresponding to the same task may be allocated in 
contiguous virtual space. A request for allocation of storage 
for data blocks is made by the SDP that initiates a task. When 
the task is complete, requests for deallocation are made. 

H. Ability to Tolerate Large Memory Access Latency 

A large multiprocessor implies that response times to mem- 
ory requests can be large and variable in a nondeterministic 
manner due to conflicts. Therefore, it is required that PE’s 
in such a multiprocessor be able to issue multiple requests in 
advance and accept responses out of order. 

NETRA is a multiprogrammed system with a large number 
of processes active at any time. A process becomes active 
when a token corresponding to the process is entered into the 
Active Queue of a PE (MIMD mode) or a cluster (SIMD-like 
mode). Data requests for the input-data-blocks are immediately 
issued. When all input-data-blocks are available, it is trans- 
ferred to the Ready Queue. However, while these requests are 
being serviced, the PE continues to execute processes already 
in its Ready Queue. Access to memory for one process is thus 
overlapped with execution of another. 

V. PRELIMINARY RESULTS ON CLUSTER PERFORMANCE 

In this section we present initial performance results based 
on the implementation of some algorithms on a cluster simula- 
tor. The total processing time for a parallel algorithm consists 
of the following components: Program load time onto the 
cluster processors (tpl), data load and partitioning time (tdl), 
computation time of the divided subtasks on the processors 
(tcp), which is the sum of the processing time on a processor Pi 
and intra-cluster communication time (tcomm), and the result 
report time (&). tdl consists of three components: 1) data 
read time from the global memory (&) by the cluster SDP, 
2) crossbar switch setup time (tsw) and, 3) the data broadcast 
and distribution time onto the cluster processors (&). The 
total processing time 7(P) of the parallel algorithm on a P 
processor cluster is given by 

7(P) = t&d + tdl + t, + t,, (1) 

where, 

tdl = t, + t,, + ttw. (2) 

If the computation and communication do not overlap then, 

t - max tPi + komm cp - l<=i<=P (3) 

else if computation and communication can completely over- 
lap then, 

t cp = max ( ( max l<=i<=PtPi), &mm ). (4) 
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Fig. 5. Performance of 2D-FFT on  a  cluster. 

In the above  equations, t, depends  on  the effective band-  
width of the global interconnection network. 

A. Cluster Simulator 
A cluster was simulated on  the Intel iPSC/2 hypercube 

multiprocessor. In order to obtain accurate computat ion results, 
the processors (Intel 80386  processors) of the hypercube were 
used as  the cluster processors. The  crossbar communicat ion 
was explicitly simulated in which communicat ion cost was 
computed based  on  the amount  of data transferred between 
nodes.  Note that since there are no  conflicts in the cross- 
bar  (because the switch must be  set before communication), 
the amount  of data transferred between nodes  can provide 
sufficient information to simulate the communicat ion in the 
crossbar. Each crossbar link was assumed to provide 20  
Megabytes/s using 8-bit wide data paths. Details are presented 
in [9]. 

B. Two-Dimensional Fast Fourier Transform 
Two-Dimensional Fast Fourier Transform (2D-FIT) was 

implemented on  a  16  processor cluster simulator. For a  P 
processor cluster and  N x N image, the steps of the algorithm 
were as  follows: 1) Each processor was assigned N/P rows 
of input data. Each processor computed the one-dimensional 
transform of each  row of its own partition. 2) The  intermediate 
results were t ransposed by all processors communicat ing with 
each  other. This step required P - 1  switch settings of the 
crossbar. 3) Each processor computed the column transform 
on  the intermediate results producing the 2D-FIT of the 
input image. It should be  noted that in step 2) each  switch 
setting permits P parallel communicat ions. Hence,  the entire 
t ranspose can be  achieved in P - 1  distinct switch settings. 

Fig. 5  shows the performance results for a  2D-FFT on  a  
cluster varying in size up  to 16  processors. Both analytical 
and  implementation results are shown. As we can observe, 
analytical and  implementation results are very close to each  
other. Almost linear speedups  can be  obtained for the 2D-FIT. 

Fig. 6  shows the communicat ion time as a  function of number  
of processors in a  cluster. An important observat ion from the 
figure is that the communicat ion time decreases as  the number  
of processors increases. This is very important to obtaining al- 
most linear speedups.  The  communicat ion time decreases as  a  
function of number  of processors because there are no  conflicts 
in the crossbar for the t ranspose phase  of the algorithm, and  
hence,  as  the number  of processors increases, each  processor 
communicates smaller amount  of data in each  switch setting. 
Specifically, each  processor communicates (P - 1) x N2 /P” 
amount  of data in the t ranspose phase.  Therefore, since there 
are no  conflicts in communicat ion, the communicat ion time is 
a  decreasing function of the number  of processors. 

