
Proceedings of the 29th Ann& Hawaii International Conference on System Sciences - 1996

Syntax and Selmantics of PRETSEL-A Specification Language for
Parallel Real-Time Systems*

Alok Choudhary Vijay Gehlot Bhagirath Narahari
ECE Department C/S Department EE & CS Department

Syracuse University University of Pennsylvania The George Washington University
Syracuse, NY 13244, USA Philadelphia, PA 19104, USA Washington, DC 20052, USA

Abstract

For many real-time applications (e.g. Command,
Control, and Communications), parallel computers of-
fer a natural computing platform. However, very lit-
tle attention has been paid to the specification require-
ments of real-time systems implemented on parallel ma-
chines. Towards this end, we propose a specijlcation
language PRETSEL (Parallel REal-Time SpEcification
Language). The PRETSEL specification language is
based on a traditional two-level view of parallel comput-
ing whereby a parallel computation is viewed as a col-
lection of interacting (data) parallel algorithms. This
view is naturally reflected in PRETSEL syntax where
at the lower level various constructs are provided for
the specification of a data-parallel real-time algorithm
(data-parallelism). At the upper level another set of

constructs is provided to combine such tasks in a variety
of way (task-parallelism). Furthermore, the PRETSEL
language allows for the specification of performance re-
quirements. PRETSEL is currently being evaluated for
real-time avionics applicaitons. In this paper we de-
scribe the sysntax and operational semantics of PRET-
SEL and establish results relating the functional and the
temporal behaviors.

1 Introduction

Real-time systems rnust respond to external
events/inputs and exert stimulus on their environment
in form of actuator control, displays, and data/control
interaction with other subsystems. Some of the com-
mon tasks in various Air force and Navy systems (e.g.,
EZC, AWACS, Joint STARS) require processing large
number of targets and manipulating extremely large
data sets. Future requirements are likely to increase
the processing demands due to more sensors and more

*This research is supported by
from the Rome Laboratory.

contract No. F3-6-2-94-C-0073

information, thus suggesting the use of parallel comput-
ers to implement real-time systems. However, the lack
of software support both in the design as well as in the
implementation phases has resulted in a slower accep-
tance of parallel computing than originally expected.

We believe that complex software systems and espe-
cially real-time systems can be made truly robust and
reliable if powerful specification and analysis techniques
are made available to software developers and maintain-
ers. In recent years there has been a significant progress
in the development of formal models for real-time com-
puting. These include timed automata [l], Timed Petri
Nets [4], Timed CSP [5], Z and RTL [6], Timed Process
Algebra [2, 81, ACSR [12], Timed CCS [15], Temporal
Logic [9, lo]. The model we are proposing here differs
from these in the following respects. 1) There are no in-
stantaneous actions in our model-all actions consume
time. 2) The semantics of parallel operator is must
synchronize when complementary actions are involved
as opposed to may synchronize of CCS-like languages.
Furthermore, this seems to obviate the need for restric-
tion operator in our language. 3) The timing operators
are of more general nature assigning a range of time
values to actions instead of an exact duration. This
makes our model more close to reality since, for exam-
ple, in practice execution time of actions depends on
various factor and will vary. Hence assigning a range
of values or a bound to an action is more meaningful
than stipulating it to be an exact value. 4) The choice
operator in language is biased. It favors the component
which may finish earlier. This allows us to define, for
example, multiple versions of the same task for, say,
different mappings or machines, etc. 5) Our language
provides an abstraction operator to abstract system de-
pendent features. This appears useful in defining per-

formance polymorphism in the sense of [ll]. 6) Finally,
and most importantly, the existing models do not ad-
equately address the specification requirements for re-
alistic real-time system software on parallel computers.
Our language provides the traditional constructs to de-
fine a data-parallel algorithm. It should be emphasized

