
I. INTRODUCTION 

!Design, I Implementation and 
!Evaluation of Parallel Pipelined 
ISTAP on Parallel Computers 
I 
IALOK CHOUDHARY 
/WEI-KENG LIAO 
/Northwestern University 
I 
/DONALD WEINER, Life Fellow, IEEE 

IPRAMOD VARSPINEY, Fellow, IEEE 
kyracuse University 
I 
,MUCHARD LINDERMAN, Senior Member, IEEE 

MARK LINDERMAN, Member, IEEE 

RUSSELL BROWN, Fellow, IEEE 
!p Force Research Laboratory 

I 

I Performance results are presented for the design and 
implementation of parallel pipelined space-time adaptive 
processing (STAP) algorithms on parallel computers. In 
particular, the issues involved in parallelization, our approach 
to parallelization, and performance results on an Intel Paragon 
h e  described. The process of developing software for such an 
application on parallel computers when latency and throughput e both considered together is discussed and tradeoffs considered 
with respect to inter and intratask communication and data 
I redistribution are presented. The results show that not only 
scalable performance was achieved for individual component tasks 
bf STAP but linear speedups were obtained for the integrated task 
performance, both for latency as well as throughput. Results are 
presented for up to 236 compute nodes (limited by the machine 

the implementation results is that performance improvement 
due to the assignment of additional processors to one task can 
improve the performance of other tasks without any increase in 
the number of processors assigned to them. Normally, this cannot 
be predicted by theoretical analysis. 
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available to us). Another interesting observation made from 
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Space-time adaptive processing (STAP) is 
a well-known technique in the area of airborne 
surveillance radars used to detect weak target returns 
embedded in strong ground clutter, interference, and 
receiver noise. STAP is a 2-dimensional adaptive 
filtering algorithm that attenuates unwanted signals 
by placing nulls in their directions of arrival and 
Doppler frequencies. Most STAP applications are 
computationally intensive and must operate in real 
time. High-performance computers are becoming 
mainstream due to the progress made in hardware as 
well as software support in the last few years. They 
can satisfy the STAP computational requirements of 
real-time applications while increasing the flexibility, 
affordability, and scalability of radar signal processing 
systems. However, efficient parallelization of a 
STAP algorithm which has embedded in it different 
processing steps is challenging and is the subject of 
this paper. 

Described here is our innovative parallel pipelined 
implementation of a pulse repetition interval 
(PR1)-staggered post-Doppler STAP algorithm on the 
Intel Paragon at the Air Force Research Laboratory 
(AFRL), Rome, NY. For a detailed description of 
the STAP algorithm implemented in this work, 
the reader is referred to [ 1,  21. AFRL successfully 
installed their implementation of the STAP algorithm 
onboard an airborne platform and performed four 
flight experiments in May and June 1996 [3]. These 
experiments were performed as part of the Real-Time 
Multi-Channel Airborne Radar Measurements 
(RTMCARM) program. The RTMCARM system 
block diagram is shown in Fig. 1 .  In that real-time 
demonstration, live data from a phased-array radar 
was processed by the onboard Intel Paragon and 
results showed that high-performance computers can 
deliver a significant performance gain. However, this 
implementation used compute nodes of the machine 
only as independent resources in a round robin 
fashion to run different instances of STAP (rather 
than speeding up each instance of STAP.) Using this 
approach, the throughput may be improved, but the 
latency is limited by what can be achieved using one 
compute node. 

Parallel computers, organized with a large 
set (several hundreds) of processors linked by a 
specialized high speed interconnection network, 
offer an attractive solution to many computationally 
intensive applications, such as image processing, 
simulation of particle reactions, and so forth. 
Parallel processing splits an application problem into 
several subproblems which are solved on multiple 
processors simultaneously. To learn more about 
parallel computing, the reader is referred to [4-81. For 
our parallel implementation of this real application we 
have designed a model of the parallel pipeline system 
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Fig. 1 .  RTMCARM system block diagram. 

where each pipeline is a collection of tasks and each 
task itself is parallelized. This parallel pipeline model 
was applied to the STAP algorithm with each step as 
a task in a pipeline. This permits us to significantly 
improve latency as well as throughput. 

This paper discusses both the parallelization 
process and performance results. In addition, 
design considerations for portability, task mapping, 
parallel data redistribution, parallel pipelining as 
well as sy stem-level and task-level performance 
measurement are presented. Finally, the performance 
and scalability of the implementation for a large 
number of processors is demonstrated. Performance 
results are given for the Intel Paragon at AFRL. 

The paper is organized as follows. In Section I1 
we discuss the related work. An overview of the 
implemented algorithm is given in Section 111. 
In Section IV we present the parallel pipeline 
system model and discuss some parallelization 
issues and approaches for implementation of STAP 
algorithms. Section V presents specific details of 
STAP implementation. Software development is 
presented in Section VI. Performance results and 
conclusions are presented in Sections VI1 and VIII, 
respectively. 

II. RELATED WORK 

The RTMCARM experiments were performed 
using a BAC 1-1 1 aircraft. The radar was a 
phased-array L-Band radar with 32 elements 
organized into two rows of 16 each. Only the data 

from the upper 16 elements were processed with 
STAP. This data was derived from a 1.25 MHz 
IF signal that was 4 : 1 oversampled at 5 MHz. 
The number representation at IF was 14 bits, 2s 
complement and was converted to 16 bit baseband real 
and imaginary numbers. Special interface boards were 
used to digitally demodulate IF signals to baseband. 
The signal data formed a raw 3-dimensional data 
cube, called the coherent processing interval (CPI) 
data cube, comprised of 128 pulses, 512 range gates 
(32.8 mi), and 16 channels. These special interface 
boards were also used to corner turn the data cube so 
that the CPI is unit stride along pulses. This speeds 
the subsequent Doppler processing on the high 
performance computing (HPC) systems. Live CPI 
data from a phased-may radar were processed by a 
ruggedized version of the Paragon computer. 

The ruggedized version of the Intel Paragon 
system used for the RTMCARM experiments 
consists of 25 compute nodes running the SUNMOS 
operating system. Fig. 2 depicts the system 
implementation. Each compute node has three 
i860 processors accessing the common memory 
of size 64M bytes as a shared resource. The CPI 
data sets were sent to the 25 compute nodes in 
a round robin manner and all three processors 
worked on each CPI data set as a shared-memory 
machine. The system processed up to 10 CPIs/s 
(throughput) and achieved a latency of 2.35 SICPI. 
This implementation used compute nodes of the 
machine as independent resources to run different 
instances of CPI data sets. No communication 
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Fig. 2. Implementation of ruggedized version of Intel Paragon System in RTMCARM experiments. 
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among compute nodes was needed. This approach 
I fan achieve desired throughput by using as many 
nodes as needed, but the latency is limited by what 
%an be achieved using the three processors in one 
Lompute node. More information on the overall 
System configuration and performance results can be 
b d  in [ l ,  3). 

1 Other related work [9-121 parallelized high-order 
post-Doppler STAP algorithms by partitioning 
$e computational workload among all processors 
allocated for the applications. In [9, lo], the work 
kocused on the design of parallel versions of 
subroutines for fast Fourier transform (FFT) and 
QR decomposition. In [l 1, 121, the implementations 
optimized the data redistribution between processing 
steps in the STAP algorithms while using sequential 
versions of the FFT and QR decomposition 
!subroutines. A multistage approach was employed 
in [13] which was an extension of [ 11, 121. A beam 
space post-Doppler STAP was divided into three 
stages and each stage was parallelized on a group 
of processors. A technique called replication of 
pipeline stages was used to replicate the computational 
intensive stages such that a different data instance 
is run on a different replicated stage. Their effort 
focused on increasing the throughput while keeping 
the latency fixed. For other related work, the reader is 
referred to [14-161. 

