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Abstract

Data mining is the process of finding useful and action-
able patterns in large data sets. Data mining algorithms
have become vital to researchers in science, engineering,
medicine, business, search and security domains. In recent
years, there has been a tremendous increase in the size of
the data being collected and analyzed. Data mining algo-
rithms have been unable to scale up to these vast amounts of
data, leading to significant performance degradation. Also,
the enhancements in processor and system designs do not
necessarily aid data mining workloads. In our previous
work, we demonstrated that computational characteristics
as well as data access requirements for data mining work-
loads are quite different than those of other common work-
loads. Therefore, there is a need to specifically address the
limitations of accelerating data mining workloads. In this
paper, we present a brief overview of the major challenges
faced in data mining systems design. We first highlight im-
portant characteristics of these workloads. Then, we de-
scribe some initial designs and results for accelerating data
mining algorithms using programmable hardware. Our re-
sults show that tremendous performance gains can be ob-
tained by accelerating these workloads when compared to
using traditional systems.

1. Introduction

Data mining is a powerful technology that converts raw
data into an understandable and actionable form, which can

then be used to predict future trends or provide meaning to
historical events. Originally limited to scientific research
and medical diagnosis, these techniques are becoming cen-
tral to a variety of fields including marketing and business
intelligence, biotechnology, multimedia, and security. As
a result, data mining algorithms have become increasingly
complex, incorporating more functionality than in the past.

According to a recent survey, the use of digital tech-
nologies is fueling data growth, which is doubling every
two years akin to Moore’s law for data [5]. This growth
has posed several challenges to conventional data mining
techniques. Users request more information to be extracted
from their data sets, which requires increasingly compli-
cated algorithms. Also, in many cases, the analysis needs to
be done in real time to reap the actual benefits. For instance,
a security expert would strive for real-time analysis of the
streaming video and audio data in conjunction. Performing
run-time analysis on such data sets appears to be the next
big challenge in computing. On the other hand, recent com-
puting trends suggest that the system performance, based
on memory and I/O bound workloads like TPC-H, has been
improving at a rate of 10-15% per year, whereas the volume
of data that is collected doubles every two years. The im-
portant obstacle is the fact that the performance of computer
systems is improving at a slower rate when compared to the
increase in the data and the requirements of data analysis.
Hence, there is a need to redesign and customize systems
with respect to data mining applications.

There are mainly two types of enhancements to achieve
this goal: evolutionary changes to the general-purpose sys-
tems and applications to increase their efficiency or revolu-



Table 1. Top three kernels of applications in MineBench and their contribution to the total execution
time

Application
Top 3 Kernels (%)

Sum[%]
Kernel 1 (%) Kernel 2 (%) Kernel 3 (%)

k-Means distance (68%) clustering (21%) minDist (10%) 99
Fuzzy k-Means clustering (58%) distance (39%) fuzzySum (1%) 98

BIRCH distance (54%) variance (22%) redistribution (10%) 86
HOP density (39%) search (30%) gather (23%) 92

Naive Bayesian probCal (49%) varience (38%) dataRead(10%) 97
ScalParC classify (37%) giniCalc (36%) compare (24%) 97
Apriori subset (58%) dataRead (14%) increment (8%) 80
Utility dataRead (46%) subsequence (29%) Main (23%) 98
SNP compScore (68%) updateScore (20%) familyScore (2%) 90

GeneNet condProb (55%) updateScore (31%) familyScore (9%) 95
SEMPHY bestBrnchLen (59%) expectation (39%) lenOpt(1%) 99
Rsearch covariance (90%) histogram (6%) dbRead (3%) 99
SVM-RFE quotMatrx (57%) quadGrad (38%) quotUpdate (2%) 97
PLSA pathGridAssgn (51%) fillGridCache (34%) backPathFind (14%) 99

tionary architectures/hardware designs targeting data min-
ing. Either of these research directions require an under-
standing of the data mining applications. In our previous
work, we have established a benchmarking suite of appli-
cations that we call MineBench, which incorporates algo-
rithms commonly found in data mining [12]. We have
analyzed the architectural properties of these applications
to investigate the performance bottlenecks associated with
them. Our studies show that data mining applications have
a unique mix of high data rates combined together with
high computation power requirements. We have observed
that data mining applications regularly oscillate between
computation-intensive and data-intensive phases. Our de-
tailed study suggests that current processors and architec-
tural optimizations need to be enhanced further in order to
handle such unique data-intensive applications [8, 10, 14].
The gap between the expected performance for data min-
ing applications and the delivered performance of proces-
sor architectures can be shortened if current computer archi-
tectures are optimized or redesigned to accommodate data
mining applications.

