
Unified Compilation of Fortran 77D and 90D

ALOK CHOUDHARY~ GEOFFREY FOX,* SEEMA HIRANANDANl,t
KEN KENNEDY,t CHARLES KOELBEL,t SANJAY RANKA? and
CHAU-WEN TSENGt

We present a unified approach to compiling Fortran 77D and Fortran 90D programs for efficient
execution on MIMD distributed-memory machines. The integrated Fortran D compiler relies on
two key observations. First, array constructs may be scalarizecl into FORALLloops without loss of
information. Second, loop fusion, partitioning, and sectioning optimizations are essential for
both Fortran D dialects.

Categories and Subject Descriptors: C.1.2 [Processor Architectures]: Multiple Data Stream
Architectures (Multiprocessors)—rnultiple-instructiorz-stream, multiple-data-stream processors

(MZMD), parallel processors; D.3.2 [Programming Languages]: Language Constructs and
Features—concurrent programming structures; D.3.4 [Programming Languages]: Processors

—code generation; compilers; optimization; preprocessors

General Terms: Languages, Performance

Additional Key Words and Phrases: Fortran D, parallel languages, parallel programming

1. INTRODUCTION

Parallel computing on distributed-memory machines is scalable and cost-ef-

fective; however, it is hindered by both the difficulty of parallel programming

and lack of portability of the resulting programs. We propose to solve this

problem using Fo@an D, a version of Fortran extended with data decomposi-

tion specifications that can be applied to Fortran 77 and Fortran 90 [ANSI

1990] to produce Fortran 77D and Fortran 90D, respectively. Fortran D has

contributed to the development of High Performance Fortran (HPF), an

informal Fortran standard for programming massively parallel machines

[High Performance Fortran Forum 1993].

This research was supported by the Center for Research on Parallel Computation (CRPC), a

National Science Foundation Science and Technology Center. CRPC is funded by NSF through

Cooperative Agreement Number CCR-9120008. Additional support was provided by DARPA

under contract DABT63-9 1-C-0028. Alok Choudhary is also supported by an NSF Young Investi-
gator Award CCR-9357840.
Authors’ addresses: *Northeast Parallel Architectures Center, 111 College Place, Syracuse

University, Syracuse, NY 13244-4100.
*center for Research on parallel Computation, Rice University, P. 0. BOX 1892, Houston, ~

77251-1892.
Permission to copy without fee all or part of this material is granted provided that the copies are
not made or distributed for direct commercial advantage, the ACM copyright notice and the title

of the publication and its date appear, and notice is given that copying is by permission of the
Association for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or
specific permission.
@ 1993 ACM 1057-4514/93/0300-0095 $03.50

ACM Letters on Programming Languages and Systems,
Vol. 2, Nos. 1-4, March-December 1993, Pages 95-114.

96 . A. Choudhary et al.

We are developing the compiler technology needed to automate translation

of Fortran D to different parallel architectures. Our goal is to establish a

machine-independent programming model for data-parallel programs that is

easy to use, yet performs with acceptable efficiency on different parallel

architectures. In this paper, we describe a unified strategy for compiling both

Fortran 77D and Fortran 90D into efficient single-program, multiple-data

(SPMD) message-passing programs. In particular, we concentrate on the

design of a prototype Fortran 90D compiler for the Intel iPSC\860 and

Thinking Machines CM-5, two multiple-instruction, multiple-data (MIMD)

distributed-memory machines.

The principal issues involved in compiling Fortran 90D are partitioning

the program across multiple nodes and scalarizing it for execution on each

individual node. Previous work has described both the scalarization [Allen

and Kennedy 1992] and partitioning process [Hall et al. 1992; Hiranan-

dani et al. 1991; 1992a; 1992 b]. The contributions of this paper are to:

—utilize the FORALL loop to preserve the semantics of Fortran 90 array

constructs in a common intermediate form;

—provide a compilation framework for integrating program partitioning with

Fortran 90 scalarization;

—show that an efficient, portable run-time library can ease the task of

compiling Fortran D;

—validate the effectiveness of a unified compilation approach through empir-

ical case studies.

Because our main interest is in the interaction between scalarization and

partitioning optimization, in this paper we only focus on a subset of Fortran

90, namely: array operations, array constructs, and the FORALL loop.

The remainder of this paper presents a brief overview of the Fortran D

language and compilation strategy, then describes the Fortran 90D and 77D

front ends and the common Fortran D back end. The design of the run-time

library is discussed, and an example is used to illustrate the compilation

process. We conclude with a discussion of related work.

2. FORTRAN D LANGUAGE

We briefly overview aspects of Fortran D relevant to this paper. These

extensions can be added to either Fortran 77 or Fortran 90. The complete

language is described elsewhere [Fox et al. 1990].

2.1 Data Alignment and Distribution

In Fortran D, the DECOMPOSITION statement declares an abstract problem or

index domain. The ALIGN statement maps each array element onto one or

more elements of the decomposition. This provides the minimal requirement

for reducing data movement for the program given an unlimited number of

processors. The DISTRIBUTE statement groups decomposition elements, map-

ping them and any array elements aligned with them to the finite resources

of the physical machine. Each dimension of the decomposition is distributed

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March–December 1993.

Unified Compilation . 97

in a block, cyclic, or block-cyclic manner; the symbol “:” marks dimensions

that are not distributed. Because the alignment and distribution statements

are executable, dynamic data decomposition is possible.

2.2 FORALL

Fortran D provides FORALL loops to permit the user to specify difficult parallel

loops in a deterministic manner. Its semantics are borrowed from the Myrias

PARDO and previous FORALL constructs [Albert et al. 1991; Beltrametti et al.

1988; Lundstrom and Barnes 1980]. In a FORALL loop, each iteration uses only

values defined before the loop or within the current iteration. When a state-
ment in an iteration of the FORALL loop accesses a memory location, it will not

get any value written by a different iteration of the loop. Instead, it will get

the old value at that memory location (i.e., the value at that location before

the execution of the FORALL loop), or it will get some new value written on the

current iteration. Similarly, a merging semantics ensures that a determinis-

tic value is obtained after the FORALL if several iterations assign to the same

memory location.

Another way of viewing the FORALL loop is that it has copy-in\copy-out

semantics. In other words, each iteration gets its own copy of the entire data

space that exists before the execution of the loop, and writes its results to a

new data space at the end of the loop. Since no values depend on other

iterations, the FORALL loop may be executed in parallel without synchroniza-

tion. However, communication may still be required before the loop to acquire

nonlocal values, and after the loop to update or merge nonlocal values.