525
1060-3425/96 $5.00 0 1996 IEEE

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

that parallel computing adds complexities to a real-time
system which are normally absent in uniprocessor sys-
tems. In real-time systems, performance correctness
(i.e., meeting deadlines etc.) is as important as func-
tional correctness. However, performance of a parallel
algorithm on a parallel computer, depends on a num-
ber of architectural and algorithmic properties, such
as number of processors, communication, scalability of
algorithms, overhead of scheduling parallelism and syn-
chronization. These factors do not arise in sequential
processes, but must be taken into consideration by any
specification model for parallel real-time systems. The
model must also provide features to recognize changes
in the environment (such as change in input data rate)
and thereby respond by reallocating resources to meet
the timing requirements. The necessity of specifying
some of the parameters described above is illustrated
by the following examples.

fiable and verifiable by a specification model.
The above examples illustrate why the the specifica-

tion must model the performance (of the algorithm) as
a function of the system characteristics. In addition,
the communication requirements in parallel algorithms
are far more complex than sequential or real-time sys-
tems. In particular, a number of communication prim-
itives must be provided by the system and included in
the specification. The same holds for synchronization
mechanisms.

Typically the speedup per processor of a parallel al-
gorithm, also called the efficiency, decreases with in-
creasing number of processors (due to more communi-
cation) and also depends on the input characteristics.
These scalability parameters must be included in the
program specification. Different parallel algorithms for
the same computation can have different efficiency func-
tions. For example, we may have two algorithms for
sorting-one which works well for large number of pro-
cessors and the other that is tailored for coarse grained
pa.rallelism. As the scalability parameters vary, the spe-
cific of algorithm to use to meet the performance re-
quirements may change. Thus, there is a need for pro-
vision of multiple versions/algorithms to carry out a
given computation and a specification model must cap-
ture the scenario described above by specifying these
multiple versions and the precise metrics used for se-
lecting each version. Depending on the state of the sys-
tem and the performance requirement the appropriate
algorithm is selected.

In this paper we propose a formal specification lan-
guage called PRETSEL-Parallel REal Time SpEcifi-
cation Language- for real-time systems implemented
on parallel machines. The computation model of
PRETSEL is based on the view that A parallel real-
t ime computation is, in general, a collection of interact-
ing processes, each of which can be a parallel algorithm.
At this stage in our research, we consider the case where
each process is a data parallel algorithm. Modell ing
parallel computations in this manner naturally leads to
a two-level specification model. At level 2 we provide
constructs for specifying data parallel algorithms, and
at level 1 we provide constructs to combine such tasks
in a variety of ways. Thus, for example parallelism oc-
curs at two levels - within a task (data parallelism) and
among tasks (functional or task parallelism). A level 2
process consists of three activity phases: (1) input and
distribution of data, including a external synchroniza-
tion step, (2) compute-communicate cycles, and (3)
output of data and external synchronization. The dis-
tribution of data across the processors, and the time
taken by the algorithm is a function of the number of
processors and the size of the data. These (number
of processors and data size) factors themselves can be
specified as part of the algorithm. It is noted that the
compute-communicate cycle is a synchronous activity.

As another example, consider the continuous pro-
cessing of data arriving at real-time rates (this could be
considered as a periodic task, since the same computa-
tions must be performed for different data sets). A sen-
sor task collects data at some rate and sends it to a task
that processes the data. For example images received
and sent to an image processing algorithm. When there
is a bursty I/O, i.e., data arrives at a more rapid rate,
the amount of data to be processed may change dras-
tically and thus the parallel algorithm may no longer
meet its time deadlines. The system must detect this
change and a remapping process must be invoked to de-
termine a parallel algorithm and additional processors
that. have to be used to meet the deadline. The over-
head of this process must also be taken into account.
This entire process of resource allocation must be speci-

The rest of this paper is organized as follows. The
next section introduces the syntax of PRETSEL. This
is followed by semantics of PRETSEL in Section 3. We
finally conclude in Section 4.