Hardware acceleration of data mining algorithms is an
attractive method to cope with the increase in execution
times and can enable algorithms to scale with increasingly
large and complex data sets. In this paper we describe a
generic data mining system architecture which can be cus-
tomized for specific applications. We also present designs
and results for accelerating two sample applications using
programmable hardware.

The remainder of this paper is organized as follows. In
the following section we provide a brief overview of the re-

lated work in this area. In Section 3, we discuss a generic
methodology for hardware acceleration of data mining al-
gorithms. Section 4 presents our designs, implementations,
and results for hardware acceleration of sample applica-
tions. Finally, the paper is concluded in Section 5 with a
look towards some planned future efforts.

2. Related Work

There has been prior research on hardware implementa-
tions of data mining algorithms. In [4] and [13], k-Means
clustering is implemented using reconfigurable hardware.
Baker and Prasanna [2] use FPGAs to implement and ac-
celerate the Apriori [1] algorithm, a popular association rule
mining technique. They develop a scalable systolic array ar-
chitecture to efficiently carry out the set operations, and use
a ‘systolic injection’ method for efficiently reporting unpre-
dicted results to a controller. In [3], the same authors use a
bitmapped CAM architecture implementation on an FPGA
platform to achieve significant speedups over software im-
plementations of the Apriori algorithm. Compared to our
designs, these implementations target different classes of
data mining algorithms.

3. Generic Architecture for Data Mining Sys-
tems

In our previous work [14], we have observed that data
mining applications stream in data at a high rate. However,
they are different than pure data streaming applications, and



Figure 1. Data Mining Systems Architecture Figure 2. Design of the Reconfigurable Data Min-
ing Kernel Accelerator

have phases. These phases contain important calculation
steps, i.e., kernels. We have extracted the top 3 kernels for
the applications in MineBench. The results can be seen in
Table 1. For each application, the name of the kernel and the
percentage of the system time spent executing the kernel are
presented. In general, we see that most applications spend a
majority of their time in small concise kernels. Identifying
these kernels can lead to an understanding of the problems
in the underlying hardware architectural components (i.e.
processor, memory hierarchy, and other resources).

The results from our previous work [9] show that data
mining applications have hit the performance wall of exist-
ing computing systems. In related areas of computing such
as networks, graphics and physics processing, researchers
have designed highly optimized architectures for their re-
spective applications. Designing customized systems with
high-speed data mining engines can help alleviate the per-
formance degradation seen in conventional data mining ap-
plications.

In Figure 1, we present our generic design of the pro-
posed data mining system architecture. In this system, we
have the reconfigurable data mining accelerator as a co-
processor that communicates with the general purpose pro-
cessor. In this model, the processor can send the kernel
operations to the accelerator (which executes the kernels
faster than the processor) and the processor can continue
with other non-kernel tasks. In Figure 2, we present de-
tails of the accelerator. In this model, when applications are
loaded, their specific kernels should be loaded into the re-
configurable logic. Once the logics have been loaded, the

execution unit hardly needs to be reprogrammed. This is
due to the fact that the kernels remain the same for a given
application. Only during an application change, the execu-
tion unit needs to be reprogrammed. The kernels for the ap-
plications are stored in the configuration memory, and their
loading is triggered by the general purpose processor. Once
the kernels are identified for each application, the hardware
logic can be built and stored into the configuration mem-
ory by examining the underlying computations. The key to
the efficient execution in this model is the implementation
of the kernels. In the following section, we discuss a few
examples where we design efficient architectures for these
kernels.