I 

/ [ I .  ALGORITHM OVERVIEW 

’ 
Doppler-shifted clutter returns as seen by the airborne 
radar system, is based on a least squares solution 
to the weight vector problem. This approach has 
traditionally yielded high clutter rejection but suffers 
from severe distortions in the adapted mainbeam 
pattern and resulting loss of gain on the target. Our 
approach, which is described in greater detail in the 
Appendix, introduces a set of constraint equations 
into the least squares problem which can be weighted 

The adaptive algorithm, which cancels 

~ 

proportionally to preserve mainbeam shape. The 
algorithm is structured so that multiple receive 
beams may be formed without changing the matrix 
of training data. Thus, the adaptive problem can 
be solved once for all beams which lie within the 
transmit illumination region. The airborne radar 
system was programmed to transmit five beams, each 
25 deg in width, spaced 20 deg apart. Within each 
transmit beam, six receive beams were formed by the 
processor. 

parallelized is presented in the Appendix. The 
algorithm consists of the following steps. 

A MATLAB version of the code which was 

1) Doppler filter processing. 
2) Weight computation. 
3) Beamforming. 
4) Pulse compression. 
5 )  CFAR processing. 

Doppler filtering is performed on each receive 
channel using weighted FFTs. The analog portion 
of the receiver compensates the received clutter 
frequency to center the clutter frequency at zero 
regardless of the transmit beam position. This 
simplifies indexing of Doppler bins for classification 
as “easy” or “hard” depending on their proximity 
to mainbeam clutter returns. For the hard cases, 
Doppler processing is performed on two 125-pulse 
windows of data separated by three pulses (a STAP 
technique known as “PRI-stagger”). Both sets of 
Doppler processed data are adaptively weighted 
in the beamforming process for improved clutter 
rejection. In the easy case, only a single Doppler 
spectrum is computed. This simpler technique has 
been termed post-Doppler adaptive beamforming and 
is quite effective at a fraction of the computational 
cost when the Doppler bin is well separated from 
mainbeam clutter. In these situations, an angular 
null placed in the direction of the competing ground 
clutter provides excellent rejection. Selectable 
window functions are applied to the data prior to 

I 
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the Doppler FFTs to control sidelobe levels. The 
selection of a window is a key parameter in that it 
impacts the leakage of clutter returns across Doppler 
bins, traded off against the width of the clutter 
passband. 

An efficient method of beamforming using 
recursive weight updates is made possible by a block 
update form of the QR decomposition algorithm. 
This is especially significant in the hard Doppler 
regions, which are computed using separate weights 
for six consecutive range intervals. The recursive 
algorithm requires substantially less training data 
(sample support) for accurate weight computation, 
as well as providing improved efficiency. Since 
the hard regions have one-sixth the range extent 
from which to draw data, this approach dealt with 
the paucity of data by using past looks at the same 
azimuth, exponentially forgotten, as independent, 
identically distributed estimates of the clutter to 
be canceled. This assumes a reasonable revisit 
time for each azimuth beam position. During 
the flight experiments, the five 25 deg transmit 
beam positions were revisited at a 1-2 Hz rate 
(5-10 CPIS/S). 

The training data for the easy Doppler regions 
was selected using a more traditional approach. Here, 
the entire range extent was available for sample 
support, so the entire training set was drawn from 
three preceding CPIs for application to the next CPI 
in this azimuth beam position. In this case, a regular 
(nonrecursive) QR decomposition is performed on the 
training data, followed by block update to add in the 
beam shape constraints. 

Pulse compression is a compute intensive 
task, especially if applied to each receive channel 
independently. In general, this approach is required for 
adaptive algorithms which compute different weight 
sets as a function of radar range. Our algorithm, 
however, with its mainbeam constraint, preserves 
phase across range. In fact, the phase of the solution 
is independent of the clutter nulling equations, 
and appears only in the constraint equations. The 
adapted target phase is preserved across range, 
even though the clutter and adaptive weights may 
vary with range. Thus, pulse compression may 
be performed on the beamformed output of the 
receive channels providing a substantial savings in 
computations. 

of parallelization and software design considerations 
including those for portability, task mapping, 
parallel data redistribution, parallel pipelining 
and issues involved in measuring performance in 
implementations when not only the performance of 
individual tasks is important, but overall performance 
of the integrated system is critical. We demonstrate 
the performance and scalability for a large number of 
processors. 

In the sections to follow, we present the process 
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Fig. 3. Model of parallel pipeline system. (Note that Taski for all 
input instances is excuted on same number of processors, but that 

the number of processors may differ from one task to another.) 

IV. MODEL OF PARALLEL PIPELINED SYSTEM 

The system model for the type of STAP 
applications considered in this work is shown in 
Fig. 3. A pipeline is a collection of tasks which are 
executed sequentially. The input to the first task 
is obtained normally from sensors or other input 
devices with the inputs to the remaining tasks coming 
from outputs of previous tasks. The set of pipelines 
shown in the figure indicates that the same pipeline 
is repeated on subsequent input data sets. Each block 
in a pipeline represents one task that is parallelized 
on multiple (different number of) processors. That 
is, each task is decomposed into subtasks to be 
performed in parallel; Therefore, each pipeline is a 
collection of parallel tasks. 

In such a system, there exist both spatial and 
temporal parallelism that result in two types of 
data dependencies and flows, namely, spatial 
data dependency and temporal data dependency 
[ 17-19]. Spatial data dependency can be classified 
into intertask data dependency and intratask data 
dependency. Intratask data dependencies arise when a 
set of subtasks needs to exchange intermediate results 
during the execution of a parallel task in a pipeline. 
Intertask data dependency is due to the transfer and 
reorganization of data passed onto the next parallel 
task in the pipeline. Inter-task communication can 
be communication from the subtasks of the current 
task to the subtasks of the next task, or collection 
and reorganization of output data of the current task 
and then redistribution of the data to the next task. 
The choice depends on the underlying architecture, 
mapping of algorithms and input-output relationship 
between consecutive tasks. Temporal data dependency 
occurs when some form of output generated by the 
tasks executed on the previous data set are needed 
by tasks executing the current data set. STAP is an 
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1 
I interesting parallelization problem because it exhibits 
I both types of data dependency. 
I 
I A. 
I 

Parallelization Issues and Approaches 

A STAP algorithm involves multiple algorithms 
(or processing steps), each of which performs 
particular functions, to be executed in a pipelined 
fashion. Multiple pipelines need to be executed 
in a staggered manner to satisfy the throughput 
requirements. Each task needs to be parallelized for 
the required performance, which, in turn, requires 
addressing the issue of data distribution on the subset 
of processors on which a task is parallelized to obtain 
good efficiency and incur minimal communication 
overhead. Given that each task is parallelized, data 
flow among multiple processors of two or more tasks 
is required and, therefore, communication scheduling 
techniques become critical. 

