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Abstract The latent behavior of a physical system that can exhibit extreme events
such as hurricanes or rainfalls, is complex. Recently, a very promising means for
studying complex systems has emerged through the concept of complex networks.
Networks representing relationships between individual objects usually exhibit com-
munity dynamics. Conventional community detection methods mainly focus on either
mining frequent subgraphs in a network or detecting stable communities in time-vary-
ing networks. In this paper, we formulate a novel problem—detection of predictive and
phase-biased communities in contrasting groups of networks, and propose an efficient
and effective machine learning solution for finding such anomalous communities. We
build different groups of networks corresponding to different system’s phases, such as
higher or low hurricane activity, discover phase-related system components as seeds
to help bound the search space of community generation in each network, and use
the proposed contrast-based technique to identify the changing communities across
different groups. The detected anomalous communities are hypothesized (1) to play an
important role in defining the target system’s state(s) and (2) to improve the predictive
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skill of the system’s states when used collectively in the ensemble of predictive models.
When tested on the two important extreme event problems—identification of tropical
cyclone-related and of African Sahel rainfall-related climate indices—our algorithm
demonstrated the superior performance in terms of various skill and robustness metrics,
including 8–16 % accuracy increase, as well as physical interpretability of detected
communities. The experimental results also show the efficiency of our algorithm on
synthetic datasets.

Keywords Spatio-temporal data mining · Complex network analysis · Community
detection ·Comparative analysis ·Network motif detection · Extreme event prediction

1 Introduction

Recent studies of the structure, dynamics, and function of complex networks have wit-
nessed a growing interest. Such complex networks model a variety of systems including
societies, ecosystems, the Internet, and others (Newman 2003). In particular, climate
networks have lately emerged as a promising approach for modeling spatio-temporal
dynamics of the climate system (Gozolchiani et al. 2008; Steinhaeuser et al. 2011;
Tsonis and Swanson 2008; Tsonis et al. 2010). In these climate networks, nodes (or
oscillators) represent spatial grid points, and the edges between pairs of nodes exist
depending on the degree of statistical interdependence between the corresponding
pairs of time series taken from the climate data set (Tsonis and Roebber 2004).

Complex networks have enabled hypothesis-driven insights about the intricate inter-
play between the topology and dynamics of the physical system at different scales.
For example, on the global scale, climate networks exhibit “small-world” properties
due to teleconnections (i.e., edges linking geographically distant nodes), such as those
in El Niño and La Niña climate networks (Tsonis and Swanson 2008; Gozolchiani
et al. 2008), that stabilize the climate system and enhance the energy and information
transfer within the system (Tsonis et al. 2006, 2008). Likewise, the collective behav-
ior of interacting subsystems in a network of different climate indices has explained
the great climate shifts of the twentieth century as synchronized transitions between
different equilibria of oscillators representing the earth system (Tsonis et al. 2007).

To complement these fruitful hypothesis-driven studies, data-driven approaches to
discovery of predictive insights from complex networks have emerged (Steinhaeuser
et al. 2009; Ganguly et al. 2009). A representative example of such approaches focuses
on detecting and characterizing the community structure, in which nodes are grouped
into communities with more interactions (i.e., edges) within communities and fewer
interactions between communities. A community is a common structure in many
real-world networks (Girvan and Newman 2002; Tsonis et al. 2010), including social
networks, biological networks, and climate networks. However, the enormous size and
the intrinsic complexity of the system data used for network construction challenge
existing graph-based approaches and call for a paradigm shift in how the networks are
analyzed.

Comparative analysis of multiple networks is a promising strategy. It can be per-
formed at multiple levels for the purpose of (a) understanding climate dynamics
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over different time periods, (b) comparing multiple climate simulation models,
(c) quantifying the agreement between climate simulation and observation data,
or (d) correlating networks derived for different climate variables. Such analyses
could translate to different problems on graphs, such as finding conserved net-
work motifs to detect and track climate regions of similar behavior, or commu-
nities, over subsequent time windows (Steinhaeuser et al. 2009), or graph-based
anomaly detection to identify which communities have grown/contracted, merged/split,
or born/vanished (Chen et al. 2011).