4. Case Studies

4.1. K-Means and Fuzzy K-Means

K-Means is a clustering algorithm that represents a clus-
ter by the mean value of all objects contained in it. Given
the user-provided parameter k, the initial k cluster centers
are randomly selected from the database. Then, each object
is assigned a nearest cluster based on a similarity function.
Once the new assignments are completed, new centers are
found by finding the mean of all the objects in each clus-
ter. This process is repeated until some convergence criteria
is met. In k-Means, the ’distance’ kernel is responsible for
calculating the Euclidean distance between two points and
’minDist’ kernel calculates the minimum of the distances.



The ’clustering’ kernel assigns the actual cluster and recal-
culates the centers (mean of points in a cluster) in each iter-
ation. Fuzzy k-Means is closely related to k-Means, hence
the distance calculation appears to be a prominent kernel for
this application as well. In this case, the difference is that
the clustering kernel is more time consuming than the dis-
tance calculation. This is because in fuzzy logic, the compu-
tations involved in performing the membership calculation
(owing to multiple membership property) are more intense
than the actual distance calculation. The ’fuzzySum’ ker-
nel is used during the convergence process. Figure 3 and
Figure 4 show the hardware logic needed to implement the
distance and minimum calculations respectively. The dis-
tance calculation logic, uses a level of N substractors fol-
lowed by a set of N multipliers. The third level has a depth
of log(N) and contains N-1 cumulative adders. The mini-
mum computation involves a combination of multiplexers
and comparator logic to compare and send the actual data
item to the final level. In these designs the levels are tightly
pipelined, allowing the results to be produced every cycle.

In the simulation of these designs, the accelerator has
been attached to the overall processor, and we use an
architecture-level cycle accurate simulator to measure the
execution time. To enable the core processor to offload the
kernel computations to the accelerator, markers have been
attached in the actual application code. In our results, we
have defined a new total cycle metric which contains the
cycles spent by the core processor in non-kernel parts of the
code including the handoff of computations to the accel-
erator plus the cycles the accelerator uses to calculate the
results. We have tested our design with datasets of various
sizes, and we have observed that as data set size increases,
the speedups improve. This shows that the pipelined design
becomes more effective when data set size increases, and
shows that general purpose processors are not able to han-
dle such streaming data efficiently. For k-Means and Fuzzy
k-Means, we have seen speedups from 500x to 3600x and
400x to 1600x in the distance calculation kernel, respec-
tively, and 600x to 1600x in minimum kernel in Fuzzy k-
means. In the tests, the number of hardware resources have
been varied, and it is clearly seen that application speedups
scale well showing the applications exploit all the paral-
lelism available to them. Overall, we have seen 11x to 80x
speedup for k-Means and Fuzzy k-Means applications, re-
spectively. The relatively lower speedups for the applica-
tions come from the fact that, when kernels are accelerated,
the non-kernel parts of the applications become more dom-
inant.

4.2. Decision Tree Classification

An important problem in data mining is Classification,
which is the task of assigning objects to one of several pre-
defined categories. A classification problem has an input

dataset called the training set, which consists of a number
of records, each possessing multiple attributes. Attributes
may be categorical or continuous, depending on whether
they have a discrete or continuous domain. The classifying
attribute or class ID is a categorical attribute, whose value is
known for records in the training dataset. A solution to the
classification problem entails developing a model that al-
lows prediction of the class of a record when the remaining
attributes are known. Among existing solutions, Decision
Tree Classification (DTC) is a popular method that yields
high accuracy while handling large datasets. Poor scalabil-
ity with increasingly large and complex data sets, as well as
the existence of concise, well defined kernels make DTC a
suitable candidate for hardware acceleration.

A decision tree model consists of internal nodes and
leaves. Each of the internal nodes has a splitting decision
and a splitting attribute associated with it. The leaves have
a class label assigned to them. Building a decision tree
model from a training dataset involves two phases. In the
first phase, a splitting attribute and split index are chosen.
The second phase uses this information to distribute records
among the child nodes. This process is recursively contin-
ued until a stopping criterion is met. At this point, the de-
cision tree can be used to predict the class of an incoming
record, whose class ID is unknown. The prediction process
is relatively straightforward: the classification process be-
gins at the root, and a path to a leaf is traced by using the
splitting decision at each internal node. The class label at-
tached to the leaf is then assigned to the incoming record.