1) Intertask Data Redistribution: In an integrated 
system, data redistribution is required to feed data 
from one parallel task to another, because the 
way data is distributed in one task may not be the 
most appropriate distribution for the next task for 
algorithmic or efficiency reasons. For example, the 
F F T s  in the Doppler filter processing task perform 
optimally when the data is unit-stride in pulse, while 

I the next stage, beamforming, performs optimally 
1 when the data is unit stride in channel. To ensure 
1 efficiency and continuity of memory access, data 
1 reorganization and redistribution are required in the 
j inter-task communication phase. Data redistribution 
1 also allows concentration of communication at the 
'beginning and the end of each task. 
1 We have developed runtime functions and 
strategies that perform efficient data redistribution 

I [20]. These techniques reduce the communication 
time by minimizing contention on the communication 

llinks as well as by minimizing the overhead of 
processing for redistribution (which adds to the 
,latency of sending messages). We take advantage of 
'lessons learned from these techniques to implement 
the parallel pipelined STAP application. 

~ 2)  Task Scheduling and Processor Assignment: 
An important factor in the performance of a parallel 
system is how the computational load is mapped 
onto the processors in the system. Ideally, to achieve 
'maximum parallelism, the load must be evenly 
:distributed across the processors. The problem 
(of statically mapping the workload of a parallel 
'algorithm to processors in a distributed memory 
system has been studied under different problem 
!models, such as [2 1, 221. The mapping policies are 
ladequate when an application consists of a single 
itask, and the computational load can be determined 
;statically. These static mapping policies do not 
lmodel applications consisting of a sequence of tasks 
I 

(algorithms) where the output of one task becomes the 
input to the next task in the sequence. 

in high-performance embedded applications due 
to limited resources and other constraints such as 
desired latency or throughput [23]. When several 
parallel tasks need to be executed in a pipelined 
fashion, tradeoffs exist between assigning processors 
to maximize the overall throughput and assigning 
processors to minimize the response time (or latency) 
of a single data set. The throughput requirement says 
that when allocating processors to tasks, it should be 
guaranteed that all the input data sets will be handled 
in a timely manner. That is, the processing rate should 
not fall behind the input data rate. The response time 
criteria, on the other hand, require minimizing the 
latency of computation on a particular set of data 
input. 

allocated more processors to reduce its execution 
time, and consequently, the overall execution time of 
the integrated system. But it is well known that the 
efficiency of parallel programs usually decreases as 
the number of processors is increased. Therefore, the 
gains in this approach may be incremental. On the 
other hand, throughput can be increased by increasing 
the latency of individual tasks by assigning them 
fewer processors and, therefore, increasing efficiency, 
but at the same time having multiple streams active 
concurrently in a staggered manner to satisfy the 
input-data rate requirements. We next present these 
tradeoffs and discuss various implementation issues. 

Optimal use of resources is particularly important 

To reduce the latency, each parallel task must be 

V. DESIGN AND IMPLEMENTATION 

The design of the parallel pipelined STAP 
algorithm is shown in Fig. 4. The parallel pipeline 
system consists of seven basic tasks. We refer to the 
parallel pipeline as simply a pipeline in the rest of this 
paper. The input data set for the pipeline is obtained 
from a phased-array radar and is formed in terms of 
a CPI. Each CPI data set is a 3-dimensional complex 
data cube comprised of K range cells, J channels, and 
N pulses. The output of the pipeline is a report on 
the detection of possible targets. The arrows shown in 
Fig. 4 indicate data transfer between tasks. Although 
a single arrow is shown, note that each represents 
multiple processors in one task communicating with 
multiple processors in another task. Each task i is 
parallelized by evenly partitioning its work load 
among 4 processors. The execution time associated 
with task i ,  q', consists of the time to receive data 
from the previous task, computation time, and time 
to send results to the next task. 

computationally intensive part of the STAP algorithm. 
For the computation of the weight vectors for the 
current CPI data cube, data cubes from previous 

The calculation of weights is the most 
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Fig. 4. Implementation of parallel pipelined STAP. Arrows connecting task blocks represent data transfer between tasks. 

CPIs are used as input data. This introduces temporal 
data dependency. For example, suppose that a set of 
CPI data cubes entering the pipeline sequentially are 
denoted by CPI,, i = 0,1,. . . . At any time instance 
i ,  the Doppler filtering task is processing CPI, and 
the beamforming task is processing CPI,-,. In the 
meanwhile, the weight computation task is using 
past CPIs in the same azimuthal direction to calculate 
the weight vectors for CPI, as described below. The 
computed weight vectors will be applied to CPIi 
in the beamforming task at the next time instance 
(i + 1). Thus, temporal data dependencies exist and are 
represented by arrows with dashed lines, TD,,, and 
TD2,,, in Fig. 4 where TDi,j represents temporal data 
dependency of task j on data from task i. In a similar 
manner, spatial data dependencies SD,,j can be defined 
and are indicated in Fig. 4 by arrows with solid lines. 

Throughput and latency are two important 
measures for performance evaluation on a pipeline 
system, The throughput of our pipeline system is the 
inverse of the maximum execution time among all 
tasks, i.e., 

(1)  
1 

throughput = 
max0<i<7 q. 

To maximize the throughput, the maximum value of 
should be minimized. In other words, no task should 
have an extremely large execution time. With a limited 
number of processors, the processor assignment to 
different tasks must be made in such a way that the 
execution time of the task with highest computation 
time is reduced. 

The latency of this pipeline system is the time 
between the arrival of the CPI data cube at the system 
input and the time at which the detection report is 
available at the system output. Therefore, the latency 
for processing one CPI is the sum of the execution 
times of all the tasks except weight computation tasks, 

i.e., 
latency = T,  + max(q ,q)  + T, + q. (2) 

Equation (2) does not contain and T,. The 
temporal data dependency does not affect the 
latency because weight computation tasks use data 
from the previous instance of CPI data rather than 
the current CPI. The filtered CPI data cube sent 
to the beamforming tasks does not wait for the 
completion of its weight computation but rather 
for the completion of the weight computation of 
the previous CPI. For example, when the Doppler 
filter processing task is processing CPI,, the weight 
computation tasks use the filtered CPI data, CPI,-, , 
to calculate the weight vectors for CPI,. At the 
same time, the beamforming tasks are working on 
CPI,-I using the data received from the Doppler 
filter processing and weight computation tasks. The 
beamforming tasks do not wait for the completion of 
the weight computation task when processing CPI,-, 
data. The overall system latency can be reduced by 
reducing the execution times of the parallel tasks, e.g., 
To, q, T4, T’, and T6 in our system. 

Next, we briefly describe each task and its parallel 
implementation. A detailed description of the STAP 
algorithm we used can be found in [ 1, 21. 

A. Doppler Filter Processing 

The input to the Doppler filter processing task 
is one CPI complex data cube received from a 
phased-array radar. The computation in this task 
involves performing range correction for each range 
cell and the application of a windowing function 
(e.g. Hanning or Hamming) followed by an N-point 
FlT for every range cell and channel. The output of 
the Doppler filter processing task is a 3-dimensional 
complex data cube of size K x U x N which is 
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N pulses 

Fig. 5 .  Partitioning strategy for Doppler filter processing task. 
CPI data cube is partitioned among Po processors across 

dimension K. 

referred to as staggered CPI data. In Fig. 4, we can 
see that this output is sent to the weight computation 
task as well as to the beamforming task. 

tasks are divided into easy and hard parts. These two 
parts use different portions of staggered CPI data 
and the associated amounts of computation are also 
different. The easy weight computation task uses 
range samples only from the first half of the staggered 

1 CPI data while the hard weight computation task 
i uses range samdes from the entire staggered CPI 

Both the weight computation and the beamforming 

I data. On the other hand, easy and hard beamforming 
i tasks use all range cells rather than some of them. 
! Therefore, the size of data to be transfered to the 
' weight computation tasks is different from the size of 
1 data to be sent to the beamforming tasks. In Fig. 4, 
I thicker arrows connected from the Doppler filter 

processing task to the beamforming tasks indicate that 
the amount of data sent to the beamforming tasks is I more than the amount of data sent to the weight tasks. 

