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Abstract

Parallel sequence-search tools are rising in popularity
among computational biologists. With the rapid growth of
sequence databases, database segmentation is the trend of
the future for such search tools. While I/O currently is not
a significant bottleneck for parallel sequence-search tools,
future technologies including faster processors, customized
computational hardware such as FPGAs, improved search
algorithms, and exponentially growing databases will em-
phasize an increasing need for efficient parallel I/O in fu-
ture parallel sequence-search tools.

Our paper focuses on examining different I/O strate-
gies for these future tools in a modern parallel file sys-
tem (PVFS2). Because implementing and comparing var-
ious I/O algorithms in every search tool is labor-intensive
and time-consuming, we introduce S3aSim, a general sim-
ulation framework for sequence-search which allows us to
quickly implement, test, and profile various I/O strategies.
We examine a variety of I/O strategies (e.g., master-writing
and various worker-writing strategies using individual and
collective I/O methods) for storing result data in sequence-
search tools such as mpiBLAST, pioBLAST, and parallel
HMMer. Our experiments fully detail the interaction of
computing and I/O within a full application simulation as
opposed to typical I/O-only benchmarks.

1 Introduction

Sequence-search is one of the fundamental tasks rou-
tinely performed in computational biology. Sequence-
search is typically used to find similarities between newly
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discovered DNA or amino-acid sequences and those in
known nucleotide or protein databases. The results of
sequence-search can be used to predict the structures and
functions of new sequences. They also allow people to es-
timate the evolution distance in phylogeny reconstruction
and perform gnome alignments. With the introduction of
advanced sequencing technologies, sequence databases are
rapidly growing. For example, GenBank [1] (a widely used
DNA sequence database maintained by the National Center
for Biotechnology Information) increased in size by over
five orders of magnitude from 1982 to 2004 [18]. Parallel
sequence-search tools are necessary for sequence analysis
of modern and future sequence databases.

Query segmentation and database segmentation are the
popular design choices for parallel sequence-search tools
on general-purpose parallel machines. Many existing par-
allel sequence-search tools are based on query segmenta-
tion [4, 6, 3, 20, 10]. In this approach, the entire sequence
database is replicated to all processors and a set of query
sequences are segmented into fractions. Each processor
searches a fraction of query sequences against the entire se-
quence database. When the sequence database does not fit
into the processor memory, query segmentation suffers re-
peated I/O introduced by loading sequence data back and
forth between the file system and the main memory. In
database segmentation, the entire set of query sequences
is replicated to all processors and the sequence database is
partitioned (as shown in Figure 1. Each processor searches
whole query sequences against a fraction of the sequence
database. Super-linear speedup is possible when the se-
quence database is larger than the processor memory by fit-
ting the large database into the aggregate memory of all pro-
cessors [9]. Parallel sequence-search tools that use database
segmentation include mpiBLAST [9], pioBLAST [14], Tur-
boBlast [2] and parallel BLAST [17].



>gi|3123744|dbj|AB013447.1|AB013447
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>gi|221778|dbj|D00026.1|HS2HSV2P4
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATG 

>gi|7328961|dbj|AB032155.1|AB032154S2 
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Database

>Perilla Frutescens CDS 0001
TTGGTATCCACGGAAGAGAGAGAAAATGTTGGGAATTTTCAGCGGAC
GTATAGTATCATTGCCGGAAGAGCTGGTGGCTGCCGGGAACC

>Perilla Frutescens CDS 0002
GGAGGGTGGCTGGTGGGTATTGGCGGCCCGACCGATCTGCCCCGACC
GACGGCTCCTGCCACCCGAACATGTGATAGAAAGGAQQQQQQQQ

>Perilla Frutescens CDS 0003
TTTTTTTCTTGATGCTGAAATCTATCCAAACATCACCAGTCCTCACGA
GTCCTTGACCAAATTCTTGCTTTCTGGCACAATCTGAAGCCCAAAGGC

Queries
Worker nodes

Figure 1. Database segmentation.

Database segmentation is expected to be the inevitable
trend of future parallel sequence-search tools for following
reasons. First, the rapid growth of sequence databases pro-
hibits a sequence database from fitting into the memory of
a single processor. Second, as sequence databases increase
in size, searching a query against the whole database will
take substantial time and result in resource under-utilization
when the number of sequences is relatively small compared
to the number of processors. Database segmentation offers
better resource utilization on large-scale machines regard-
less of number of input query sequences.