Single-statement Fortran D FORALL loops are identical to those supported in

CM FORTRAN [Albert et al. 1988] and HPF [High Performance Fortran Forum

1993], but multistatement Fortran D FORALL loops are different from those

found in HPF.

3. FORTRAN D COMPILATION STRATEGY

3.1 Overall Strategy

Our strategy for parallelizing Fortran D programs for distributed-memory

MIMD computers is illustrated in Figure 1. In brief, we transform both

Fortran 77D and Fortran 90D to a common intermediate form, which is then

compiled to code for the individual nodes of the machine. We have several

pragmatic and philosophical reasons for this strategy:

—Sharing a common back end for both the Fortran 77D and Fortran 90D

avoids duplication of effort.

—Decoupling the Fortran 77D and Fortran 90D front ends allows them to

become machine independent.

—Providing a common intermediate form helps us experiment with defining

an efficient compiler\ programmer interface for programming the nodes of

a massively parallel machine.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

98 . A. Choudhary et al.

q.utO~F;

<Fortran 77D> Fortran 90D>

i
Fortran D
Back End

Node Interface
Fortran 77 Portable

+ me~age wing
f

~ Runtime
+ runtlme brary Library

Fortran 77

Intel Intel TMC Networks of
iPSC/860 Paragon CM-5 Workstations

Fig. 1. Fortran D compilation strategy

3.2 Intermediate Form

To compile both dialects of Fortran D using a single back end, we must select

an appropriate intermediate form. In addition to standard computation and

control flow information, the intermediate form must capture three important

aspects of the program:

—Data decomposition information, telling how data is aligned and dis-

tributed among processors.

—Parallelization information, telling when operations in the code are inde-

pendent.

—Communication information, telling what data must be transferred be-

tween processors.

In addition, we believe that the primitive operations of the intermediate form

should be relatively low-level operations that can be translated simply for

single-processor execution.

ACM Letters on Programming Languages and Systems, Vol 2, Nos. 1–4, March-December 1993,

Unified Compilation . 99

We have chosen Fortran 77 with data decompositions, FORALL, and intrinsic

functions to be the intermediate form for the Fortran D compiler. We show

later that this form preserves all of the information available in a Fortran 90

program, but maintains the flexibility of Fortran 77. Parallelism and commu-

nication can be determined by the compiler for simple computations, and

specified by the user using FORALL and intrinsic functions for complex compu-

tations.

3.3 Node Interface

Another topic of interest in the overall strategy is the node interface: the node

program produced by the Fortran D compiler. It must be both portable and

efficient. In addition, the level of the node interface should be neither so high

that efficient translation to object code is impossible, nor so low that its

workings are completely opaque to the user. We have selected Fortran 77

with calls to communication and run-time libraries based on Express, a

collection of portable message-passing primitives [Parasoft Corp. 1989]. Eval-

uating our experiences with this node interface is the first step toward

defining an “optimal” level of support for programming individual nodes of a

parallel machine.

4. FORTRAN D COMPILER

The Fortran D compiler thus consists of three parts. The Fortran 90D and

77D front ends process input programs into the common intermediate form.

The Fortran D back end then compiles this to the SPMD message-passing

node program. The Fortran D compiler is implemented in the context of the

ParaScope programming environment [Cooper 1993].

4,1 Fortran 90D Front End

The function of the Fortran 90D front end is to scalarize the Fortran 90D

program, translating it to an equivalent Fortran 77D program. This is

necessary because the underlying machine executes computations sequen-

tially, rather than on entire arrays at once as specified in Fortran 90. For the

Fortran D compiler we find it useful to view scalarization as three separate

tasks:

—Scalarizing Fortran 90 constructs. Many Fortran 90 features are not

present in our intermediate form. They must be translated into equivalent

Fortran 77D statements.

—Fusing loops. Simple scalarization results in many small loop nests. Fusing

these loop nests can improve the locality of data accesses, simplify parti-

tioning, and enable other program transformations.

—Sectioning. Fortran 90 array operations allow the programmer to access

and modify entire arrays atomically, even if the underlying machine lacks

this capability. The Fortran D compiler must divide array operations into

sections that fit the hardware of the target machine [Allen and Kennedy

1992].

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

100 . A. Choudhary et al.

We defer both loop fusion and sectioning to the Fortran D back end. Loop

fusion is deferred because even hand-written Fortran 77 programs can bene-

fit significantly [Carr et al. 1992; Kennedy and McKinley 1992; McKinley

1992]. Sectioning is needed in the back end because FORALL loops may also be

present in Fortran 77D.

We assign to the Fortran 90D front end the remaining task, scalarizing

Fortran 90 constructs that have no equivalent in the Fortran 77D intermedi-

ate form. There are three principal Fortran 90 language features that must

be scalarized: array constructs, WHERE statements, and intrinsic functions

[ANSI 1990].

Array constructs. Fortran 90 array constructs allow entire arrays to be

manipulated atomically, enhancing the clarity and conciseness of the pro-

gram. Previous research has shown that efficiently implementing array con-

structs for scalar machines may be difficult [Allen and Kennedy 1992]. One

problem arises when Fortran 90 array constructs are used in assignment

statements, the entire right-hand side (rhs) must be evaluated before storing

the results in the left-hand side (Uzs). Without adequate analysis, rhs array
elements would need to be stored in temporary buffers to ensure that they

are not overwritten before their values are used. The Fortran 90 front end

can defer this problem by relying on a key observation: the FORALL loop

possesses copy-in\ copy-out semantics identical to Fortran 90 assignment

statements utilizing array constructs. Such statements may thus be trans-

lated into equivalent FORALL loops with no loss of information.

Where statement. Another Fortran 90 feature is the WHERE statement. It

takes a boolean argument that is used to mask array operations, inhibiting

assignments to array elements whose matching boolean flag has the value

false. Fortunately, the WHERE statement may be easily translated into equiva-

lent IF and FORALL statements. Consider the following example where A is

assumed to be a ID ~-element array. Because of FORALL copy-in\ copy-out

semantics, it is unnecessary at this point to explicitly store the value of the

boolean argument to prevent it from being overwritten.