, The basic parallelization technique employed in 
the Doppler filtering processing task is to partition 

' the CPI data cube across the range cells, that is, if 
Po processors are allocated to this task, then each 

I processor is responsible for KIP, range cells. The 
, reason for partitioning the CPI data cube along 
1 dimension K is that it maintains an efficient accessing 
' mechanism for contiguous memory space. A total 
I of K . U N-point FFTs are performed and the best 
I 
I 
I 
, 
! 
~ 

I 

! 

i 
I 

! 
I I N Doppler blN (pulses) 

performance is achieved when every N-point FFT 
accesses its N data sets from a contiguous memory 
space. Fig. 5 illustrates the parallelization of this 
step. The intertask communication from the Doppler 
filter processing task to weight computation tasks is 
explained in Fig. 6(b). Since only subsets of range 
cells are needed in weight computation tasks, data 
collection has to be performed on the output data 
before passing it to the next tasks. Data collection is 
performed to avoid sending redundant data and hence 
reduces the communication costs. 

B. Weight Computation 

of weights that will be applied to the next CPI. This 
computation for N pulses is divided into two parts, 
namely, easy and hard Doppler bins, as shown in 
Fig. 6(a). The hard Doppler bins (pulses), Nhard, are 
those in which significant ground clutter is expected. 
The remaining bins are easy Doppler bins, NWy. The 
main difference between the two is the amount of data 
used and the amount of computation required. Not all 
range cells in the staggered CPI are used in weight 
calculation and different subsets of range samples are 
used in easy Doppler bins and hard Doppler bins. 

To gather range samples for easy Doppler bins to 
calculate the weight vectors for the current CPI, data 
is drawn from three preceding CPIs by evenly spacing 
out over the first one third of K range cells of each 
of the three CPIs. The easy weight computation task 
involves NaSy QR factorizations, block updates, and 
back substitutions. In the easy weight calculation, 
only range samples in the first half of the staggered 
CPI data are used while hard weight computation 
employs range samples from the entire staggered CPI. 
Furthermore, the range extent for hard Doppler bins is 
split into six independent segments to further improve 
clutter cancelation. To calculate weight vectors for the 
current CPI, the range samples used in hard Doppler 
bins are taken from the immediately preceding 
staggered CPI combined with older, exponentially 

The second step in this pipeline is the computation 

1 : t L  lnpul to Eany Weigh1 
Compulntion TNk 

ComputsUon Task 

Output from Doppler 
Filter Processing Twk 

(4 (b) 

Fig. 6. (a) Staggered CPI data partitioned into easy and hard weight computation tasks. (b) Parallel intertask communication from ' Doppler filter processing task to easy and hard weight computation tasks requires different sets of range samples. Data collection needs 
! 
~ 
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Fig. 7. Partitioning strategy for easy and hard weight 
computation tasks. Data cube is partitioned across dimension N. 

forgotten, data from CPIs in the same direction. This 
is done for each of the six range segments. The hard 
weight computation task involves 6Nhard recursive QR 
updates, block updates, and back substitutions. The 
easy and hard weight computation tasks process sets 
of 2-dimensional matrices of different sizes. 

Temporal data dependency exists in the weight 
computation task because both easy and hard Doppler 
bins use data from previous CPIs to compute the 
weights for the current CPI. The outputs of this step, 
the weight vectors, are two 3-dimensional complex 
data cubes of size Neasy x J x M and Nhard x U x M 
for the easy and hard weight computation tasks, 
respectively, where M is the number of receive beams. 
These two weight vectors are to be applied to the 
current CPI in the beamforming task. Because of the 
different sizes of easy and hard weight vectors, the 
beamforming task is also divided into easy and hard 
parts to handle different amounts of computation. 

computations, different sets of processors are allocated 
to the easy and hard tasks. In Fig. 4, 4 processors 
are allocated to easy weight computation and p2 
processors to hard weight computation. Since weight 
vectors are computed for each pulse (Doppler bin), 
the parallelization in this step involves partitioning of 
the data along dimension N ,  that is, each processor 
in easy weight computation task is responsible for 
Neasy/Pl pulses while each processor in hard weight 
computation task is responsible for Nhard/p2 pulses, as 
shown in Fig. 7. 

Notice that the Doppler filter processing 
and weight computation tasks employ different 
data partitioning strategies (along different 
dimensions.) Due to different partitioning 
strategies, an all-to-all personalized communication 
scheme is required for data redistribution from 
the Doppler filter processing task to the weight 
computation task. That is, each of the 4 and 
p2 processors needs to communicate with all 
p0 processors allocated to the Doppler filter 
processing task to receive CPI data. Since 
only subsets of the output of the Doppler 
filter processing task are used in the weight 
computation task, data collection is performed 

Given the uneven nature of the weight 

before intertask communication. Although data 
collection reduces intertask communication cost, 
it also involves data copying from noncontiguous 
memory space to contiguous buffers. Sometimes the 
cost of data collection may become extremely large 
due to hardware limitations (e.g., high cache miss 
ratio.) When sending data to the beamforming task, 
the weight vectors have already been partitioned 
along dimension N which is the same as the data 
partitioning strategy for the beamforming task. 
Therefore, no data collection is needed when 
transferring data to the beamforming task. 

C. Beamforming 

The third step in this pipeline (which is actually 
the second step for the current CPI because the result 
of the weight task is only used in the subsequent 
time step) is beamforming. The inputs of this task 
are received from both the Doppler filter processing 
and weight computation tasks, as shown in Fig. 4. 
The easy weight vector received from the easy 
weight computation task is applied to the easy 
Doppler bins of the received CPI data while the 
hard weight vector is applied to the hard Doppler 
bins. The application of weights to CPI data requires 
matrix-matrix multiplications on two received 
data sets. Due to different matrix sizes for the 
multiplications in the easy and hard beamforming 
tasks, uneven computational load results. The 
beamforming task is also divided into easy and hard 
parts for parallelization purposes. This is because the 
easy and hard beamforming tasks require different 
amounts and portions of CPI data, and involve 
different computational loads. The inputs for the 
easy beamforming task are two 3-dimensional 
complex data cubes. One data cube, which is received 
from the easy weight computation task, is of size 
Neasy x M x J .  The other is from the Doppler filter 
processing task and its size is Neasy x J x K .  A total 
of Neasy matrix-matrix multiplications are performed 
where each multiplication involves two matrices 
of size M x J and J x K ,  respectively. The hard 
beamforming task also has two input data cubes 
which are received from the Doppler filter processing 
and hard weight computation tasks. The data cube 
of size 6Nhard x M x 2J is received from the hard 
weight computation task and the Doppler filtered 
CPI data cube is of size Nhard x 2J x K .  Since range 
cells are divided into 6 range segments, there are a 
total of 6Nhard matrix-matrix multiplications in hard 
beamforming. The results of the beamforming task 
are two 3-dimensional complex data cubes of size 
Neasy x M x K and Nhard x M x K corresponding to the 
easy and hard parts, respectively. 