2 Syntax of PRETSEL

The PRETSEL specification language is based on
the computation model described in the previous sec-
tion. Thus PRETSEL syntax is divided into level 1
syntax and level 2 syntax. The latter provides various
constructs to describe a data-parallel algorithm whereas
the former contains operator to combine such tasks in
a variety of ways. A PRETSEL specification therefore
consists of a level 1 process which is a combination of
level 2 tasks.

It is worthwhile to point out that one of the design

526

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

goals of PRETSEL has been that it be usable by even
a non-expert. To this end, PRETSEL provides familiar
programming language like constructs to define a data-
parallel at level 2. Furthermore, at the present stage
of design, PRETSEL does not support recursion as it
makes it hard to obtain reasonable time bounds.

To define PRETSEL, we stipulate a set of action
symbols Act.Our time domain 7 is the set of natural
numbers plus infinity, that is, 7 = N U {co}. Since
all our actions consume time, it would be convenient to
think of an action as a tuple ((label), (time-spec)) where
the first component denotes the name of the action and
the second component describes its timing specification
(described below). Furthermore, we assume two map-
pings X : Act -+ String and 6 : Act + I to extract
the name and the timing constraint of an action. For
example, if an action a = (a,&) then x(a) = a and
6(a) = t. w e a so 1 assume that Act is partitioned into
Act, for pure computation actions, Acta for internal
(i.e. level 2) communication actions, Act, for external
communication actions, and Act, for special actions.
We also assume that Acti and Act, can be partitioned
into two equinumerous sets with a complementation bi-
jection, denoted Y, between them satisfying tk = a. Note
that a and 6 must have the same timing constraint. The
set of PRETSEL level 1 processes Proc is given by the
grammar in Figure 1 where min-time and mux-time
range over the time domain 7. The syntax of Level 2
tasks is shown in Figure 2..

at duration interval, between tl and t2, for the com-
putation. Note that we can define exact timing using
the duration operator as in A[t, t]. This specifies that
the computation time be exactly t. A process may op-
tionally be explicitly t imed using the timing constraint
operators as in Rt : P. This expression is only mean-
ingful if P is time correct (this will become clear when
we present the temporal rules in the next section). The
periodic operator Il can be used to define a periodic
process at level 1. For example, lIiP is a process that
does P every t time units.

We let P, T, and t, possibly subscripted, range over
the process expressions at level 1, task expressions at
level 2, and time domain, respectively. The informal
meaning of various operators at level 1 is as follows.
The parallel composition PI 11 P2 denotes a process
where two components PI and Pz proceed in time in-
dependently of each other except for synchronizations.
Only the external communication actions may partici-
pate in these synchronizations. The sequential compo-
sition PI 3 P2 denotes a process where the initiation
of the second component Pz takes place only after the
successful termination of the first component PI. The
choice operator + in the expression PI + P2 allows the
computation to proceed according to either PI or Pz,
however if PI can finish before P2 then PI is selected
and vice versa. In this way the choice operator allows
us to specify different versions of an algorithm to per-
form the same computation, such that the algorithm
that meets the deadlines ,will be selected.

Currently, we have three types of timing constraints
(or specifications): (1) cli min-time, (2) Q mux-time,
and (3) A [tl , tz]. The first one specifies the minimum
time, i.e., lower bound requirement, for the computa-
tion. The second specifies the maximum time, i.e., up-
per bound, for the computation. The third specifies