WHERE (A .EQ. O) FORALL i = 1, N
A=I.O IF (A(i) .EQ. O) THEN

ELSEWHERE = A(i) = 1.0
A = 0.0 ELSE

ENDWHERE A(i) = 0.0
ENDIF

ENDFOR

Intrinsic functions. Intrinsic functions are fundamental to Fortran 90.

They not only provide a concise means of expressing operations on arrays, but

also identify parallel computation patterns that may be difficult to detect

automatically. Fortran 90 provides intrinsic functions for operations such as

shift, reduction, transpose, and matrix multiplication. Additional intrinsic

are described in Table I. To avoid excessive complexity and machine-depen-

dence in the Fortran D compiler, we convert most Fortran 90 intrinsic into

calls to customized run-time library functions.

ACM Letters on Programmmg Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

Unified Compilation . 101

Table I. Representative Intrinsic Functions

of Fortran 90D

I Data I Reductions Irregular Special
Movement ODer8tions Routines

The strategy used by the Fortran 90D front end is thus to preserve all

intrinsic functions, passing them to the Fortran D compiler back end. How-

ever, some processing is necessary. Like the WHERE statement, some intrinsic

functions accept a mask expression that restricts execution of the computa-

tion. The Fortran 90D front end may need to evaluate the expression and

store it in a temporary boolean array before performing the computation, so

the mask can be passed as an argument to the run-time library.

For example, consider the following reduction operation, where X is a

scalar and A, B are arrays:

X = MAXVAL(A, A .EQ. B)

It should return the value of the element of A that is the maximum of all

elements for which element of A is equal to the corresponding element of B.

The Fortran 90D front end translates this to:

FORALL i = 1, N
TMP(i) = A(i) .EQ. B(i)

ENDFOR
X = MAXVAL(A, TMP)

TMP can then be passed as an argument to the run-time routine MAXVAL.

Temporary arrays may also be introduced when intrinsic functions return a

value that is part of a Fortran 90 expression.

Temporary arrays. When the Fortran 90D front end needs to create

temporary arrays, it must also generate appropriate Fortran D data decom-

position statements. A temporary array is usually aligned and distributed in

the same manner as its master array. For example, in the previous example

the temporary logical array TMP is aligned and distributed in the same

manner as A and ~. If A and II are distributed differently, automatic data

decomposition techniques must be applied to select efficient data distribu-

tions for compiler-generated temporary arrays [Chatterjee et al. 1993;

Kennedy and Kremer 1991; Knobe et al. 1990].

4.2 Fortran 77D Front End

The Fortran 77D front end does not need to perform much work since Fortran

77D is very close to the intermediate form. Its only task is to detect complex

high-level parallel computations, replacing or annotating them by their

equivalent Fortran 90 intrinsic. These intrinsic functions help the compiler

recognize complex computations such as reductions and scans that are sup-

ported by the run-time library. With advanced program analysis, some opera-

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

102 . A. Choudhary et al

tions such as DOTPRODUCT, SUM, TRANSPOSE, or MATMUL can be detected auto-

matically with ease. Others computations such as COUNT or PACK may require

user assistance.

4.3 Fortran D Back End

The Fortran D back end performs two main functions—it partitions the

program onto the nodes of the parallel machine and completes the scalariza-

tion of Fortran D into Fortran 77. We find that the desired order for

compilation phases is to apply loop fusion first, followed by partitioning and

sectioning.

Loop fusion is performed first because it simplifies partitioning by reducing

the need to consider interloop interactions. It also enables optimizations such

as strip-mining and loop interchange [Allen and Kennedy 1987; Wolfe 1989].

In addition, loop fusion does not increase the difficulty of later compiler

phases. On the other hand, sectioning is performed last because it can

significantly disrupt the existing program structure, increasing the difficulty

of partitioning analysis and optimization.

4.3.1 Loop Fusion. Loop fusion is particularly important for the Fortran

D back end because scalarized Fortran 90 programs present many single-

statement loop nests. Fusing such loops simplifies the partitioning process

and enables additional optimizations.

Data dependence is a concept developed for vectorizing and parallelizing

compilers to characterize memory access patterns at compile time [Allen and

Kennedy 1987; Kuck et al. 1981; Wolfe 1989]. A true dependence indicates

definition followed by use, while an antidependence shows use before defini-

tion. Data dependence may be either loop-carried or loop-independent. Loop

fusion is legal if it does not reverse the direction of any data dependence

between two loop nests [Allen and Kennedy 1992; Wolfe 1989].

The current Fortran D back end fuses all adjacent loop nests where legal, if

no loop-carried true dependence are introduced. This heuristic does not

adversely affect the parallelism or communication overhead of the resulting

program, and should perform well for the simple cases found in practice.

More sophisticated algorithms are discussed elsewhere [McKinley 1992].

Loop fusion also has the added advantage of being able to improve memory

reuse in the resulting program. Modern high-performance processors are so

fast that memory latency and bandwidth limitations become the performance

bottlenecks for most scientific programs. Transformations such as loop fusion

promote memory reuse and can significantly improve program efficiency for

both scalar and vector machines [Allen and Kennedy 1992; Kuck et al. 1981;

McKinley 1992; Sarkar and Gao 1991]. For instance, consider the following

example.

FORALL i = 1, N FORALL i = 1, N
A(i) = i A(i) = i

ENDFOR +ENB~~:RA(i)*A(i)
FORALL i = 1, N

B(i) = A(i)*A(i)
ENDFOR

ACM Letters on Programming Languages and Systems, Vol 2, Nos 1-4, March-December 1993

Unified Compilation . 103

Array Size (double precision)

Fig. 2. Effect of scalarization optimizations.

The occurrences of A(i) in separate loops mean that the memory location

referenced by A(i) in the first loop is likely to have been flushed from the

cache by the reference in the second loop. If the two loops are fused, all

accesses to A(i) occur in the same loop iteration, allowing the value to be

reused in a register or cache. For this example, we measured improvements

of up to 30% for some problem sizes on an Intel i860, as shown in Figure 2.

Additional transformations to enhance memory reuse and increase unit-stride

memory accesses are also quite important; they are described elsewhere

[Kennedy and McKinley 1992; McKinley 1992].

4.3.2 Program Partitioning. The major step in compiling Fortran D for

MIMD distributed-memory machines is to partition the data and computa-

tion across processors, introducing communication where needed. We present

a brief overview of the Fortran D compilation process below; details are

discussed elsewhere [Hall et al. 1992; Hiranandani et al. 1992a; 1992b; Tseng

1993].

—Analyze program. Symbolic and data dependence analysis is performed.