In a manner similar to the weight computation 
task, parallelization in this step also involves 
partitioning of data across the N dimension (Doppler 
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Fig. 8. Data redistribution from Doppler filter processing task to easy beamforming task. CPI data subcube of size 
(KIP , )  x J x Nay/& is reorganized to subcube of size (Neay/&) x (KIP,)  x J before sending from one processor in Doppler filtering 

processing task to another in easy beamforming task. 
I 

~ easy and hard beamforming tasks. Since the cost of 
~ matrix multiplications can be determined accurately, 
1 the computations are equally divided among the 

, this task requires data to be communicated from 

bins.) Different sets of processors are allocated to the 

allocated processors for this task. As seen from Fig. 4, 

the first as well as the second task. Because data is 
partitioned along different dimensions, an all-to-all 

redistribution between the Doppler filter processing 
and beamforming tasks. The output of the Doppler 

I filter processing task is a data cube of size K x U x N 
I which is redistributed to the beamforming task after 

data reorganization in the order of N x K x U .  Data 
reorganization has to be done before the intertask 

j communication between the two tasks takes place, as 
shown in Fig. 8. 

1 personalized communication is required for data 

I 
i 

Data reorganization involves data copying from 
noncontiguous memory space and its cost may 
become extremely large due to cache misses. For 
example, two Doppler bins in the same range cell and 
the same channel are stored in contiguous memory 
space. After data reorganization, they are KIP, . J 
element distance apart. Therefore, if Po is small 
and the size of the CPI data subcube partitioned 
in each processor is large, then it is quite likely 
that expensive data reorganization will be needed 
which becomes a major part of the communication 
overhead. The algorithms which perform data 
collection and reorganization are crucial to exploit 
the available parallelism. Note that receiving data 
from the weight computation tasks does not involve 
data reorganization or data collection because 
they have the same partitioning strategy (along 
dimension N .) 

D. Pulse Compression 

~ The input to the pulse compression task is a 
j 3-dimensional complex data cube of size N x M x K, 

beams 

1 c 
K rangecells 

Fig. 9. Partitioning strategy for pulse compression task. Data 
cube is partitioned across dimension N into pS processors. 

as shown in Fig. 9. This data cube consists of 
two subcubes of size NaSy x M x K and Nhard x 
M x K which are received from the easy and hard 
beamforming tasks, respectively. Pulse compression 
involves convolution of the received signal with 
a replica of the transmit pulse waveform. This is 
accomplished by first performing K-point FFTs 
on the two inputs, point-wise multiplication of the 
intermediate result, and then computing the inverse 
FFT. The output of this step is a 3-dimensional real 
data cube of size N x M x K. The parallelization 
of this step is straightforward and involves the 
partitioning of the data cube across the N dimension. 
Each of the FFTs could be performed on an individual 
processor and, hence, each processor in this task 
gets an equal amount of computation. Partitioning 
along the N dimension also results in an efficient 
accessing mechanism for contiguous memory space 
when running FFTs. Since both the beamforming 
and pulse compression tasks use the same data 
partitioning strategy (along dimension N ) ,  no 
data collection or reorganization is needed prior 
to communication between these two tasks. After 
pulse compression, the square of the magnitude 
of the complex data is computed to move to the 
real power domain. This cuts the data set size in 
half and eliminates the computation of the square 
root. 
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E. CFAR Processing 

The input to this task is an N x M x K real data 
cube received from the pulse compression task. The 
sliding window constant false alarm rate (CFAR) 
processing compares the value of a test cell at a given 
range to the average of a set of reference cells around 
it times a probability of false alarm factor. This step 
involves summing up a number of range cells on each 
side of the cell under test, multiplying the sum by 
a constant, and comparing the product to the value 
of the cell under test. The output of this task, which 
appears at the pipeline output, is a list of targets 
at specified ranges, Doppler frequencies, and look 
directions. The parallelization strategy for this step 
is the same as for the pulse compression task. Both 
tasks partition the data cube along the N dimension. 
Also, no data collection or reorganization is needed in 
the pulse compression task before sending data to this 
task. 

VI. SOFTWARE DEVELOPMENT AND SYSTEM 
PLATFORM 

All the parallel program development and their 
integration was performed using ANSI C language 
and message passing interface (MPI) [24]. This 
permits easy portability across various platforms 
which support C language and MPI. Since MPI is 
becoming a de facto standard for high-performance 
systems, we believe the software is portable. 

The implementation of the STAP application 
based on our parallel pipeline system model has been 
done on the Intel Paragon at the Air Force Research 
Laboratory, Rome, NY. This machine contains 321 
compute nodes interconnected in a two-dimensional 
mesh. The Paragon runs Intel’s standard Open 
Software Foundation (OSF) UNIX operating system. 
Each compute node consists of three i860 RISC 
processors which are connected by a system bus and 
share a 64M byte memory. The speed of an is60 
RISC processor is 40 MHz and its peak performance 
is lOOM floating point operations per second. The 
interconnection network has a message startup time 
of 35.3 ps and a data transfer time of 6.53 nshyte for 
point-to-point communication. 

In our implementation, a double buffering strategy 
was used both in the receive and send phases. 
During the execution loops, this strategy employs 
two buffers altematively such that one buffer can be 
processed during the communication phase while the 
other buffer is processed during the compute phase. 
Together with the double buffering implementation, 
asynchronous send and receive calls were employed in 
order to maximize the overlap of communication and 
computation. Asynchronous communication means 
that the program executing the sendreceive does not 
wait until the sendreceive is complete. This type of 

n : number of CPIs 
inBuf[2] : input data buffer 
outBufl21 : output data buffer 
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p ~ e u  c ( 8  - 1) mud 2 
cur c i mod 2 
nezt t (% + 1) mod 2 
to c read timer 
post async receives for inBuflnezt1 
wait for completion of previous receives for inBuflcur] 
data unpacking on inBuflcur] 
t ,  c read timer 
computation on inBuflmr] and result in outBufInrr1 
t2 c read timer 
data packing for outgoing message on outBuflcur] 
post a%ync sends for outBuf[cur] to next task 
wait for completion of sends for outBufTpreu1 
t3 c read timer 

Implementation of timing computation and 
communication for each task. Double buffering strategy is used to 
overlap communication with computation. Receive time = f I  - to ,  

compute time = t2 - tl , send time = f 3  - t2.  

communication is also referred to as non-blocking 
communication. The other option is synchronous 
communication which blocks the sendreceive 
operation until the message has been sendreceived. 
The general execution flow and the approach to 
measure the timing for each part of computation and 
communication is given in Fig. 10. We used MPI 
timer, MPI-Wtime(), because this function is portable 
with high resolution. 

VII. PERFORMANCE RESULTS 

We specified the parameters that were used in our 
experiments as follows: 

range cells ( K )  = 512, 
channels ( J )  = 16, 
pulses ( N )  = 128, 
receive beams ( M )  = 6, 
easy Doppler bins (Neasy) = 72, 
hard Doppler bins (Nhard) = 56. 

Given these values of parameters, the total number 
of floating point operations (flops) required for each 
CPI data to be processed throughout this STAP 
algorithm is 403,552,528. Table I shows the number 
of flops required for each task. A total of 25 CPI 
complex data cubes were generated as inputs to the 
parallel pipeline system. Each task in the pipeline 
contains three major parts: receiving data from the 
previous task, main computation, and sending results 
to the next task. Performance results are measured 
separately for these three parts, namely receiving 
time, computation time, and sending time. In each 
task timing results for processing one CPI data were 
obtained by accumulating the execution time for the 
middle 20 CPIs and then averaging it. Timing results 
presented here do not include the effect of the initial 
setup (first 3 CPIs) and final iterations (last 2 CPIs). 
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Fig. 11. Performance and speedup of computation time as function of number of compute nodes for all tasks. 

computation performance results as functions of the 
numbers of nodes and the corresponding speedup on 
the AFRL Intel Paragon. For each task, we obtained 
linear speedups. 