Although current I/O costs in parallel sequence-search
tools (such as mpiBLAST) are relatively small in pro-
portion to overall execution time, we believe future I/O
performance will be increasingly important to sequence-
search throughput because of following reasons. First,
the performance gap between processor speed and I/O
speed continues to widen, making I/O much more signif-
icant in overall execution time. Search times are shrink-
ing as we use advanced computational hardware such as
multicore-chip architectures. Solutions based on field pro-
grammable gate arrays (FPGAs) or application-specific in-
tegrated circuits (ASICs), such as BioScan [23], Parcel’s
GeneMatcher [11], Compugen’s Bioccelerator [15] and
TimeLogic’s DeCypher [12], have proven to be very ef-
ficient and can deliver orders-of-magnitude performance
improvements in comparing large sequences. Second,
the development of smarter heuristic algorithms (such as
SSAHA [19], PatternHunter [16], and BLAT [13]) greatly
reduces the sequence-search costs.

Our past experience with parallel sequence-search tools
has led us to believe that an individual worker-writing
I/O strategy would significantly improve overall execution
times. In this paper, we compare such an I/O strategy

against other I/O strategies for parallel sequence-search
tools using database segmentation. We have developed
S3aSim, a sequence similarity search algorithm simulator,
to get a detailed understanding of I/O strategies in parallel
sequence-search tools.

In Section 2, we describe and compare the various I/O
strategies for parallel sequence-search tools. In Section 3,
we introduce S3aSim, our simulation tool for understand-
ing I/O in parallel sequence-search tools. In Section 4, we
present our S3aSim results with respect to increased proces-
sors and increased computational ability. In Section 5, we
conclude with our contributions in this paper and discuss
possibilities for future work.

2. I/O Algorithms in Parallel Sequence-Search
Tools

Although parallel sequence-search tools employ differ-
ent sequence-alignment algorithms, they have much in com-
mon when using the database segmentation approach, as
proposed by [9]. First, each processor searches a fraction
of the database. These searches on different processors are
embarrassingly parallel. Second, the output results in query
sequence match database similarities ordered by statistics
representing the alignment qualities. Finally, local outputs
in different processors need to be merged and sorted ac-
cording to the search statistics (usually a similarity score) in
order to produce the final output. Most parallel sequence-
search tools will use the message passing interface (MPI)
and its associated I/O chapter (MPI-IO) for code portabil-
ity. In the rest of the paper, we will refer to some example
parallel database-search tools such as mpiBLAST and pi-
oBLAST.



Older versions of mpiBLAST would store all the results
on master/worker nodes until the end of program execution.
Since this can result in exceeding memory limits in large
application runs, the current design path (for example mpi-
BLAST 1.4) has headed towards writing the results out im-
mediately after a query is processed or after every n queries
have been processed, where n is a fraction of the overall in-
put query set. More frequently writing out the results also
allows users to resume a failed application run at the appro-
priate input query. Workers always send their results back to
the master ordered by score. As the master receives the or-
dered results, it can easily merge them together with its list
of ordered results. Basically, the sorting costs are offloaded
as much as possible to the workers so the master can focus
on its primary job of distributing tasks to the workers.

We note that parallel sequence-search algorithms have a
unique set of I/O characteristics when writing out results.

• Non-uniform result size - The size of each result is
relative to the minimum searching threshold and up to
three times the maximum of the input query and the
matching database sequence (for BLAST output).

• Result count - This is completely data dependent and
can range from no results to hundreds of thousands of
results depending on the input queries and the database
size.

• Unstructured data - When the workers write to the
output file, the resulting data is noncontiguous and un-
structured (i.e., no regularity). When the master writes
to the output file, the resulting I/O calls are large and
contiguous.

In the upcoming subsections, we describe possible I/O
strategies for writing a results file.

2.1. Master-Writing

After each worker completes its queries, it sends its or-
dered results to the master. This involves sending over its
scores and actual result data. The master merges the ordered
results with its ordered results. If all the fragments for an in-
put query have been processed, it writes the ordered results
to a file in one contiguous I/O call. We will refer to this
master-writing strategy as the MW strategy in the rest of
the paper.