—Partition data. Fortran D data decomposition specifications are analyzed to

determine the decomposition of each array in a program.

—Partition computation. The compiler partitions computation across proces-

sors using the “owner computes” rule: where each processor only computes

values of data it owns [Callahan and Kennedy 1989; Rogers and Pingali

1989; Zima et al. 1988].

—Analyze communication. Based on the work partition, references that

result in nonlocal accesses are marked.

—Optimize communication. Nonlocal references are examined to determine

optimization opportunities. The key optimization, message vectorization,

uses the level of loop-carried true dependence to combine element mes-

sages into vectors [Bala~undaram et al. 1990; Zima et al. 19S8].

—Manage storage. “Overlaps” [Zima et al. 1988] or buffers are allocated to
store nonlocal data.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

104 . A. Choudhary et al

—Generate code. Information gathered previously is used to generate the

SPMD program with explicit message passing that executes directly on the

nodes of the distributed-memory machine.

Two extensions are needed in the Fortran D back end to handle FORALL loops

and intrinsic. During communication optimization, the Fortran D compiler

treats all true dependence carried by I?ORALL loops as antidependences. This

reflects the semantics of the FORALL loop and ensures that the message

vectorization algorithm will place all communication outside the loop. In

addition, during code generation intrinsic functions are translated into calls

to the run-time library. Parameters are added where necessary to provide

necessary data-partitioning information.

4.3.3 Sectioning. The final phase of the Fortran D back end completes the

scalarization process. After partitioning is performed, the compiler applies

sectioning to convert FORALL loops into DO loops [Allen and Kennedy 1992] in

the node program. The Fortran D back end detects cases where temporary

storage may be needed using data dependence analysis. True dependence

carried on the FORALL loop represent instances where values are defined in

the loop and used on later iterations; they point out where the copy-in/copy-

out semantics of the FORALL loop is being violated.

During simple translation of Fortran 90 array constructs or FORALL loops,

arrays involved in loop-carried true dependence must be saved in temporary

buffers to preserve their old values. For instance, consider the translation of

the following concise Fortran 90 formulation of the Jacobi algorithm:

A(2:N – 1) = 0.5* (A(1:N – 2) + A(3:N))

u
FORALL i = 2,N – 1

A(i) =O.5*(A(i – l)+ A(i+ l))
ENDFOR

DOi=!, N–2
TMP(i) = A(i – 1)

ENDDO
DOi=2, N–1

A(i) = 0.5* (TMP(i) + A(i + 1))
ENDFOR

A loop-carried true dependence exists between the definition to A(i) and the
ufie of A(i — 1). A temporary array TMP is needed so that the old values of

A(i – 1) are not overwritten before they are used. The values of A(i + 1)do

not need to be buffered since they are used before being redefined.

The previous example is problematic because temporary storage is required

for the values of A(i – 1). In some cases, the Fortran D compiler can

eliminate buffering through program transformations such as loop reuersal.

In other cases, the compiler can reduce the amount of temporary storage

required through data prefetching [Allen and Kennedy 1992; Bromley et al.

1991]. For instance, in the Jacobi example a more efficient translation would

ACM Letters on Programmmg Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993,

Unified Compilation . 105

Table II. Performance of Some Fortran 90 Intrinsic Functions

Processor

1
2

4

8

16

32

result in:

ALL
lK X lK

580.6
291.0
146.2
73.84
37.9
19.9

ANY
IK X lK

606.2
303.7
152.6
77.1
39.4
20.7

Time (milliseconds)
MAXVAL
lK X lK

658.8
330.4
166.1
84.1
43.4
23.2

PRODUCT
256K

90.1
50.0
25.1
13.1
7.2
4.2

TRANSPOSE

x

256 X 256 512 X 512 lK X lK

58 299
118 575
87 395
61 224 1039
41 140 539
36 85 316

X= A(l)
DOi=2, N–1

Y=o.5*(X+A(i+ l))
X = A(i)
A(i) = Y

ENDFOR

This reduces the temporary memory required significantly, from an entire

array to two scalars. For this version-of Jacobi, we measured improvements of

up to 50% for certain problem sizes on an Intel i860, as shown in Figure 2.

5. RUN-TIME LIBRARY

Fortran 90 intrinsic functions represent computations (such as TRANSPOSE

and MATMUL) that may have complex communication patterns. It is possible to

support these functions at compile time, but we have chosen to implement

these functions in the run-time library instead to reduce the complexity and

machine-dependence of the compiler. The Fortran D compiler translates

intrinsic into calls to run-time library routines using a standard interface.

Additional information is passed describing bounds, overlaps, and partition-

ing for each array dimension. The run-time library developed at Syracuse is

built on top of the Express communication package to ensure portability

across different architectures [Parasoft Corp. 1989].

Table II presents some sample performance numbers for a subset of the

intrinsic functions on an iPSC/860; details are presented elsewhere [Ahmad

et al. 1992]. The times in the table include both the computation and

communication times for each function. These measurements are also dis-

played in Figure 3. Timings in seconds are plotted logarithmically along the

Y-axis. The number of processors is plotted along the X-axis. Different lines

in the graph correspond to timings of individual functions in the run-time

library for different problem sizes. For large problem sizes, we were able to

obtain almost linear speedups. In the case of the TRANSPOSE function, going
from one processor to two or four degrades execution time due to increased

communication. However, speedup improves as the number of processors

increases.

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993.

106 . A. Choudhary et al.

Time .1 –
*. *,*

(see) ,~~ - b-e+
-------- _

.025 – ~

AA-A
.01 –

.005 –

II I I I I
124 8 16 32

Processors

Fig. 3. Performance of run-time library.

6. FORTRAN 90D COMPILATION EXAMPLE

6.1 Compilation

TRANSPOSE lKx lK

TRANSPOSE 512x512

TRANSPOSE 256 X 256

MAXVAL lKx IK

ALL lKx IK

PRODUCT 256K

Figure 4 shows a code fragment implementing one sweep of ADI integration

on a 2D mesh, a typical (if short) numerical algorithm. Conceptually, the code

is solving a tridiagonal system (represented by the arrays A and B) along

each row of the matrix X. The tridiagonal systems are solved by a sequential

method, but separate columns are independent and may be solved in parallel.

The full version of ADI integration sweeps each dimension of the mesh,

preventing completely parallel execution for any static data decomposition.