B. Intertask Communication 

Intertask communication refers to the 
communication between the sending and receiving 
(distinct and parallel) tasks. This communication 
cost depends on both the processor assignment for 
each task as well as on the volume and extent of data 
reorganization. Tables 11-VI present the intertask 
communication timing results. Each table considers 
pairs of tasks where the number of compute nodes 
for both tasks are varied. In some cases timing results 
shown in the tables contain idle time for waiting for 
the corresponding task to complete. This happens 
when the receiving task’s computation part of the 
receiving task completes before the sending task has 
generated data to send. 

From most of the results (Tables 11-VI) the 
following important observations can be made. 
First, when the number of nodes is unbalanced (e.g., 
sending task has a small number of nodes while 
the receiving task has a large number of nodes), 
the communication performance is not very good. 
Second, as the number of nodes is increased in the 
sending and receiving tasks, communication scales 

I 
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TABLE I1 
Timing Results of Intertask Communication From Doppler Filter Processing Task to Its Successor Tasks 

I 32 I .0340 I .0511 I ,0332 I .0034 I .0340 I .0563 I .0340 I .0646 I ,0340 1 .0519 1 

easy beamforming 

Note: Time in seconds. 

# nodes 
pulse compression 
8 16 

send I recv I send I recv 

jl easy 1 ~ 1 send 1 recv 1 send 1 recv 1 
.0005 .1956 .0007 .2570 

weight .0088 .0883 .WO4 ,0905 
,0768 .0807 .0003 .0660 

Note: Time in seconds. 

easy 
BF 

TABLE IV 
Timing Results of Intertask Communication From Hard Weight 

Computation Task to Hard Beamforming Task 

4 
8 

I .0069 I SO16 I .0069 I S714 
I .0036 I .1379 I .0036 I .2090 

hard 

1 hard I ~~ 1 send I recv ~ send 1 recv 1 
.WO7 .1798 .WO7 .2485 

weight .0100 .1468 .0065 ,0765 
112 ,1824 .1398 .0005 .0543 

Note: Time in seconds. 

16 ,0580 .0771 .0022 .0569 

send recv send recv 
4 .0054 SO16 .0054 S714 

TABLE V 
. Timing Results of Intertask Communication From Easy and Hard 

Beamforming Tasks to Pulse Compression Task 

BF 

Note: 

8 ,0029 .1379 I .0030 .2090 
16 ,1159 .0771 I .0017 .0569 

tremendously. This happens for two reasons. One, 
each node has less data to reorganize, pack and send 
and each node has less data to receive; and two, 
contention at the sending and receiving nodes is 
reduced. For example, Table I1 shows that when the 
number of nodes of the sending task is increased 
from 8 to 32, the communication times improve 
in a superlinear fashion. Thus, it is not sufficient 

TABLE VI 
Timing Results of Intertask Communication From Pulse 

Compression Task to CFAR Processing Task 

Note: Time in seconds. 

to improve the computation times for such parallel 
pipelined applications to improve throughput and 
latency. 

In Fig. 10 the receiving time for each loop is 
given by subtracting t ,  from ro. Since computation 
has to be performed only after the input data has 
been received, receiving time may contain the waiting 
time for the input, shown in line 4. Sending time, 
t3 - r2 ,  measures the time containing data packing 
(collection and reorganization) and posting sending 
requests. Because of the asynchronous send used in 
the implementation, the results shown here are the 
visible sending time and the actual sending action 
may occur in other portions of the task. Similar to the 
receiving time, the sending time may also contain the 
waiting time for the completion of sending requests 
in the previous loop, shown in line 8. Especially in 
the cases when two communicating tasks have an 
uneven partitioned parallel computation load, this 
effect becomes more apparent. With a large number 
of nodes, there is tremendous scaling in performance 
of communicating data as the number of nodes is 
increased. This is because the amount of processing 
for communication per node is decreased (as it 
handles less amount of data), the amount of data per 
node to be communicated is decreased and the traffic 
on links going in and out of each node is reduced. 
This model scales well for both computation and 
communication. 

C. integrated System Performance 

Integrated system refers to the evaluation of 
performance when all the tasks are considered 
together. Throughput and latency are the two most 
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TABLE VI1 TABLE VI11 
Performance Results for 3 Cases With Different Node Throughput and Latency for the 3 Cases of Table VI1 

# of nodes 

throughput 

latency 

i 
I 
i 
! 
i 
! 
! 
1 
j 
i 

236 1111 I 59 

equation 7.1019 3.7919 1.9791 
real 7.2659 3.7959 1.9898 

equation 0.5362 1.0346 1.9996 
real 0.3622 0.6805 1.3530 

I 

Doppler filter 

#nodes recv comp send total 

32 .0055 .0874 .0348 .I276 
easy weight I 
hard weight I 

16 
112 

I 0493 I .0913 I .0003 11 .1408 
1 .0555 I .OS31 I ,0005 11 .1390 

I '  

I 

case 2: total number of nodes = 1 18 

throughput 3.7959 
latency 0.6805 

#nodes recv comp send I total 

Dopplerfilter 16 ,0110 .1714 .0668 I .2492 

Dopplerfilter 
easy weight 

#nodes recv comp send total 

8 .0219 .3509 ,1296 SO24 
4 .1796 .3254 ,0003 ,5053 

case 3: total number of nodes = 59 

11 hard weight 1 28 1 .I779 1 .3265 1 ,0006 11 SO50 11 
I 

j 
I 
~ 

~ 

j Nore: Time in seconds. 

important measures for performance evaluation in 
addition to individual task computation time and 
intertask communication time. Table VI1 gives timing 
results for three different cases with different node 
assignments. 

In Section V, (1) and (2) provide the throughput 
and latency for one CPI data set. The measured 
throughput is obtained by placing a timer at the end 
of the last task and recording the time difference 
between every loop (that is between two successive 
completions of the pipeline.) The inverse of this 
measure provides the throughput. On the other hand, 
ft is more difficult to measure latency because it 
requires synchronizing clocks at the node of the first 

and last task. Thus, to obtain the measured latency, the 
timing measurement should be made by first reading 
time at both the first task and last task when the first 
task is ready to read a new input data. This can be 
done by sending a signal from the first task to the 
last task when the first task is ready far reading the 
new input data. Then the timer for the last task can be 
started. 

upper bound because the way we time tasks contains 
the time of waiting for input from the previous 
task. This waiting time portion overlaps with the 
computation time in the previous tasks and should 
be excluded from the latency. Thus, the latency 
results are conservative values and the real latency 
is expected to be smaller than this value. However, 
the latency given from (2) indicates the worst case 
performance for our implementation. The real latency 
equation, therefore, becomes 

real latency = To + max(&',T,') + &' + TQ 

where q' = q-idle time at receiving, i = 3, 4, 5, and 6. 

results for the 3 cases shown in Table VII. From 
these 3 cases, it is clear that even for the latency and 
throughput measures we obtain linear speedups from 
our experiments. Given that this scale-up is up to 
compute 236 nodes (we were limited to these number 
of nodes due to the size of the machine), we believe 
these are very good results. 

assigning nodes to maximize throughput and to 
minimize latency, given limited resources. Using 
two examples, we illustrate how further performance 
improvements may (or may not) be achieved if few 
extra nodes are available. We now take case 2 from 
Table VI1 as an example and add some extra nodes 
to tasks to analyze its affect to the throughput and 
latency. Suppose that case 2 has fulfilled the minimum 
throughput requirement and more nodes can be added. 
Table IX shows that adding 4 more nodes to the 
Doppler filter processing task not only increases 
the throughput but also reduces the latency. This is 
because the communication amount for each send and 

In fact, the latency given in (2) represents an 

(3) 

Table VI11 gives the throughput and latency 

As discussed in Section IV, tradeoffs exist between 

1540 
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TABLE IX 
Performance Results for Adding 4 More Nodes to Doppler Filter 

Processing Task to Case 2 in Table VI1 
total number of nodes = 122 

I #nodes I recv I comp send 11 total #nodes 

Doppler filter 20 
easy weight 8 
hardweight 56 

Note: Time in seconds. 

recv comp send total 

.0091 .1395 .0541 .2027 

.0516 .1633 ,0003 .2152 

.0488 ,1644 .0005 .2137 

receive between the Doppler filter processing task 
to weight computation and to beamforming tasks is 
reduced (Table IX). So, clearly, adding nodes to one 
task not only affects the performance of that task but 
has a measurable effect on the performance of other 
tasks. By increasing the number of nodes 3%, the 
improvement in throughput is 32% and in latency is 
19%. Such efsects are very dificult to capture in purely 
theoretical models because of the secondary effects. 