The MW strategy resembles the I/O strategy used in
mpiBLAST 1.2. A large difference, however, is that mpi-
BLAST 1.2 did not write out results after each query. In
mpiBLAST 1.2, the master wrote all its results at the end
of the application run. This limited the size of input queries
and the target database used. It also provided little opportu-
nity for resuming an application run after failure.

The main advantage of the MW strategy is that it writes
the output data contiguously. Contiguous I/O is much more
efficient that noncontiguous I/O [7]. The MW strategy is
also easy to implement and debug. However, one disadvan-
tage of the MW strategy is that the master is a centralized
point of contention where the full result data is sent. Only a
single process is gathering all the results and doing the writ-
ing on behalf of all the workers. Also, while the master is
writing, it cannot assign new tasks to the workers (causing
potentially long wait times before a worker can begin a new
task). While nonblocking I/O could reduce this overhead,
blocking I/O is commonly used in a MW strategy to avoid
overloading the memory of the master process. As we scale
up the number of workers, the MW strategy will likely not
scale as well as the other I/O strategies.

2.2. Worker-Writing: Collective I/O

An application designer can choose to have the workers
write the results themselves in order to help the master focus
on assigning work. After each worker finishes processing
its input query against its database fragment, it sends over
only its scores of the ordered results to the master. The mas-
ter merges in the ordered scores with its own ordered scores.
If all the fragments for an input query have been processed,
it sends the workers the location of where to write each re-
sult in the aggregate output file. This location information
consists of a list of 64-bit offsets sent to each worker with
results. All of the workers then synchronize to write their
results collectively to the correct locations in the output file.
Since results are written to mutually exclusive locations in
the file, the data is interleaved but not overlapping. We will
refer to this worker-writing strategy with collective I/O as
the WW-Coll strategy. We refer to the more general class of
worker-writing strategies as WW strategies.

The WW-Coll strategy, proposed by pioBLAST [14],
uses MPI-IO collective writes to instruct workers to simul-
taneously write all of their results at the end of program
execution. When compared to the MW strategy, collective
worker-writing allows the I/O bandwidth to scale up with
the number of workers. In most cases, having more clients
writing simultaneously provides better I/O throughput to a
high-performance file system. However, as noted earlier,
a disadvantage of the WW strategies is that the workers
must use noncontiguous I/O methods. Furthermore, with
the WW-Coll strategy, all the workers must synchronize
with each other to write. This synchronization cost is at
least the time from when the first worker receives its result
list to when the last worker receives its result list (before
collective I/O begins). On the other hand, since the worker
only sends the scores and not the actual results to the mas-
ter, the amount of data exchanged with the master is reduced
from the MW strategy (even including the overhead of the



location list data passed from the master to the workers).

2.3. Worker-Writing: Individual I/O

We propose to modify the WW-Coll strategy to use in-
dividual I/O in parallel sequence-search tools. Instead of
using collective I/O, we let the workers write results after
completing an input query (or a group of input queries) us-
ing individual noncontiguous I/O methods. Our modified
WW strategy begins with the master issuing input queries to
the workers. The workers are responsible for processing the
queries, generating the sorted results, and sending the or-
dered scores to the master. The master returns the location
list to the workers and each worker writes the result data to
the output file on its own (not collectively) when it notices it
has received the location list from the master. While work-
ers wait for the location list from the master, they can pro-
cess additional queries, unlike the WW-Coll strategy. Since
collective I/O requires all involved processes to block until
synchronized, the WW-Coll strategy cannot allow worker
processes to begin upcoming queries until after the I/O op-
eration.

That is, we try to eliminate the synchronization time in-
herent in collective I/O and relieve pressure on the file sys-
tem by writing when a worker is ready instead of forcing
all workers to simultaneously write. Eliminating the syn-
chronization time should have a significant impact on over-
all application performance and balance out the load on the
file system. We used two different noncontiguous I/O meth-
ods (POSIX I/O and list I/O). The POSIX I/O method is the
MPI Write() call without optimization. The list I/O method,
described in [8], is an optimization for high-performance
file systems. We call our modified WW strategies with
POSIX I/O and list I/O, the WW-POSIX strategy and WW-
List strategy, respectively.