In the example, Fortran D data decomposition statements are used to

partition the 2D array into blocks of columns. For clarity, we declare the

number of processors (N$PROC) to be 32 at compile time. The Fortran 90D

example is concise and convenient for the user, since it can be written for a

single address space without requiring explicit communication. However,

additional compilation techniques are required to generate efficient code.

First, the Fortran 90D front end translates the program into intermediate

form as shown in Figure 5, converting all array constructs into FORALL loops.

Since no true dependence are carried on the FOWL loops, they may be

directly replaced with DO loops.
The compilation process for the Fortran D back end merits closer examina-

tion. First, array bounds are reduced to the local sections plus overlaps. The

local processor number is determined using myproc(), a library function; it

is used to compute expressions for reducing loop bounds. Analysis determines

that both I and J are cross-processor loops—loops carrying true depen-

dence that sequentialize the computation across processors. To exploit

pipeline parallelism, the Fortran D compiler interchanges such loops inward.

We call this technique fine-grain pipelining [Hiranandani et al. 1992a;

1992b].

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993.

Unified Compilation . 107

PARAMETER(N = 512, lJ$PROC= 32)
REAL X(N, N), A(N, N), B(N, N)
DECOMPOSITIONDEC(N, ii)
ALIGN X, A, B WITH DEC
DISTRIBUTE DEC(:,BLOcK)
DO I = 2,N

X(l:N,I) = X(l:N,I) - X(l:N,I-l)*A(l:N,I)/B(l:N,I-1)
B(l:N,I) - B(I:N,I) - A(l:N,I)*A(l:N,I)/B(l:N,I-1)

ENDDO
X(l:N,N) = X(l:N,N) /B(l:N,N)
DO J =N-1,1,-l

X(l:N,J) = (x(l:N,J)-A(l:N,J+l)*X(l:N,J+l))/B(l:N,J)
ENDDO

Fig.4. ADIintegration in Fortran90D.

PARAMETER(N = 512)
REAL X(N,N), A(N,N), B(N,N)
DO I = 2,N

FORALL K = l,N
X(K,I) = X(K,I) - X(K,I-l)*A(K,I)/B(K,I-1)

ENDFOR
FORALL K = l,N

B(K,I) = B(K,I) - A(K,I)*A(K,I)/B(K,I-1)
ENDFOR

ENDDO
FORALL K = l,M

X(K,N) = X(K,N)/B(K,N)
ENDFOR
DO J =N-1,1,-l

FORALL K = l,N
X(K,J) = (X(K,J)-A(K,J+l)*X(K,J+l))/B(K,J)

ENDFOR
ENDDO

Fig.5. ADIin intermediate form.

Forthisversion ofADI integration, datadependences permitthe Fortran D

compiler to interchange the J loop inward. However, if loop fusion is not

performed, the imperfectly nested K loops inhibit loop interchange forloopl,

forcing itto remainin place. During code generation, true dependences for

nonlocal references carried on the 1 and J loop cause callsto send and recv

to be insertedto provide communication and synchronization. Figure 6shows

the resulting program. Unfortunately, thecomputation inthel loop has been

sequentialized, since each processor has to wait for its predecessor to com-

plete. Note that this is not due to communication placement; the values

needed by the succeeding processor are simply computed last.

Ifloop fusionis enabled, the Fortran Dback end will fuse the two inner K

loops. This islegal because the dependence between the definition and useof

B is carried on thelloop andis thus unaffected. Fusion is also conservative

because it does not introduce any true dependences carriedby the K loop.
Fusing the K loops promotes reuse of A and B, but its main benefit is to

enable the Fortran D back end to interchange the 1 and K loops, exposing

pipeline parallelism. The resulting program is displayed in Figure 7. For

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993.

108 . A. Choudhary et al.

REAL X(512,0:17), A(512,17), B(512,0:16)
MY$P = m~proco {* o . ..31 *}
LB1 = HAX((NY$P*16)+1 ,2) - XY$P*16
UB1 = HIW((HY$P+1)*16,511) - IISY$P*16
IF (MY$P .GT. O) recu(X(l:?J,O),B(l:N,O),HY$P-1)
DO I =LB1, 16

DO K - l,M
X(K,I) =X(K,I) - X(K,I-l)*A(K,I)/B(K,I-1)

ENDDO
DO K = l,M

B(K.1) =B(K.1) - A(K,I)*A(K,I)/B(K,I-l)
ENDDO”

ENDDO
IF (MY$P .LT. 31) uend(X(l:N,16),B(l:N,16),HY$P+l)
IF (llY$P .EQ. 31) THEN

DOK = l,N”
X(K,16) = x(K,16)/B(K,16)

ENDDO
ENDIF
IF (MY$P .GT. O) 8end(A(l:N,l),llY$P-1)
IF (HY$P .LT. 31) rec?J(A(l:N,17),?lY$P+l)
DO K = l,N

IF (MY$P .LT. 31) recv(X(K,17),XY$P+l)
DO J = UB1,l,-1

X(K,J) = (X(K,J)-A(K,J+l)*X(K,J+l))/B(K ,J)
ENDDO
IF (XY$P .GT. O) send(X(K,l),NY$P-1)

ENDDO

Fig.6. ADIwithout loop fusion.

REAL X(512,0:17), A(512,17), B(512,0:16)
MY$P =myfwoco {* 0...31 *}
LBI = MAX((HY$P*16)+1,2) - HY$P*16
DO K = l,N

IF (KY$P .GT. O) recv(X(K,O),B(K,O),W$p-l)
DO I = LB1,16

X(K,I) = X(K,I) - X(K,I-l)*A(K,I)/B(K,I-1)
B(K,I) = B(K,I) - A(K,I)*A(K,I)/B(K,I-1)

ENDDO
IF (MY$P .LT. 31) ~end(X(K,16),B(K,16),MY$P+l)

ENDDO

Fig.7. ADIwith fine-grain pipelining (first loop only).

simplicity, only the firstloopis shown. The remaining loops precompiled ina

similar manner as before. Note that loop distribution applied to the 1 loop
can enable loop interchange, but is prevented by the recurrence for B.

To reduce communication overhead, we can also apply strip-mining in

conjunction with loop interchange to adjust the granularity ofpipelining. We

call this technique coarse-grain pipelining [Hiranandaniet al. 1992a; 1992bl.