Since the parallel computation load may be 
different among tasks, bottleneck problems arise 
when some tasks in the pipeline do not have the 
proper numbers of nodes assigned. If the number of 
nodes assigned to one task with a heavy work load 
is not enough to catch up the input data rate, this 
task becomes a bottleneck in the pipeline system. 
Hence, it is important to maintain approximately the 
same computation time among tasks in the pipeline 
system to maximize the throughput and, also, achieve 
higher processor utilization. One bottleneck task can 
be seen when its computation time is relatively much 
larger than the rest of the tasks. The performance 
of the entire system degrades because the rest of 
the tasks have to wait for the completion of the 
bottleneck task to sendreceive data to/from it no 
matter how many more nodes assigned to them and 
how fast they can complete their jobs. Therefore, 
poor task scheduling and processor assignment will 
cause a significant portion of idle time in the resulted 
communication costs. In Table X we added a total of 
16 more nodes to the pulse compression and CFAR 
processing tasks to the case in Table IX. Comparing 
to case 2 in Table VII, we can see that the throughput 
increased. However, the throughput did not improve 
compared with the results in Table IX, even though 
this assignment has 16 more nodes. In this case, the 
weight tasks are the bottleneck tasks because their 
computation costs are relatively higher than other 

ks. We can see that the receiving time of the rest 
the tasks are much larger than their computation 

easy BF 
hard BF 

pulse compr 
CFAR 

throughput 

8 .0819 ,1273 .0037 .2129 
14 ,1301 .0823 .0018 .2142 
16 .I337 .0775 .0028 .2140 
16 .1701 .0434 - .2135 

4.9052 

1) latency I 0.4247 II 
Note: Time in seconds. 

time. A significant portion of idle time waiting for the 
completion of weight tasks is in the receiving time. 
On the other hand, we observe 23% improvement 
in the latency. This is because the computation time 
is reduced in the last two tasks with more nodes 
assigned. From (3), the execution time of these two 
tasks, T5/ and Tl, decreases and, therefore, the latency 
is reduced. 

VIII. CONCLUSIONS 

In this paper we presented performance results 
for a PRI-staggered post-Doppler STAP algorithm 
implementation on the Intel Paragon machine at 
the Air Force Research Laboratory, Rome, NY. 
The results indicate that our approach of parallel 
pipelined implementation scales well both in terms of 
communication and computation. For the integrated 
pipeline system, the throughput and latency also 
demonstrate the linear scalability of our design. Linear 
speedups were obtained for up to 236 compute nodes. 
When more than 236 nodes are used, the speedup 
curves for the results of throughput and latency may 
saturate. This is because the communication costs will 
become significant with respect to the computation 
costs. 

Almost all radar applications have real-time 
constraints. Hence, a well-designed system should 
be able to handle any changes in the requirements 
on the response time by dynamically allocating or 
reallocating processors among tasks. Our design 
and implementation not only shows tradeoffs in 
parallelization, processor assignment, and various 
overheads in inter and intratask communication 
etc., but it also shows that accurate performance 
measurement of these systems is very important. 
Consideration of issues such as cache performance 
when data is packed and unpacked, and impact of 
the parallelization and processor assignment for one 
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Fig.  12. Conventional least squares processing. 

task on another task are crucial. This is normally not 
easily captured in theoretical models. In the future we 
plan to incorporate further optimizations including 
multithreading, multiple pipelines, and multiple 
processors on each compute node. 

i 
j APPENDIX A. SPACE-TIME ADAPTIVE PROCESSING 
I WITH MAINBEAM CONSTRAINT 

~ The STAP problem can be formulated as a least 
, squares minimization of the clutter response. This 
i approach is desirable from a computational standpoint, 
I as it is not necessary to produce an estimate of 
1 the clutter covariance matrix, which is an order n3 
operation. In the least squares approach, a matrix 
M is constructed from snapshots of the array data 
after Doppler processing, and a weight vector w is 
computed which minimizes the norm of the product 
vector Mw. The snapshots are samples of data from 
each array element taken at range cells adjacent to 
the test cell, and also from multiple CPIs which 
are decorrelated across time. Typically a beam 

, constraint, such as a requirement for unit response in 
, the direction of the desired target, is added to rule out 
the trivial solution, w = 0. As illustrated in Fig. 12, 

I the weight vector is computed by multiplying the 
pseudoinverse of M times a unit vector. 

1 

' the conventional beam constraint placed on the Ieast 
squares problem as formulated above often produces 
an adapted pattern with a highly distorted main 
beamwith a peak response far removed from the 
target of interest. The algorithm that was formulated 
and implemented here is a constrained version of 
the least squares problem. Given a steering vector 
ws we seek a weight vector w that minimizes the 
clutter response while maintaining a close similarity 
between w and w,. This condition is specified by 
augmenting the data matrix M with an identity matrix 
as depicted in Fig. 13. The product of the identity 
matrix and the solution vector w is set to a scalar 
multiple of the steering vector w,. The least squares 
solution is a compromise between clutter rejection 

While assuring a non-zero solution for the weights, 

Fig. 13. Beam constrained least squares processing. 

and preservation of mainbeam shape. In practice, 
only slight modifications of the weight vector are 
required to move spatial nulls into the. clutter region, 
for clutter returns that are outside of the mainbeam. 
Thus, preservation of mainbeam shape requires only 
a slight reduction of clutter rejection performance, 
and is often offset by an increase in array gain on the 
desired target. As shown in Fig. 13, the preservation 
of main beam shape is controlled by scalar k. The 
choice of k directs the least squares solution for w 
to adhere more closely to the steering vector when 
k is large, and emphasize clutter cancellation at the 
expense of beam shape when k is small. Since k is 
variable depending on operating requirements, we 
normalize the resulting weight vector to unit length. 

There is a computational advantage of the 
constrained technique of Fig. 13 over that of Fig. 12 
for systems that utilize multiple beam steering. Since 
the steering vector ws appears only on the right side 
of the equation, and matrix M is independent of the 
mainbeam pointing angle, the QR factorization of M 
needs be performed only once for a given data set. 
Multiple weight vectors can be computed for different 
steering vector choices by multiplying the same matrix 
pseudoinverse or QR factorization by several choices 
of constraint vectors. 