Now consider the level 2 syntax which specifies the
data parallel algorithms. At this level a task may be ab-
stracted (or parameterized) by the system specification.
This will allow, for example, scalability parameters to
be captured by the model. The system specification can
include system specific information such as the architec-
ture characteristics (number, type and speed of proces-
sors), input characteristics (size and type of data), the
mapping function to illustrate how data is distributed
across the processors, and the execution time charac-
teristics which can be the execution time as a function
of the scalability parameters. At level 2 our basic unit
of computation is an action. Actions may be combined
in several ways to form a composite action or a task. To
model real-time behavior a timing constraint is associ-
ated with each action. For example (add, Q2) describes
a basic action that takes a maximum of two units of
t ime to complete. As mentioned above, basic actions
can be categorized as pure computations, pure internal
communication (communication within the algorithm),
external communication (for synchronization) and, in
addition, some special actions such as termination and
7- action. The first three form the three phases of data
parallel algorithms defined by our model of computa-
tion. The computations can be arithmetic operations.
The internal communications would include commu-
nication primitives such as the send-receive primitive,
barrier synchronization, broadcast, etc. The external
communications would include communication needed
with other tasks to exchange data, for I/O activities,
and pure synchronization with other tasks. The ba-
sic actions can be combined in parallel using the syn-
chronous parallel operator & or in sequence using the ;
operator. The if operator allows a deterministic choice
to be made based on the boolean expression. The while
operator allows iterative computations. The time taken
by a while operator is derived from the length of the it-
erations. The within operator defines a temporal scope
which is meaningful if its body is time correct. The ev-
ery operator is used to define a periodic task at level 2.
These operators have been adopted from [13]. Similar
time scoping constructs and actions that consume time
have been used in [7]. It should be noted that the oper-

527

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

(process) ::= (task)
((process) 11 (process)
((process) + (process)
1 (process} =S (process)
1 (time-spec) : (process)
1 IPm-pr) (process)

(time-spec) :I= fl max-time
1 @ m&-time
1 A [min-time , max-time

Figure 1: Level 1 Syntax

at,or & is similar to the binary case of forall of [3]. Since
such foralls are so pervasive in parallel programming
that we define the following derived operator:

n

where n is intended to range over the number of pro-
cessors.

3 Semantics of PRETSEL

The above discussion provided an informal view of
the semantics of PRETSEL, and we now discuss the
operational semantic rules for PRETSEL. The opera-
tional meaning of PRETSEL operators may depend on
temporal correctness of processes and tasks. To capture
temporal correctness we define a set of temporal rules.
For sake of brevity and simplicity, we shall restrict our-
selves only to R constraints here. Figure 3 and Figure 4
give the temporal rules for level 1 and level 2, respec-
tively. Both the operational rules and the temporal
rules are presented in a natural deduction style. These
rules are to be read as follows: if the transition(s) above
the line can be inferred, then we can infer the transi-
tion below the line. A special case is when there is
nothing above the line. In this case, the transition be-
low the line can be inferred unconditionally. Such rules
are also called axioms.

The temporal rules define a relation between the pro-
cesses and time domain, that is, :c Proc x 1. The

temporal semantics are then defined by the least such
relation. Just as typing rules in a typed language assign
meaningful types to objects in the language, the tem-
poral rules may be thought of assigning temporal in-
formation to expressions. In the case where we restrict
ourselves to Q, this semantics associates the maximum
execution time to each process expression. In addition,
these rules also provide the temporal meaning to the
various operators as follows. According to rule (l), a
parallel composite of two processes PI I(P2 completes
when both its components have completed and hence
the time taken is the maximum of the time taken by
either component. Rule (2) says that the choice com-
posite of two processes PI + P2 finishes as soon as
one of them is done. Rule (3) says that for sequential
composition Pi=+Pz the maximum time requirement to
complete is the sum of the times required by its com-
ponents. According to rule (4), a process may be con-
strained by a time operator only if the corresponding
value is time compatible with the execution time of the
component process. Rule (5) says that the execution
of a periodic task may not be bounded and that the
period must be compatible with the execution time re-
quirement of the body process. Rule (6) is an axiom.
Rule (7) is analogous to rule (3) for processes. Rule (8)
captures the synchronous nature of the components of
& operator. Thus, it requires that both Tl and T2 in
Tl & Tz have the same timing behavior. Rule (9) says
that the time to complete an if operation is the maxi-
mum of the time taken to complete the consequent and
the alternative. Since we cannot a priori determine the