C. Median Filtering 
Median filtering of an  image using a  w x w filter involves 

replacing each  pixel of the image with the median of its w x w 
neighborhood window. Median filtering was implemented in 
the MIMD mode  on  the test data provided with the DARPA 
Image Understanding Benchmark [37]. Table I shows the 
performance results for the data set “test” of the benchmark.  
Each component  of program execut ion such as  processing 
time, data load time, result output time, program load time, 
and  total time is shown. It can  be  observed that almost linear 
speedups  can be  obtained after incorporating all the overheads 
of various phases  of program execution. 

D. Sobel Edge Detection 
Sobel edge  detection was also implemented using the data 

from the Image Understanding Benchmark.  Sobel edge  de- 
tection essentially involves comput ing a  3  X 3  convolut ion 
of the image. The  results are shown when  implementation 
on  the simulator is done  in a  SIMD mode,  but computat ion 
and  communicat ion are not over lapped. Table II shows the 
performance results for the data set “test.” Only subl inear 
speedups  are obtained for sobel edge  detection. This occurs 
due  to the following reason. The  amount  of computat ion 
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TABLE I 
PERFORMANCE FOR MEDIAN FILTERING 

16  

8  Speedup 

Medinn Filterlag (Tat) 
No.Ra. Roe. Data Iowl Result Output Rq. Load  Data Input Total Speed up 

Timtiser) Tim&c.) Timc(sec.) Timefsce) Timcfm.) Time(sec.) 
: 60.36 30.17 0 0.056 i.056 0 0.001 0.008 0.008 60.37 30.30 1 

1.99 
4 15.19 0.056 0.056 0.001 0.008 15.31 3.94 
8 7.72 0.056 0.056 0.001 0.008 7.85 7.70 

16 3.99 0.056 0.056 0.001 0.008 4.11 14.68 
32 1 1.90 t 0.056 1 0.056 1 0.001 1 0.008 1 2.02 / 29.93 

TABLE II 
PERFORMANCE FOR SOBEL EDGE DETECTION 

8obel (Test) 
No.Roc. Rot. Data load Result Output Rag. Loed Data Input Total Speed up 

TimeCw.) Time@ec.) Tiie(sec.) Tim&c.) Time(sec.) Time&c.) 

: 4.04 2.M 0 0.056 0 0.014 &Ql Ei 4.05 2.1 1 1.92 
4 1.01 0.056 0.014 0.001 Oh08 1.09 3.70 
8 0.5 1 0.056 0.014 0.001 0.008 0.589 6.91 

0.26 0.056 0.014 0.001 0.008 0.33 12.13 
0.13 0.056 0.014 0.001 0.008 021 19.71 

per pixel is small, and  amount  of computat ion per  processor 
decreases linearly as  the number  of processors decreases.  At 
the same time, other measures such as  data load time, data 
input-output time remain constant, and  hence,  the overhead as 
a  fraction of total time increases. Further details are presented 
in [9]. 

VI. SUMMARY AND CONCLUSIONS 
NETRA is a  hierarchical and  partit ionable architecture for 

computer  vision systems. NETRA is a  recursively def ined 
tree-type hierarchical architecture whose leaf nodes  consist of 
cluster of processors connected with a  programmable crossbar 
with selective broadcast  capability to provide for desired 
flexibility. W e  presented a  qualitative evaluation of NETRA. 
The  programmable crossbar has  been  implemented and  is 
currently being tested. Furthermore, some preliminary results 
on  the performance of a  cluster of NETFLA were presented 

using 2D-FFT, median filtering, and  sobel edge  detection 
algorithms. W e  have  done  extensive performance evaluation 
of clusters as  well as  inter-cluster communicat ion of NETFL4. 
The  details are presented in [9]. 

NETRA also provides a  control hierarchy that can  be  
employed to develop heterogeneous architectures for computer  
vision systems. In such architectures, some clusters can be  
replaced by  special purpose processors (as briefly p roposed 
below) and  machines to perform specific tasks efficiently. Most 
parallel architectures provide a  host interface and  an  at tached 
multiprocessor. The  leaf SDP can provide the functions of 
the a  host processor with all the responsibilities descr ibed in 
the paper.  Therefore, a  mix of special purpose processors and  
clusters proposed in the paper  can synergistically provide a  
powerful and  flexible architecture in which the SDP hierarchy 
will provide a  hierarchical control and  system management  
functions. 
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