APPENDIX B. MATLAB VERSION OF RT-MCARM 
PROCESSING ALGORITHM 

function [detections] = process-CPI(CPIdata, N) 
% N is the CPI number 

num-channels = 16; 
num_range = 512; 
num-pulses = 128; 
numdoppler = numqulses; 
numHardDop = 56; 
stagger = 3; % PRI-stagger pulses 
BeamConstraintWt = 0.5; 
FreqConstraintWt = 0.5; 
DopplerWindow = hanning(numqulses4agger); 
range-SegmentBoundaries= [0 75 150 225 300 375 5121; i 
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% Doppler Filter Processing 
doppler-data = rawToFFT(CPIdata,DopplerWindow,stagger); 

% Easy Weight Computation and Beamforming 
beamformeddata(numHardDop/2+ 1 :numdoppler-numHardDop/2) = easy-wts.’ * dopplerdata; 
easy-wts = zeros(numdoppler,num_channels,numbeams); 
for idop = numHardDop/2+1 : numdoppler - numHardDopl2, 

[easy-wts(idop,:,:), previousdopplerdata(idop,:,:)] = computeEasyWts(idop,BeamConstraintWt, ... 
Steering-vectors,previousdopplerdata(idop,:,:),doppler~ata(idop,:,:)); 

end: 

% Hard Weight Computation and Beamforming 
for rangeSeg = 1 :num_rangesegments, 

startR = rangeSegmentBoundaries(rangeSeg)+ 1 ; 
endR = rangeSegmentBoundaries(rangeSeg+l); 

beamformeddata( 1 :numHardDop/2,:,startR:endR) = hard-wts(rangeSeg, 1 :numHardDop/2,:,:).’ * ... 
dopplerdata( 1 :numHardDop/2,:,startR:endR); 

beamformeddata(numdoppler-numHardDop/2+1 :numdoppler,:,startR:endR) = ... 
hard_wts(rangeSeg,num~oppler-numHardDop/2+l:numdoppler,:,:).’ * ... 
dopplerdata(numdoppler-numHardDop/2+ 1 :numdoppler, : ,startR:endR); 

hard-wts = zeros(num_r~gesegments,numdoppler,num~hannels,numbeams); 
for idop = 1 :numHardDop/2, 

[wts(rangeSeg,idop,:,:), new_r(idop,:,:)] = computeRecurHardWts(idop,startR,endR, ... 
FreqConstraintWt,BeaConstraintWt,Steering-Vectors,dopplerdata(idop,: ,:), ... 
newi(idop,:,:),stagger); 

end; % idop 
for idop = numAoppler-numHardDop/2+ 1 :numdoppler, 

[wts(rangeSeg,idop,:,:), new_r(idop,:,:)] = computeRecurHardWts(idop,startR,endR, ... 
FreqConstraintWt,BeamConstr~ntWt,Steering-Vectors,dopplerdata(idop,: ,:), ... 
new_r(idop,:,:),stagger); 

end; % idop 
end; % rangesegments 

% Pulse Compression and CFAR processing 
pulsecompression= pulseCompression(beamformed,pclilterfreq); 
detections = CFAR(pu1secompression); 

end; %function process-CPI 

function [Dopplerdata] = rawToFFT(CPIdata,window,stagger) 
% input: CPldata(numpulses,num-range,num-channels) 
% output Dopplerdata(numdopplesnum-channels, numrange) 

Dopplerdata = zeros(numdoppler,numshannel,num_range); 

padded-CPIdata( 1 :numpulses-stagger,:,:) = CPI,data( 1 :numpulses-stagger,:,:) .* window); 
padded-CPI-data(numpu1ses-stagger+ 1 :numpulses,:,:) = zeros(stagger,num_channels,num_range); 
Doppler-data( 1 :numdoppler,:,:) = fft_pulses(padded-CPI-data); 

padded-CPI-data(stagger+ 1 :numpulses,:,:) = CPI-data( 1 :numpulses-stagger,:,:) .* window); 
padded-CPIdata( 1 :stagger:numpulses,:, :) = zeros(stagger,numJhannels,numsange); 
Dopplerdata(numdoppler+l:2*numdoppler,:,:) = fft-pulses(padded-CPI-data); 

end; %function rawToFFT 

function [wts, updateddopplerdata] = computeEasyWts(doppler,diagWts, Steering-vectors, 
prevdopplerdata,newdopplerdata) 
% computes adaptive weights directly for  the easy doppler bins from data from three previous CPIs 

CHOUDHARY ET AL: DESIGN, IMPLEMENTATION AND EVALUATION OF PARALLEL PIPELINED STAP 543 



I 

544 

% shijl data from previous two CPIs N-1 and N-2 up, overwriting data from CPI N-3 
updateddopplerdata( 1 :Total-easySamples * 213,:) = 

prevdopplerdata(Tota1-easy-Samples * 1/3:Total_easy-Samples,:); 

updateddopplerdata(Total-easySamples * 2/3,TotaI-easy-Samples,:) = 
SelectRangeSamples(Total-easy samples * 1/3,new-dopplerdata); 

avg = average(updateddopp1erdata) * diagWts ; 

for beam=l :num_beams, 
work = updateddopplerdata; 
work(updateddopplerdata+ 1 :updateddopplerdata+num-channels,:) = avg * eye(numshanne1s); 

rhs = zeros(updateddopplerdata+num-channels, 1 ); 
rhs( updateddopplerdata+ 1 :updateddopplerdata+num-channels, 1) = Steering,vectors(: ,beam); 

wts(:,beam) = work\rhs; 
wts(: ,beam) = wts(: ,beam)/(sqrt(wts(:,beam)’ * wts(:,beam))); 

end; 
end; %function computeEasy Wts 

... 

function [wts, new11 = computeRecurHardWts(doppler,startRangeSeg,en~angeSeg,spatialWt,freqWt, ... 
Steering-vectors,dopplerdata,old-r,stagger, CPINum)  
% computes adaptive weights recursively for the hard doppler bins. 

forgettingFactor = 0.6; 
qr-x = zeros(2*num_channels + numhardsamples,2*num-channels); 
q r a (  1 :2*numshannels,:) = forgettingFactor * oldx; 
qrx(2*num_channels+ 1 :2*num-channels+numhardsamples,:) = 

avg = average(qra); 
half-channels = num-channeld2; 
if (CPINum mod 2 = 1) then coloffset = 0; 
else coloffset = half-channels; 
end; 
9’0 constrain halfof the columns 
qr-x(numhardsamples + 2*num-channels+ l,l+colOffset:half_channels+colOffset) = 

qra(numhardsamp1es + 2*num-channels+lI 

SelectRangeSamples(numhardsamples,doppler data)  ; 

[avg * eye(halfxhanne1s)l; % spatial constraints 

num-channels+ l+colOffset:numshannels+half-channels+colOffset) = 
[avg * eye(half2hannels) * exp(-j * 2 * pi * (doppler-1) * stagger / numdoppler)]; 

[q newx] = qr(qrx(  1:numhardsamples + 2*numxhannels + half-channels,:),O); 

for beam=l:numbeams. 
work = newx;  
% freq constraints scaled by e(-jk-/n) 
work(2*num-channels+l:3*numxhannels,l :num-channels) = [avg * eye(numxhanne1s)l; 

rhs = zeros(3*num_channels, 1); 
rhs(2*numshannels+ 1 :3*num_channels, 1) = Steering-vectors(:,beam); 

[q2 r2] = qr([work rhs],O); 
matrhs(:,beam) = r2( 1 :2*num_channels,2*numxhannels+ 1); 

wts(:,beam) = work\rhs; 
wts(: ,beam) = wts(: ,beam)/(sqrt(wts(: ,beam)’ * wts(: ,beam))); 

end; 
end; %function computeRecurHardWts 

... 

... 

... 
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