528

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

(tusk) ::= (basic-task) / [(sys-specs)](busic&sk)

(sys-specs) ::= (sys-spec),

(sys-spec) ::= num-proc 1

(basic-task) ::= (action)

(sys-specs)

input-spec 1 exec-time-spec 1 map-spec 1 arch-spec

1 (basic-tusk) & (basic-task)
I (basic-tusk) ; (basic-tusk)
) if (bool-ezpr)(busic-tusk)(busic-task)

while (booLexpr)(busic-tusk)
every (time-expr)(busic-tusk)
within (time-expr)(busic-tusk)

Figure 2: Level 2 Syntax

number of iterations, according to rule (10) the max-
imum time taken by a while construct is bounded by
co. Rule (11) is analogous to rule (5) for processes.
Rule (12) says that the temporal scope of a task must
be compatible with the timing requirement of its body.
Rule (13) requires a bit explanation. We assume the ex-
istence of a value space I/al,,, for all the system related
parameters. In practice this space would be finite and
could be maintained as a, lookup table. The rule says
that the timing requirement of a parameterized task is
nothing but the timing requirements inferred after sub-
stituting values for each of the system parameters in the
task abstraction. Thus, an abstracted task represents
a collection of timing requirements. This allows multi-
ple versions of an algorithm to be defined each having a
possibly different performance characteristics. This has
been termed performance polymorphism in [ll]. As an
example, consider a simple task consisting of just one
action T = add, This action may take different time
to execute depending on the underlying architecture.
To capture this variation, we may abstract away this
information and define T’ = [arch-spec]T. The task
T’ may now be instantiated with different architecture
specifications that will in turn set the execution time of
the add operation as given by the mapping S.

The aforementioned temporal rules can be used to
either verify or infer useful temporal information. As a

small example, consider a simple process that does the
add operation and then sends a signal. Thus P = add ;
send. Let us further suppose that on a given machine
we know how long the add operation is going to take,
say, 6(add) = 2 but we do not know how long the send
operation takes. Furthermore let us suppose that we
want P to finish in 10 time units, that is, 010 : P is
what we want. Using rules(4), (6), and (7) it is easily
deduced that the send operation must be completed
within 8 units of time. This is depicted in the deduction
tree below:

rule 6 ~ send : x

The desired deduction follows in trying to build
(backwards) a proof-tree of the goal (RlO : add ; send) :
10. From the application of rule 4, it can be deduced
that the desired goal is provable if we can establish that
(add ; send) : y and y < 10 for some y. From rule 7,
it can be deduced that this y must be 2 + x, where x
is the unknown timing requirement for the send oper-
ation. From the constraint y < 10, it is immediately
deduced that z 5 8. This kind of information can be
statically deduced and can be used at compile time for
scheduling etc.

529

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

PI :t1 Pz : t2
P1llP2 : max(tl,tz)

PI :t1 P2 : t2
Pl-+Pz : min(tl, t2)

PI : tl P2 : t2
Pl=sP2 : (t1 + t2)

P:t t <_t’
(nt’ : P) : t’

P :t tit’
IF’P : 03

(1)

(2)

(3)

(4)

(5)

Figure 3: Level 1 Temporal Rules

Tl : t Tz : t
Tl & T2 : t

TI : tl T2 : tz b : t3
if 6 Tl T2 : muz(tl + t3, t2 + t3)

T:t b : tl
while b T : CO

T : tl t1 It
every t T : 0;) (11)

T :< tl t1 Lf
within t T : t

T[V’IZj : t
[Z-jT : t where v” E Vul,,,

Figure 4: Level 2 Temporal Rules

530

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference m System Sciences - 1996