In the ADI example, we strip-mine the Kloop byfour, then interchange the

resulting loop outside the 1 loop. For this study, the desirable strip size was

derived by hand; redescribe elsewhere how it maybe automatically calcu-

latedfor agiven architecture based on communication and computation costs

[Hiranandani et al. 1992b], After strip-mining, messages inserted outside the

ACM Letters on Pro~ammlng Lan@ages and Systems, Vol. 2, Nos. l-4, March-December 1993

Unified Compilation . 109

Problem
Size

256

2;6

512

5?2

lK
x

lK

REAL X(512,0:17), A(512,17), B(512,0:16)
MY$P =myproco {* 0...31 *}
LB1 = MAX((HY$P*16)+1,2) - 19Y$P*16
DO KK = 1,N,4

IF (MY$P .GT. O) THEN
recv(X(KK:KK+3 ,0),B(KK:KK+3,0) ,MY$P-1)

ENDIF
DO I = LB1,16

DO K = KK.KK+3
X(K,I) =X(K,I) - X(K,I-l)*A(K,I)/B(K,I-1)
B(K,I) = B(K,I) - A(K.I)*A(K.1)/B(K.I-1)

ENDDO
. .

ENDDO
IF (MY$P .LT. 31) THEN

send(X(KK:KK+3, 16),B(KK:KK+3, 16),MY$P+1)
ENDIF

ENDDO

Fig.8. ADIwith coarse-grain pipelining (first loop only).

Table III. Performance of ADIIntegration (in seconds)

—

P

i-

2

4

8

16

32

-i

2

4

8

16

32

-i-

4

8

16

32—

~
Loop Fusion

1.22
1.13
1.02
0.96
0.93
0.96
5.44
4.79
4.29
4.04
3.94
3.94

21.74
17.13
16.09
15.61
15.47

Fin&grain
Pipelining

1.45
0.78
0.45
0.28
0.20
0.17
6.26
3.18
1.72
0.97
0.59
0.41

6.44
3.42
1.91
1.17

Ooars&grain
Pipelining

1.32
0.69
0.38
0.21
0.12
0.08
5.93
2.98
1.53
0.81
0.44
0.26

5.98
3.07
1.62
0.89

Data
Redistribution

1.32
0.83
0.52
0.32
0.25

6.17
3.72
2.02
1.18
0.68

8.95
4.59
2.58

Perfect
$peedup

1.22
0.61
0.30
0.15
0.08
0.04
5.44
2.72
1.36
0.68
0.34
0.17
21.74
5.44
2.72
1.36
0.68

Kloop allow each processor to reduce communication costs atthe expenseof

some parallelism, ~esultingin Figure 8. Except for coarse-grain pipeli~ing, all

these versions of ADIintegration were generated automatically by the For-

tran D compiler.

6.2 Performance Results

To validate these methods, we executed these codes on aniPSC/860. The

programs were compiled under 04using Release 3.0ofif17, theiPSC/860

compiler. Timings were taken for three double-precision problem sizes using
clock()ona32-nodeInteliPSC/860 with 8Megofmemoryper node. Results

for three problem sizes are tabulated in Table III. Timings are not provided

where problem size exceeds available memory. We also graphically display

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993.

110

Time
(see)

. A. Choudhary et al.

256 X 256

21-

1

0.5

0.2

0.1

0.05

I
I

I [I I I I

12481632

Processors

512 X 512

8 –

4

:\

““”:~ti+...A...A ..A
\
\

2 .. &\
..

1
‘h.. .

\
.. b

0.5
..<

Q<.
“’Q

0.2

I
I I I I I I
12481632

Processors

& A ADI w/o loop fusion w Fine-grain pipelining

* -C Data redistribution D. ~ @ars&grairr pipelining

lK X lK

16

t

k...& ...&...A

I
I I I I

481632

Processors

* Perfect speedup

Fig. 9. Execution times for ADI integration (double-precision).

the timings in Figure 9. Execution times in seconds are plotted logarithmi-

cally along the Y-axis. The number of processors used is plotted logarithmi-

cally along the X-axis. Numbers for perfect or ideal speedup (sequential

execution time divided by number of processors) are provided for comparison.

The original version of ADI (Figure 6) exploits pipeline parallelism in the J

loop, but shows limited speedup, since the 1 loop is sequentialized. Fusing

the K loops to improve memory reuse provides very little improvement in

this case, yielding nearly identical results. Applying loop interchange after

fusion to enable fine-grain pipelining (Figure 7) parallelizes the 1 loop as

well, yielding significant speedup. Strip-mining to apply coarse-grain pipelin-

ing can improve efficiency an additional 10-50% (Figure 8). Pipelining comes

closest to perfect speedup for large problems on a small number of processors.

We also compared the efficiency of pipelining versus dynamic data decom-

position. By changing the distribution of data at run-time from columns to

rows, all dependence in each sweep of ADI may be internalized, enabling

completely parallel execution. Data must be redistributed twice, once to

achieve the desired distribution, then a second time to return it to its original
configuration. The cost of redistributing is approximated by the performance

of the TR&NSPOSE routine shown in Table II.

Our results show that on the iPSC/860, dynamic data decomposition for

this formulation of ADI integration achieves speedup. However, the resulting

program is significantly slower than pipelining, even for small problems

distributed over large numbers of processors, the expected best case for

dynamic data decomposition. Our experiences show that some common algo-

rithms, such as ADI integration, require significant amounts of optimization

to compete with hand-crafted code.

ACM Letters on Programming Languagee and Systems,Vol. 2, Nos 1-4, March-December 1993.

Unified Compilation . 111

7. RELATED WORK

The Fortran D compiler is a second-generation distributed-memory compiler

that integrates and extends many previous analysis and optimization tech-

niques. Many distributed-memory compilers reduce communication overhead

by aggregating messages outside of parallel loops [Ikudome et al. 1990;

Koelbel and Mehrotra 1991] or parallel procedures [Hatcher et al. 1991;

Rosing et al. 1991], while others rely on functional language [Li and Chen

1991] or single assignment semantics [Rogers and Pingali 1989]. In compari-

son, the Fortran D compiler uses dependence analysis to automatically

exploit parallelism and extract communication even from sequential loops

such as those found in ADI integration.

Several other projects are also developing Fortran 90 compilers for MIMD

distributed-memory machines. ADAPT [Merlin 1991] and ADAPTOR [Brandes

1993] propose to scalarize and partition Fortran 90 programs using a run-time

library for Fortran 90 intrinsic. The CM FORTRAN compiler compiles Fortran

90 with alignment and layout specifications directly to the physical machine,

and can optimize floating-point register usage [Albert et al. 1988; Bromley et

al. 1991]. The FORTRAN-90-Y compiler uses formal specification techniques to

generate efficient code for the CM-2 and CM-5 [Chen and Cowie 1992].