3. S3aSim

Each of the aforementioned I/O strategies would be diffi-
cult to compare in a single application (such as mpiBLAST
or pioBLAST). The main difficulties are implementation
time and complexity. Each I/O strategy requires substan-
tial changes to the overall parallel search algorithm. They
could also require changes in network protocol and intrica-
cies of the actual search algorithms (for example, modifying
NCBI [18] BLAST code). We do not wish to compare mpi-
BLAST 1.2, pioBLAST, and our individual worker-writing
strategy in another parallel sequence-search tool to compare
I/O strategies. At this time, no benchmarks for parallel I/O
in bioinformatics exist. In order to create a fair comparison
of I/O strategies that provides flexibility in altering input
parameters (such as computational time, input query size,

I/O strategies), we created S3aSim: a sequence similarity
search algorithm simulator.

Algorithm 1 Master Process
1: Distribute input variables to the workers and setup in-

ternal data structures.
2: while {1} do
3: MPI Recv() a request for work.
4: if All queries have been scheduled then
5: Notify worker all queries have been scheduled.
6: else
7: MPI Send worker (query #, fragment #).
8: Post MPI Irecv() for worker scores (and results if

MW).
9: end if

10: Check MPI Irecv() to see if any workers have fin-
ished sending results for their (query #, fragment #).

11: if All queries have been scheduled then
12: Continue {Inform other workers that all queries

have been scheduled before proceeding}
13: end if
14: if Use Parallel I/O then
15: MPI Isend() offset list to workers for any com-

pleted queries.
16: Check to see which MPI Isend() calls completed.
17: else
18: Write finished results to output file for completed

queries.
19: end if
20: if All queries scheduled, processed, and results writ-

ten to output file then
21: Exit()
22: end if
23: end while

S3aSim provides many benefits for our I/O strategy
comparison including simple implementation, variability
of many input parameters, and integration with the multi-
processing environment (MPE) and Jumpshot [24] for easy
debugging. It is a tool to understand how computation and
I/O interact together in a typical parallel sequence-search
tool. It uses both MPI and MPI-IO calls for portability
on many large-scale machines. S3aSim allows the user to
customize the total number of fragments of the database,
total number of input queries, a box histogram of input
query sizes, a box histogram of database sequence sizes, a
min/max count of results per input query, a minimum result
size per query, variable simulated compute speeds, MPI-IO
hints, parallel I/O, write all data at the end (similar to mpi-
BLAST 1.2 and pioBLAST), and many others.

The primary disadvantage of S3aSim is that the model-
ing of the computational time is inexact. Compute time is
modeled as a constant startup cost + linear time based on the



size of the result (anywhere from the minimum input size to
three times the maximum of the input query and the match-
ing database sequence). We use three times the maximum of
the input query and the matching database sequence as the
S3aSim result size since the actual BLAST output is gener-
ally formatted with the input sequence, database sequence,
and the matches between them. This formula can be modi-
fied to more accurately model various search algorithms for
future work.

Algorithm 2 Worker Process
1: Receive input variables from the master and setup in-

ternal data structures.
2: while {1} do
3: MPI Send() the master a request for work.
4: MPI Recv() response from the master.
5: if (query #, fragment #) then
6: Compute search algorithm on (query #, fragment

#).
7: if Use Parallel I/O then
8: Merge current results with previous results for

this query.
9: end if

10: MPI Isend() scores (and results if MW) to the
master.

11: if Use Parallel I/O then
12: Post MPI Irecv() offset list from the master.
13: end if
14: end if
15: Check all pending MPI Isend() for completion.
16: if Use Parallel I/O then
17: Check all pending MPI Irecv() for completion.
18: For all offset lists received, write results to output

file.
19: end if
20: if All queries scheduled, processed, and results writ-

ten to output file then
21: Exit()
22: end if
23: end while

The basic master algorithm is outlined in Algorithm 1
and the basic worker algorithm is outlined in Algo-
rithm 2. In order to maximize the amount of time
spent on distributing work, the master uses the blocking
MPI Recv() call when handling worker requests. We used
MPI Isend()/MPI Irecv() calls for all other communication
(receiving results and sending offset lists). When we used
parallel I/O (either individual or collective worker writing),
the workers only sent the scores of their results to be sorted
by the master. If the master was writing, both the scores
and the results of a search on a (query #, fragment #) were
sent to the master. We note that whenever a process (mas-

ter or worker) is checking on a nonblocking communication
call, it will only test for completion (MPI Test()) instead of
blocking on completion (MPI Wait()) to allow the process
to continue to make progress if the test fails. It will only
call MPI Wait() if the process cannot proceed further until
the completion of this particular nonblocking communica-
tion call.