Next we turn our attention to operational rules. The
operational rules for level 1 and level 2 are contained
in Figure 5 and Figure 6, respectively. The operational
rules are transition based. In giving these rules, we
let a range over Act, i raage over Acti, and e range
over Act,. Also, the specia.1 action done is only present
in the semantic domain, that is, it cannot be used to
construct process expressions. It is used to flag the ter-
mination of a process activity. The operational rules
define a relation -C_ Proc x Act x Proc. The oper-
ational semantics are then defined by the least such
relation. The notation P -% P’ means that the pro-
cess P behaves like process P’ after doing action a and
in doing so, it consumes (i(u) time. Thus operational
rules allow us to record wh.at actions a process can per-
form and how much time it takes. It should be noted
that since we are not separating time from action, we
do not need to define two separate transition relations
as has been done in 1151; rather our approach is similar
to that of [12] though differs from it in that the timing
requirements of an action are explicit instead of being
implicit.

The operational rules give meaning to the various
operators as follows. Accclrding to rules (14) and (15),
a sequential composition PI =S P2 can only engage in
the actions of PI as long as: it is not finished. It can only
start to engage in actions of P2 after PJ, has terminated.
Rules (16) and (17) define the meaning of the choice op-
erator. Thus in PI + P2 .if PI can finish first then ac-
cording to rule (16) P i will get selected. If, however, P2
can beat PI then rule (17) applies and P2 gets selected.
In case both have exactly the same requirements, the
choice becomes nondeterministic. Rules (18)-(20) as-
sign meaning to the parallel operator]I. According to
rule (18), if in the composite PI I(P2, the process PI is
ready to engage in an action and P2 is not ready to en-
gage in the complementary action, then the only action
possible for the composite is that of PI. Similarly, ac-
cording to rule (19), if P2 is ready to engage in an action
and PI is not ready to engage in the complementary ac-
tion, then the only action possible for the composite is
that of P2, However, if PI and P2 are ready to engage in
complementary actions, they must synchronize. This is
the essence of rule (20) and this is what we call the must
synchronize semantics of]I which differs from what may
be called the may synchronize semantics of CCS [14].
Because of this, CCS provides another operator called
restriction to force synchronization. Our choice of must
semantics then obviates the need for a restriction-like
operator-at least for synchronization purposes.

We should point out th,at PRETSEL in fact provides
a variety of communication primitives each with its own
set of rules. Thus, for example, for non-blocking send
and complementary recv the following rule would be

applicable:

send(v)
PI - Pi p2

=eyx) p,
2

4 II p2 Lp: II m /4
It should also be noted that in PRETSEL there is not

just one 7 action, in fact there are a family of them-
one for each possible time constraint. These r-actions
capture the time required to perform the communica-
tion.

Next consider rule (21). According to it, a tempo-
rally constrained process is capable of doing the same
action as its component process as long as it is con-
strained meaningfully. Furthermore, in this case the
temporal constraint of the resulting process is reduced
by the execution time of the action involved. Rule (22)
is similar, that is, a periodic process does the actions of
its body process as long as the period is meaningful and
it repeats forever. Rule (23) is an action axiom. Ac-
cording to it the computation terminates once the only
action has occured. Rule (24) says that the operator
& is a synchronous parallel combinator and thus both
components must be willing to engage in the same ac-
tion (which need not be a communication). Rules (25)
and (26) are similar to rules (14) and (15). The describe
the meaning of sequential composition at the task level.
Rule (27) is similar to rule (22) at the process level.
Rules (28)-(31) g ive the familiar operational meaning
to the Zf and the while operator. Rule (32) is similar
to rule (21) at the process level. Rule (33) is similar to
the usual operational semantics of value-passing. Al-
though, unlike value-passing, the value space Vu&,, of
system dependent parameters will normally be finite in
practice.

In the above we described temporal rules to capture
the timing requirements of a given process or a task
and we also gave a transition relation that describes
how a process executes and how much time it takes
in its execution. The following proposition relates the
temporal rules to the transition rules.