FORGE90, formerly MIMDIZER, is an interactive parallelization system for

MIMD shared- and distributed-memory machines from Applied Parallel Re-

search [Applied Parallel Research 1992], It performs data flow and depen-

dence analyses, and also supports loop-level transformations. Our compiler

resembles the VIENNA FORTRAN 90 compiler [Benkner 1992] derived from

SUPERB [Zima et al. 1988]. It has also been influenced by a proposal by Wu

and Fox that discussed program generation and optimization using a test-suite

approach [Wu and Fox 1992].

A number of researchers have studied techniques to reduce storage and

promote memory reuse [Allen and Kennedy 1992; Kennedy and McKinley

1992; Kuck et al. 1981; McKinley 1992; Sarkar and Gao 1991]. These optimi-

zation have proved useful for both scalar and parallel machines. The goal of

the Fortran 90D compiler is to integrate these scalarization techniques with

advanced communication and parallelism optimizations.

8. CONCLUSIONS

This paper presents an integrated approach to compiling both Fortran 77D

and 90D based on a few key observations. First, using FORALL preserves

information in Fortran 90 array constructs. Dividing the scalarization process

into translation, loop fusion, and sectioning allows it to be easily integrated

with the partitioning performed by the Fortran D compiler. A portable

run-time library can also reduce the complexity and machine-dependence of

the compiler. All optimizations except data prefetching have been imple-

mented in the current Fortran D compiler prototype.
Compiling for MIMD distributed-memory machines is only a part of the

Fortran D project. We also are working on Fortran 77D and Fortran 90D

compilers for SIMD machines, translations between the two Fortran dialects,

ACM Letters on Programming Languages and Systems,Vol. 2, Nos. 1-4, March-December 1993.

112 . A. Choudhary et al.

support for irregular computations, and environmental support for static

performance estimation and automatic data decomposition [Balasundaram et

al. 1990; 1991; Hiranandani et al. 1991; Kennedy and Kremer 1991].

ACKNOWLEDGMENTS

We are grateful to the ParaScope and Fortran D research groups for their

assistance, and to Parasoft for providing the Fortran 90 parser and Express.

Use of the Intel iPSC/860 was provided by the CRPC under NSF Cooperative

Agreement Nos. CCR-8809615 and CDA-8619893 with support from the Keck

Foundation. The content of this information does not necessarily reflect the

position or policy of the government, and no official endorsement should be

inferred.

REFERENCES

AHMAD, I., CHOUDHARY, A., Fox, G., PARASURAM,K., PONNUSAMY, R., RANKA, S., AND THAKUR, R.
1992. Implementation and scalability of Fortran 90D intrinsic functions on distributed
memory machines. Technical Report SCCS-256, NPAC, Syracuse Univ., Mar.

ALBERT, E., KNOBE, K., LUKAS,J., AND STEELE, JR., G. 1988. Compiling Fortran 8x array
features for the Connection Machine computer system. In 1+-oceedmgs of the ACM SIGPLAN

Symposwm on Parallel programming: Experience with Applications, Languages, and Systems

(PPEALS) (New Haven, CT, July). ACM, New York.

ALBERT, E., LUXAS,J., AND STEELE, JR., G. 1991. Data parallel computers and the FORALL

statement. J. Parallel Distrlb. Comput. 13, 2 (Oct.), 185–192.

ALLEN, J. R., AND KENNEDY, K. 1992. Vector register allocation. IEEE Trans. Cornput. 41, 10

(Oct.), 1290-1317.
ALLEN, J. R., AND KENNEDY, K. 1987. Automatic translation of Fortran programs to vector

form. ACM Trans. Prog. Lang. Syst. 9, 4 (Oct.), 491-542.
ANSI X3J3 \ S8.115. 1990. Fortran 90, June. ANSI, New York.
APPLIED PARALLEL RESEARCH. 1992. Forge 90 Distributed Memory Parallelizer: User’s Guide,

version 8.0 ed. Placerville, CA.
BALASUNDARAM,V., Fox, G., KENNEDY, K., AND KREMER, U. 1991. A static performance estima-

tor to guide data partitioning decisions. In Proceedings of the 3rd ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programrnmg (Williamsburg, VA, Apr.). ACM, New
York.

BALASUNDARAM,V., Foxj G., KENNEDY, K., AND KREMER, U. 1990. An interactive environment
for data partitioning and distribution. In Proceedings of the 5th Distributed Memory Comput-

ing Conference (Charleston, SC, Apr.).
BELTRAMETTI, M., BOBEY, K., AND ZORBAS, J. 1988. The control mechanism for the Myrias

parallel computer system. Cornput. Arch. News 16, 4 (Sept.), 21-30.
BENKNER, S., CHAPMAN, B., AND ZmAj H. 1992. Vienna Fortran 90. In Proceedings of the 1992

Scalable High Performance Computing Conference (Williamsburg, VA, Apr.).
BRANDES, T. 1993. Automatic translation of data parallel programs to message passing pro-

grams. In Proceedings of AP’93 International Workshop on Automatic Distributed Memory

Parallelization, Automatic Data Distribution and Automatic Parallel Performance Predwtion

(Saarbriicken, Germany, Mar.).
BROMLEY, M., HELLER, S., MCNERNEY, T., AND STEELE, JR., G. 1991. Fortran at ten gigaflops:

The Connection Machine convolution compiler. In Proceedings of the SIGPLAN ’91 Confer-

ence on Program Language Design and Implementation (Torontoj Canada, June). ACM, New
York.

CALLAHAN, D., AND KENNEDY, K. 1988. Compiling programs for distributed-memory multipro-
cessors. J. Supercomput. 2 (Oct.), 151–169.

CMtR, S., KENNEDY, K., MCKINLEY, K. S., AND TSENG, C. 1992. Compiler optimizations for
improving data locality. Tech. Rep. TR92- 195, Dept. of Computer Science, Rice Univ., Nov.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993

Unified Compilation . 113

CHATTERJEE, S., GILBERT, J., SCHREIBER, R., AND TENG, S. 1993. Automatic array alignment in
data-parallel programs. In Proceedings of the 20th Annual ACM Symposium on the Principles

of Programming Languages (Charleston, SC, Jan.). ACM, New York.