S3aSim timing is broken up into different timing phases.
We will describe each timing phase with respect to the over-
all program execution for both the master and the worker.

• Setup Time - For the master, this time includes send-
ing out input variable information to the workers
(step 1 in Algorithm 1). For the worker, this time in-
cludes receiving the input variable information from
the master (step 1).

• Data Distribution - For the master, this time includes
waiting for the next worker request and sending the
worker a response (steps 3, 5, and 7). For the worker,
this time includes sending the work request and receiv-
ing a response (steps 3 and 4).

• Compute - For the master, this time is always 0 since
the master never does any searching. For the worker,
this time includes the search algorithm time (step 6).

• Merge Results - For the master, this time is 0. For
the worker, this time includes the time to merge results
together if we are using parallel I/O (step 8).

• Gather Results - For the master, this time includes
posting MPI Irecv() operations for scores (and pos-
sibly results) from the worker as well as checking
on the associated MPI Irecv() operations (steps 8 and
10). For the worker, this time includes sending off the
scores (and possibly results) as well as checking on the
associated MPI Isend() operations (steps 10 and 15).

• I/O - For the master, this time includes all write op-
erations to the output file (step 18). For the worker,
this time includes all write operations to the output file
(step 18).

• Sync - For the master, this time includes waiting for
all the processes to synchronize at the end of the ap-
plication (not shown in the algorithm). For the worker,
this time includes waiting for all the processes to syn-
chronize at the end of the application (not shown in the
algorithm). When the query sync mode is on, this time
includes the time for all processes to synchronize after
writing out the results for an input query.

• Other - For the master and the worker, this phase in-
cludes all remaining time.



3.1. Parallel Virtual File System 2 (PVFS2)
and ROMIO

The Parallel Virtual File System 2 (PVFS2) [22] is a par-
allel file system for commodity Linux clusters that is a com-
plete redesign of PVFS1 [5]. It provides both a cluster-wide
consistent name space and user-defined file striping found
in PVFS1 but also adds functionality to provide better scal-
ability and performance. Many of its components are modu-
lar in design which allows flexibility in customizing PVFS2
to meet individual needs. Most relevant to this paper is the
native support for high-performance noncontiguous data ac-
cess (list I/O, for example).

Since S3aSim has no overlapping writes, its I/O phase
should proceed in parallel in the WW strategies without any
serialization. PVFS2 does not provide a method for atom-
icity of overlapping writes, so there is no I/O serialization
due to false sharing. Other file systems which use serializa-
tion mechanisms, such as file locking, for handling atomic
overlapping I/O may unnecessarily serialize writes in the
I/O phase. Such serialization mechanisms should be turned
off since our application has no overlapping I/O.

ROMIO is the MPI-IO implementation developed at Ar-
gonne National Laboratory [21]. It builds upon the MPI-1
message passing operations and supports many underlying
file systems through the use of an abstract device interface
for I/O (ADIO). ADIO allows the use of file-system specific
optimizations such as the list I/O interface used in our ex-
periments. Additionally ROMIO implements the data siev-
ing and two phase optimizations as generic functions that
can be used for all file systems supported by ADIO. It also
implements a datatype flattening system that is used to sup-
port list I/O for PVFS2. We used the default two phase I/O
method in ROMIO as our collective I/O implementation in
the WW-Coll strategy.

3.2. Test Environment

All tests were run on the Feynman cluster at Sandia Na-
tional Laboratories. Feynman, composed of Europa nodes,
Ganymede nodes, and I/O nodes, has a total of 371 comput-
ers with dual processors. In order to keep our testing as ho-
mogeneous as possible, we only used the Europa nodes that
were dual 2.0-GHz Pentium-4 Xeon CPUs with 1-GByte
RDRAM. They were connected with a Myrinet-2000 net-
work and used the Redhat Linux Enterprise operating sys-
tem. Since each of compute nodes had dual CPUs, we ran
two compute processes per node.