Proposition 1 Let P be a process and let P : t. If
p%p,% a + S -% done then Cyzl s(ui) 5 t.

Also our transition relation combines both the ‘func-
tional’ behavior and the ‘temporal’ behavior. For non-
real-time applications one may just be interested in only
the functional behavior. It is clear that there are ex-
tra overheads involved in the combined behavior as one
must ascertain, for examples, that the processes are
time correct. So, the question is whether we can ‘turn-
off’ the temporal behavior and use the operational rules
for just the functional behavior without the overhead.
It turns out that the answer to this question is affirma-
tive and is summed up in the proposition below. The

531

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - I996

PI A Pi
PI * Pz A Pi * P2 (14)

PI A done
PI + P2 5 P2 (15)

PI : t1 P2 : t2 PI APi (t1 I t2)

PI + P4+Pl (16)

PI : t1 P2 : t2 P@+Pi (tz 5 t1)

PI + P2-5+Pi (17)

PI -L Pi P2&

9 II p2 Api II p2
(18)

9 ++ P2 -L Pz’

9 II p2-59 11 p;
(19)

Pg+P{ P2 5 Pi

4 II p2 1, Pf II pi
(20)

PAP’ P:i! t < t’
Rt’ : P-L R(t’ - 6(e)) : P’ (21)

PAP’ P:t t 5 t’
IIf’P 2 P’ j IIl’P (22)

Figure 5: Level 1 Functional Rules

532

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

a 4 done

TI &done
TI ;T2-%T2

TAT’ T:t t 5 t’
every t’ T 5 T’ ; every t’ T’

b E false
while b T -nil

b z true T&T’
while b TAT’ ; while b T

b E true TI AT,’
if bT1 T2AT{

b E false T2 AT;
if bT1 TzAT{

TAT’ T:t t <t’
within t’ T 5 within (t’ - 6(a)) T’

T[v’lZJ s, T’
[zlT-%T’

where GE Val,,,

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)

Figure 6: Level 2 Functional Rules

answer relies on an erasure mapping that erases all the
timing information and what we are left with is only
the functional part. Details of this erasure mapping
8 will be presented elsewhere. Just to give an idea of
E, we fist define a erasure on actions that strips off the
timing information. This is then extended to terms and
the rules.

Proposition 2 Let P be a process and E be the erasure
mapping described above. If P terminates so does 8(P).

It is worth noting that the converse of the above
statement may not hold in general. This is because,
in the presence of time, t,he operator + behaves ‘more
deterministically’ than in the absence of it.

4 Conclusion and Future Work

This paper discussed the problem of formal specifi-
cation of real-time systems implemented on a parallel
machine. Towards this end we proposed the PRET-
SEL specification language which allows specification
of functional, timing, and performance requirements.
PRETSEL takes a two level approach and explicitly
addresses parallelism issues at a higher and more re-
alistic level, and reflects the computation model used
commonly in the parallel processing community. We
described the syntax and formal semantics of PRET-
SEL. In defining the formal semantics, two classes of
rules were given for expressions at each level. These
were classified as temporal rules and operational rules.
Temporal rules assign temporal attribute to expressions

533

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

Proceedings of the 29th Annual Hawaii International Conference on System Sciences - 1996

much the same as the typing rules of a typed language
assigns types to programs. Furthermore, just as (most)
typing is a static property, so is the temporal attribute
in our case. Also, just as type information can be
utilized in a useful way during compilation, we illus-
trated by means of a simple example that the tempo-
ral attributes given by temporal rules can be used for
scheduling, etc. The operational rules capture the ‘ex-
ecution’ of processes. Our operational rules combine
both the functional behavior and the temporal behavior
into one relation. We also establish that the temporal
attribute assigned by temporal rules is consistent with
the temporal behavior of the process involved. This was
summarized in proposition 1. We also showed that pure
functional behavior, without the overhead of temporal
constraint checking, can be obtained from our opera-
tional rules and that the resulting functional behavior
would be correct in the sense that if the timed process
terminates than so does its purely functional counter-
part. This was contained in proposition 2.