CHEN, M., AND COWIE, J. 1992. Prototyping Fortran-90 compilers for massively parallel ma-

chines. In Proceedings of the SIGPLAN ’92 Conference on Program Language Design and

Implementation (San Francisco, CA, June). ACM, New York.

COOPER, K., HALL, M. W., HOOD, R. T., KENNEDY, K., MCKINLEY, K. S., MELLOR-CRUMMEY, J. M.,

TORCZON,L., AND WARREN, S. K. 1993. The ParaScope parallel programming environment.
Proc. IEEE 81, 2 (Feb.), 244-263.

Fox, G., HIRANANDANI, S., KENNEDY, K., KOELBEL, C., KREMER, U., TSENG, C., AND Wu, M. 1990.
Fortran D language specification. Tech. Rep. TR90-141, Dept. of Computer Science, Rice
Univ., Dec.

HALL, M. W., HIRANANDANI, S., KENNEDY, K., AND TSENG, C. 1992. Interprocedural compilation
of Fortran D for MIMD distributed-memory machines. In Proceedings of Supercomputing ’92

(Minneapolis, MN, Nov.).
HATCHER, P., QUINN, M., LAPADULA, A., SEEVERS, B., ANDERSON, R., AND JONES, R. 1991.

Data-parallel programming on MIMD computers. IEEE Trans. Parallel Distrib. Syst. 2, 3

(July), 377-383.
HIGH PERFORMANCEFORTRANFORUM. 1993. High Performance Fortran language specification,

version 1.0. Tech. Rep. CRPC-TR92225, Center for Research on Parallel Computation, Rice
Univ., Houston, TX, Jan.

HIRANANDANI, S., KENNEDY, K., KOELBEL, C., KREMER, U., AND TSENG, C. 1991. An overview of

the Fortran D programming system. In Languages and Compilers for Parallel Computing,

4th International Workshop (Santa Clara, CA, Aug.), U. Banerjee, D. Gelernter, A. Nicolau,

and D. Padua, Eds. Springer-Verlag, New York.
HIBANANDANL S., KENNEDY, K., ANDTSENG, C. 1992a. Compiling Fortran D for MIMD distri-

buted-memory machines. Commun. ACM 35, 8 (Aug.), 66-80.
HIRANANDANI, S., KENNEDY, K., AND TSENG, C. 1992b. Evaluation of compiler optimizations for

Fortran D on MIMD distributed-memory machines. In Proceedings of the 1992 ACM Interna-

tional Conference on Supercomputing (Washington, DC, July). ACM, New York.
IKUDOME,K., Fox, G., KOLAWA,A., ANDFLOWER,J. 1990. An automatic and symbolic paral-

lelization system for distributed memory parallel computers. In Proceedings of the 5th

Distributed Memory Computing Conference (Charleston, SC, Apr.).

KENNEDY, K., AND KBEMER, U. 1991. Automatic data alignment and distribution for loosely

synchronous problems in an interactive programming environment. Tech. Rep. TR91-155,
Dept. of Computer Science, Rice Univ., Apr.

KENNEDY, K., AND MCKINLEY, K. S. 1992. Optimizing for parallelism and data locality. In
Proceedings of the 1992 ACM International Conference on Super-computing (Washington, DC,
July). ACM, New York.

KNOBE, K., LUKAS, J., AND STEELE, JR., G. 1990. Data optimization: Allocation of arrays to
reduce communication on SIMD machines. J. Parallel Distrib. Comput. 8, 2 (Feb.), 102– 118.

KOELBEL, C., AND MEHROTRA, P. 1991. Compiling global name-space parallel loops for dis-
tributed execution. IEEE Trans. Parall. Distrib. Syst. 2, 4 (Oct.), 440-451.

KUCK,D., KUHN,R., PADUA, D., LEASURE, B., AND WOLFE, M. J. 1981. Dependence graphs and
compiler optimizations. In Conference Record of the 8th Annual ACM Symposium on the

Principles of Programming Languages (Williamsburg, VA, Jan.). ACM, New York.

LI, J., AND CHEN, M. 1991. Compiling communication-efficient programs for massively parallel

machines. IEEE Trans. Parall. Distrib. Syst. 2, 3 (July), 361–376.

LUNDSTROM,S., AND BARNES, G. 1980. Controllable MIMD architectures. In Proceedings of the

1980 International Conference on Parallel Processing (St. Charles, IL, Aug.).
MCKINLEY, K. S. 1992. Automatic and interactive parallelization. Ph.D. thesis, Dept. of Com-

puter Science, Rice Univ., Apr.
MERLIN, J. 1991. ADAPTing Fortran-90 array programs for distributed memory architectures.

In First International Conference of the Austrian Center for Parallel Computation (Salzburg,
Austria, Sept.).

PABASOFTCORP. 1989. Express User’s Manual.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

114 . A. Choudhary et al.

ROGERS, A., AND PINGALI, K. 1989. Process decomposition through locality of reference. In
Proceedings of the SIGPLAN ’89 Conference on Program Language Design and Implementa-

tion (Portland, OR, June). ACM, New York.

ROSING, M., SCHNABEL, R., AND WEAVER, R. 1991. The DINO parallel programming langoage.
J. Parall. Distrib. Comput. 13, 1 (Sept.), 30-42.

SARRAR,V., AND GAO, G. 1991. Optimization of array accesses by collective loop transforma-
tions. In Proceedings of the 1991 ACM International Conference on Supercomputmg (Cologne,
Germany, June). ACM, New York.

TSENG, C. 1993. An optimizing Fortran D compiler for MIMD distributed-memory machines.

Ph.D. thesis, Dept. of Computer Science, Rice Univ.j Jan.
WOLFE, M. J. 1989. Optimizing Supercompilers for Supercomputers. The MIT Press, Cam-

bridge, MA.
Wu, M., AND FOX, G. 1992. A test suite approach for Fortran 90D compilers on MIMD

distributed memory parallel computers. In Proceedings of the 1992 Scalable Hzgh Perfor-

mance Computing Conference (Williamsburg, VA, Apr.).
ZIMA, H., BAST, H.-J., AND GERNDT, M. 1988. SUPERB: A tool for semi-automatic MIMD/SIMD

parallelization. Parallel Comput. 6, 1-18.

ACM Letters on Programming Languages and Systems, Vol. 2, Nos. 1-4, March-December 1993.