We also used 16 computers in our PVFS2 file system.
All 16 computers ran the PVFS2 server with one computer
additionally handling metadata server responsibilities. All
PVFS2 files created use the default 64-KByte strip size,
which totals to a 1-MByte stripe across all I/O servers. Our

version of PVFS2 was tuned for better noncontiguous I/O
by adjusting default system parameters.

3.3. Test Setup

With so many input variables, there are numerous tests
we could run with S3aSim. In this paper, we chose to focus
on testing the scalability of the I/O strategies with respect to
processor count and compute speed. In order to get the char-
acteristics of an NCBI database, we chose the NT database
(nt.gz from ftp://ftp.ncbi.nih.gov/blast/db/FASTA/) as our
example database. The NT database has a minimum se-
quence length of 6 bytes, a maximum sequence length of
slightly over 43 MBytes, and mean sequence length of 4401
bytes. We used the same histogram to represent our in-
put query set of 20 queries (roughly maps to approximately
86 KBytes of input queries). We chose 128 fragments and
a result count from 1000 to 2000 per query (over the en-
tire database). Results were written to the output file after
each query. MPI File sync() was always called immedi-
ately after every MPI File write() or MPI File write all().
Although we use different numbers of processors, the re-
sults are always identical since they are pseudo-randomly
generated. Each data point we present generated roughly
208 MBytes of output data and was averaged over 3 test
runs.

Our tests were designed for comparing the performance
of the various I/O strategies with respect to an increase in
processes or reduced computational time (custom search
hardware and/or better algorithms). One suite of tests used
2 to 96 processors. The second suite of tests used compute
speeds from 0.1 to 25.6. The breakdown of the applica-
tion into phases is crucial to understanding why certain I/O
strategies work better than others.

Another goal of our testing was to examine whether the
inherent I/O synchronization of collective I/O would be
very costly and how it might be improved. Collective I/O, in
nearly all noncontiguous I/O cases, outperforms POSIX I/O
and, in some noncontiguous I/O cases, outperforms list I/O
in pure I/O tests. It is rare (if ever) when an I/O compari-
son takes into account interaction with an application when
doing performance evaluations. It is very hard to directly
examine the effect of inherent I/O synchronization in col-
lective I/O. In order to expose this effect, our tests used the
“query sync” option. Basically, if the query sync option is
on, S3aSim will force all worker nodes to synchronize after
doing any I/O. When looking at the performance changes
from individual I/O methods with query sync off to with the
query sync on, we can gain a better understanding of how
the inherent synchronization in collective I/O hurts overall
performance and whether using individual noncontiguous
I/O methods in a collective I/O implementation might ac-
tually improve performance. For example, a collective I/O



method could be implemented using list I/O with a forced
synchronization at the end of the I/O operation (similar to
our WW-List tests with query sync on). In our upcoming
performance evaluation and discussion we refer to not using
and using the query sync option as “no-sync” and “sync”,
respectively.

4. Performance Evaluation

Our first test suite examines process scalability in
S3aSim. Figure 2 shows the overall S3aSim execution times
on a logarithmic scale to emphasize the performance varia-
tion in the different I/O strategies. As expected, all no-sync
I/O strategies perform as good as or better than their sync
counterparts. The individual WW strategies outperform
both the WW-Coll and MW in the no-sync cases. WW-Coll
performance is about the same with or without the sync op-
tion. It is expected that WW-Coll would have roughly the
same performance with or without sync since the inherent
synchronization in collective I/O means that synchronizing
after all workers do I/O is negligible in our test cases. With
the query sync option, WW-Coll (45.54 secs) gets closer
to WW-List (40.24 secs) at 96 processors. In overall ex-
ecution time at 96 processors, WW-List outperforms the
other I/O strategies by 364% (MW), 33% (WW-POSIX),
and 75% (WW-Coll) in the no-sync cases and 182% (MW),
37% (WW-POSIX), and 13% (WW-Coll) in the sync cases.
Noticeable performance gains due to adding more workers
slowed considerably at about 32 processes. Generally, at
this point the I/O phase time was dominant and even in-
creased slightly with more processes due to the increased
frequency of I/O requests (from shorter query processing
times). A larger file system configuration with more I/O
bandwidth may have provided more scalable I/O perfor-
mance.