Our current work is towards evaluating the expres-
sivity and naturalness of PRETSEL. Towards this end,
we are using PRETSEL for specifying large real-life sys-
tems [16]. This exercise may force us to modify/extend
PRETSEL. One possible extension of PRETSEL would
be to include exception handling. There has already
been significant work done in this direction by other re-
searchers in this area-most notably the one reported
in [12]-and we hope to capitalize on it. Another direc-
tion that we would like to pursue is the design and de-
velopment of a (semi) automated verification/synthesis
tool based on PRETSEL.

References

[l] R. Alur and D. Dill. Automata for modeling real-
t ime systems, Proc. of 17th ICALP, LNCS 443,
pp. 322-335. Springer Verlag, 1990.

[2] J.C.M. Baeten and J.A. Bergstra, Real Time Pro-
cess Algebra, Technical Report CSR9053, Centre
for Mathematics and Computer Science, Amster-
dam, the Netherlands, 1990.

[31 p. Brinch Hansen, Parallel Programming
Paradigms, Prentice-Hall, 1995.

[4] J. E. C oo a 1 h an, Timing requirements for time-
driven systems using augmented Petri nets, IEEE
Trans. Software Eng., SE-9(5):603-616, (Septem-
ber 1983).

[5] J. Davies, Specification and Proof in Real-Time
CSP, Cambridge University Press, 1993.

[6] C. J. Fidge, Specification and verification of real-
t ime behaviour using Z and RTL, Proc. Formal
Techniques in Real- Time and Fault- Tolerant Sys-
tems, LNCS Vol 571, pp. 393-408, Springer-Verlag
1991.

[7] A. N. Fredette and R. Cleaveland, RTSL: A
language for real-time schedulability analysis,
Proc. Real-Time Systems Symposium, pp. 274-283,
Raleigh-Durham, North Carolina, December 1993.

[S] M. Hennessy and T. Regan, A Process Alge-
bra for Timed Systems, Technical Report 5/91,
Computer Science, University of Sussex, Brighton,
April 1991.

[9] T. Henzinger, Z. Manna, and A. Pnueli, Temporal
proof-methodologies for real-time systems, Proc.
ACM Principles of Programming Languages, 1991.

[lo] J. Hooman, Specification and Compositional Ver-
ification of Real-Time Systems, LNCS Vol 558,
Springer-Verlag, 1991.

[ll] K. B. Kenny and K.-J. Lin, Building flexible real-
t ime systems using the Flex language, IEEE Com-
puter, Vol. 24, No. 5, 70-78, May 1991.

[12] I. Lee, P. Brdmond-Gregoire, and R. Gerber, A
process algebraic approach to the specification and
analysis of resource-bound real-time systems, Proc.
of the IEEE, pp. 158-171, ~01.82, No.1, Jan.1994.

[13] I. Lee and V. Gehlot, Language constructs for dis-
tributed real-time programming, Proc. Real- Time
Systems Symposium, pp. 57-66, San Diego, Cali-
fornia, December 1985.

[14] R. Milner. Communication and Concurrency
Prentice-Hall, 1989.

[IS] F. Moller and C. Tofts. A temporal calculus of
communicating systems, Proc. of CONCUR ‘90,
pp. 401-415. LNCS 458, Springer Verlag, August
1990.

[16] J. Wenner, Specification of Real-Time Systems on
Parallel Computers: Sonar Beamformer Example,
Master’s Project, ECE Department, Syracuse Uni-
versity, January 1995.

534

Proceedings of the 1996 Hawaii International Conference on System Sciences (HICSS-29)
1060-3425/96 $10.00 © 1996 IEEE