Determining the split attribute and the split index is a
critical component of the decision tree induction process.
In various optimized implementations of decision tree in-
duction [11, 6], the splitting criteria used is to minimize the
Gini index of the split. Previous work has shown that the
largest fraction of the execution time of representative im-
plementations is spent in the split determining phase [14].
For example, ScalParC [6], which uses a parallel hashing
paradigm to efficiently map record IDs to nodes, spends
over 40% of its time in the Gini calculation phase.

In our design of a hardware accelerator for DTC, we
have chosen to accelerate the Gini score computation pro-
cess. The Gini score is a mathematical measure of the in-
equality of a distribution. Computing the gini value for
a particular split index requires computing the frequency
of each class in each of the partitions. Therefore a linear
search is made for the optimum split value, by evaluating
the Gini score for all possible splits. This process is re-
peated for each attribute, and the optimum split index over
all attributes is chosen. The total complexity of this opera-
tion is O(|R| ∗ |A|), where |R| and |A| represent the num-
ber of records and the number of attributes, respectively.
Our architecture for acceleration DTC consists of several
computation modules, referred to as ’Gini Units’, that per-



Figure 3. Distance calculation kernel Figure 4. Minimum computation kernel

form Gini calculation for a single attribute. The high-level
DTC architecture is presented in Figure 5. There is a DTC
controller component that interfaces with the software and
supplies the appropriate data and signals to the Gini units.
The architecture functions as follows: when the software
requests a Gini calculation, it supplies the appropriate ini-
tialization data to the DTC controller. The DTC controller
then initializes the Gini units. The software then transmits
the class ID information required to compute the Gini score
in a streaming manner to the DTC controller. We apply a
number of optimizations to make this hardware design effi-
cient. Commonly, the class ID assumes only 2 values, ‘0’
and ‘1’. Therefore, in hardware, only a single bit is suffi-
cient to represent the class ID. This allows us to optimize
the data transfer process to the Gini units. The class id
information is stored in a bitmapped data structure which
helps negate the bandwidth overhead generated while trans-
mitting class IDs in the raw form. It is seen that this pro-
cess of generating bitmaps can be done with very little over-
head. Also, from a hardware perspective, we would like to
minimize the number of computations and their complexity
while calculating the Gini score. An implementation of the
hardware in which the Gini score calculation is unaltered
will be very complex and inefficient. A key observation is
that the absolute value of the Gini score computed is irrel-
evant to the algorithm. It is only the split value and split
attribute that are required. Therefore, we attempt to sim-
plify the Gini computation to require minimal hardware re-
sources, while generating the same value of split position
and split attribute generated as earlier. We perform a se-

ries of manipulations to the Gini score calculation process
itself, described in [7]. These changes dramatically reduce
the complexity of an individual Gini unit, thus permitting a
large number of attributes to be processed concurrently.

The DTC architecture was implemented on an Xilinx
ML310 board [7], and its performance was compared with
an optimized software implementation. Our architecture
achieves a speedup of 5.58x over the software implemen-
tation when 16 gini units were used. The design also shows
throughput scalability as the number of Gini units on board
increases. We also measured the area occupied and clock
frequency of our design. The experimental results strongly
suggest that our system is scalable, and it will be possible
to achieve higher speedups using larger-capacity FPGAs.

5. Conclusion

Data mining applications constitute a rapidly growing
class of processor workloads. As data set sizes exponen-
tially increase, conventional data mining applications are
unable to scale up to the computational demands of these in-
puts. Hardware acceleration of data mining algorithms pro-
vides an attractive solution to this problem. In this paper,
we propose a generic data mining system architecture us-
ing reconfigurable logic. Further, we design and implement
hardware accelerators for two sample applications. The re-
sults indicate that our designs achieve significant speedups
over software-only implementations, in addition to meeting
area and bandwidth constraints. The success of these de-
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signs make a strong case for further research on hardware
accelerators for data mining applications.
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