Figure 3 and Figure 4 show the overall breakdown of
each run with respect to the different timing phases and dif-
ferent I/O strategies. We present both the no-sync and sync
results from the workers to illustrate how each I/O strategy
is affected by adding a forced synchronization component.
The effect of forced synchronization to MW makes a negli-
gible performance difference (a maximum of 5% in overall
execution time mostly due to test variance). Since the work-
ers all wait until the master does I/O before beginning the
next query, the forced synchronization is cheap.

WW-POSIX is largely affected by synchronization (up
to 69% in overall execution time). The sync phase time in-
creases due to the forced synchronization (from 1.01 secs
to 12 secs at 96 processors), which also increases the data
distribution phase time (from 3.21 secs to 19.04 secs at 96
processors). The WW-POSIX I/O phase time actually de-
creases steadily from no-sync to sync since each worker is
writing data at a slower rate and handing out less I/O ops/s

(up to 17% I/O phase time decrease at 96 processors). This
slower rate of I/O ops/s allows PVFS2 to improve pure I/O
performance slightly.

WW-List is moderately affected by synchronization.
Since its overall I/O costs are always less than WW-POSIX,
the sync phase time increase from no-sync to sync is less
than WW-POSIX (from 0.41 secs to 5.87 secs at 96 proces-
sors). Similar to WW-POSIX, the sync phase time increase
causes the data distribution time to rise (from 4.47 secs to
18.47 secs at 96 processors). WW-List also shows an I/O
phase time reduction of 34% at 96 processors due to less
stress on the file system.

WW-Coll is at most affected by 6% in moving from no-
sync to sync cases. Since its own inherent sync bears most
of the forced synchronization costs, adding an additional
synchronization after I/O is quick and negligible in over-
all execution time. While collective I/O methods generally
outperform POSIX I/O methods [7], we note that WW-Coll
loses to WW-POSIX in the no-sync case. As we described
in Section 2.3, the inherent synchronization of WW-Coll is
more costly than the gains in I/O performance alone over
POSIX I/O. While workers are waiting to do collective I/O
after processing their portion of the query, they are wasting
time, which shows up in the data distribution time.

Our second suite of tests held the number of processors
constant at 64 and examined how improving the compute
time would affect each I/O strategy. As mentioned in Sec-
tion 1, improving the compute time could be accomplished
in hardware (new processors, custom search hardware) or
software (improved search algorithms).

Our first suite of tests in Figure 2 used compute
speed = 1, (which we refer to as the base compute speed).
This test suite (Figure 5 varied the compute speed parame-
ter from 0.1 to 25.6. First of all, we note that increasing the
compute speed up to 25.6 times faster than the base com-
pute speed made less than a 2% difference in overall exe-
cution time for both the no-sync and sync cases for MW.
Clearly, the application phases besides the compute phase
are the bottleneck here. The other strategies faired much
better than MW. The individual WW strategies (WW-List
and WW-POSIX) both surpassed WW-Coll and MW sig-
nificantly in the no-sync cases, indicating that individual
WW strategies will strongly benefit from hardware or soft-
ware improvements on the compute phase. In overall exe-
cution time with compute speed = 25.6, WW-List outper-
formed the other I/O strategies by 592% (MW), 32% (WW-
POSIX), and 98% (WW-Coll) in the no-sync cases and by
444% (MW), 65% (WW-POSIX), and 58% (WW-Coll) in
the sync cases. Similar to the first suite of tests, I/O times
generally start slightly increasing as we improve the com-
pute speed due to more I/O ops/s.

Figure 6 and Figure 7 show the overall breakdown of
each run with respect to the different timing phases and dif-
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Figure 2. Results when scaling up the number of processors with no-sync/sync query options.
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Figure 3. Individual phase timing results when scaling up the number of processors with no-
sync/sync query options for MW and WW-POSIX.
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Figure 4. Individual phase timing results when scaling up the number of processors with no-
sync/sync query options for WW-List and WW-Coll.

ferent I/O strategies. As the compute speed increases, we
note that the effect of the compute speed on the overall ex-
ecution time is reduced. At compute speed = 0.1, workers
spend close to an average of 54 secs in the compute phase in
both the no-sync and sync cases. At compute speed = 25.6,
workers spend slightly more than 0.8 secs in the compute
phase in both the no-sync and sync cases. The large vari-
ance in long compute phase times among workers leads to
a large wait time when workers are synchronizing.

At slow compute speeds (0.1 to 0.4) with MW, forced
synchronization adds some overhead (48% when compute
speed = 0.1). The data distribution phase is mostly to blame
as it causes 72.50 secs of the 75.47 secs difference at com-
pute speed = 0.1. Since the absolute compute time variance
among workers is high at compute speed = 0.1, the data dis-
tribution time is significantly affected. From compute speed
= 0.8 to 25.6, synchronization makes little difference with
MW (at most 2%).

WW-POSIX is substantially affected by the forced syn-
chronization (at most 162% when compute speed = 0.1)
from the high compute time variance. From compute speed
= 1.6 to compute speed = 25.6, the overhead of forced syn-
chronization is slightly above 50%. Since the compute time
variances are less significant at this point (compute times
are less than 4 secs when compute speed = 1.6 and 0.85 secs
when compute speed = 25.6), most of the change in execu-
tion time is due to the synchronization overhead and the in-
creased data distribution phase time. When compute speed
= 25.6, sync phase time increases from 1.09 secs to 7.758
secs and data distribution time increase from 2.30 secs to
9.14 secs when going from no-sync to sync.

Similar to WW-POSIX, WW-List is strongly affected by
the large compute time variance at low compute speeds.
However, due to its optimized noncontiguous list I/O
method, it incurs smaller overhead as sync phase time and
data distribution phase time increase (when compute speed
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Figure 5. Results when scaling up the compute speed with no-sync/sync query options.
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Figure 6. Individual phase timing results when scaling up the compute speed with no-sync/sync
query options for MW and WW-POSIX.
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Figure 7. Individual phase timing results when scaling up the compute speed with no-sync/sync
query options for WW-List and WW-Coll.

= 25.4, sync phase time increases from 0.35 secs to 1.36
secs and data distribution phase time increases from 3.96
secs to 9.36 secs) from no-sync to sync. The benefits of list
I/O over POSIX I/O allow WW-List to provide improve-
ments that show up in I/O phase time, sync phase time, and
data distribution phase time.

WW-Coll is hardly affected when going from no-sync to
sync (at most 4%). Again, since the inherent synchroniza-
tion in collective I/O pays for the variance in compute times
among workers, the trend of seeing relatively higher data
distribution times as in the other I/O strategies is not present
in the sync cases. In general, when compute time variance
is large, WW-Coll always pays a high synchronization cost
unlike individual WW strategies. Two phase I/O in ROMIO
was not as efficient as list I/O with synchronization in al-
most all of our test cases. A collective I/O implementation
based on list I/O might be appropriate for access patterns
similar to parallel sequence-search.

5. Conclusion and Future Work

Our paper provides several contributions in understand-
ing I/O strategies for parallel sequence-search tools. While
these results are based on search applications similar to
mpiBLAST and pioBLAST, the performance trends we ob-
served can be extrapolated to other parallel sequence-search
applications.

• Proposed individual worker-writing I/O strategies
for parallel sequence-search tools - The individual
WW strategies outperformed the other I/O algorithms
in all no-sync test cases. WW-List beat all I/O methods
in both no-sync and sync test cases.

• Developed S3aSim for understanding phase inter-
action of parallel search algorithms - S3aSim is a
flexible tool for understanding how various I/O strate-
gies perform when using database segmentation.



• Detailed the possible cost of synchronization with
collective I/O in a full application simulation - To
date, most I/O studies compared I/O methods in I/O-
only benchmarks, which does not expose the I/O syn-
chronization penalty in collective I/O. Our study also
suggests that in some cases, a collective I/O method
implemented with list I/O and forced synchronization
may be a more efficient collective I/O method than the
default two phase I/O method in ROMIO.

In the future, we would like to pursue further research
on I/O strategies with S3aSim. There are many other in-
put variables that can significantly affect overall application
performance such as different I/O characteristics (different
query sizes, databases, amount of results), hybrid query seg-
mentation/database segmentation strategies, new I/O algo-
rithms, as well as many others. We hope that our work will
aid in the development of future parallel database search
tools in conjunction with modern parallel file systems.
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