It is often the case that such multiple networks could be partitioned into different
groups, such as those corresponding to different system phases; it is a known fact that a
dynamic physical system often undergoes phase transitions in response to fluctuations
induced on system parameters (Hey et al. 2009). For example, in a tropical cyclone
(TC) prediction system, one can build three different groups of climate networks, with
one corresponding to high TC years, and another corresponding to medium TC years,
and the other one for low TC years. Different groups of networks may exhibit differ-
ent properties of the community structure. The question is how one could discover
network motifs that could contribute to our understanding of the system’s behavior
for a given phase.

In this paper, we hypothesize that anomalous communities, or dense subnetworks
that are conserved within one group of networks but undergo statistically significant
structural transformation in the other groups of networks, could be candidate struc-
tures for explaining physical basis underlying the group-related extreme events. For
example, if an anomalous community corresponding to the El Niño/La Niña–Southern
Oscillation (ENSO) climate index is identified, then the changes in such a community
structure would explain why a particular season would enjoy low tropical cyclone
activity or would be affected by the severity of the abnormally high number of hurri-
canes (Camargo et al. 2010). It is thus important to find effective means for detecting
anomalous communities in contrasting (or system phase-related) groups of networks.
To the best of our knowledge, such a problem has not been addressed before in liter-
ature.

It is worth noticing that performing such analyses for larger-scale, high-resolution
physical models and over multiple heterogeneous data sources is a challenging problem
not only computationally but also methodologically. For example, current algorithms
for identifying conserved network motifs are limited in either the size (Borgelt and
Berthold 2002; Peng et al. 2008) or the number (Kalaev et al. 2008; Sharan et al. 2005)
of networks they can effectively compare; plus they are not particularly designed for
contrasting groups of networks. To detect the differences, one may want to find those
communities that are conserved across dynamic networks derived from one data source
but not conserved for the other data source. However, most algorithms do not support
such contrast-based detection and tend to require that the motif be conserved in every
one of the input networks (Kalaev et al. 2008; Sharan et al. 2005). While some com-
parative techniques have been designed for the biological networks (Gill et al. 2010;
Zhang et al. 2009), they only consider the structural or topological differences between
pairs of networks. Similarly, previous work has been done on finding dense subgraphs
that are present in a majority (Zeng et al. 2007) or every member of a set of graphs (Pei
et al. 2005), but neither of these are applicable to contrasting groups of networks, nor
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can they identify anomalous communities. Likewise, graph-based anomaly detection
has been mainly focused on identifying anomalous nodes (Moonesinghe and Tan 2006;
Sun et al. 2005), unusual edges (Chakrabarti 2004), or small abnormal patterns (Eberle
and Holder 2007) in a single graph, with few exceptions focusing on graph-based
discovery of anomalies in noisy multivariate time series data (Cheng et al. 2008), for
multiple data sources (Sun et al. 2006), and across multiple graphs (Chan and Mahoney
2005; Chen et al. 2011; Sun et al. 2007). However, none of these approaches provides
a means for detecting anomalous communities in contrasting groups of graphs.

Our approach follows from the need to address the graph classification problem of
detecting predictive and phase-biased anomalous communities in contrasting groups
of networks. We build groups of networks corresponding to different system phases,
detect system phase-related components as seeds to help prune the search space in
community generation, and use the proposed contrast-based techniques to discover
abnormal communities that are further used to build the ensemble of classifiers for
predicting the system states/phases.

2 Definitions and theorems

In this paper, the ultimate goal is to detect and track phase-biased communities in
contrasting groups of networks. Thus, in this section, we first provide some formal
definitions related to the community structure of a network. Next, we present a number
of theoretical results that help bound our search for the communities of a network. A
weighted undirected graph is used to represent a complex network in this paper.

Definition 1 (Community) A community is a dense subgraph or a group of vertices
within which the connections are denser than between different groups (Girvan and
Newman 2002).

In other words, a community is a “fuzzy cluster,” or a quasi-clique, but not neces-
sarily a “formal clique” with a set of vertices that are all adjacent to one another.

To be more specific, the community structure can be defined:

Definition 2 (γ -dense Community) Given a labeled graph G and a real value γ ∈
[0.5, 1], a subgraph S of G is a γ -dense community, if and only if every vertex of S
is adjacent to at least γ (|S| − 1) of the other vertices of S (Pei et al. 2005; Zeng et al.
2006).

The advantage of this community definition is twofold. First, it corresponds nicely
with the typical use of the term “density” in that it forces a certain fraction of the pos-
sible edges in the subgraph to exist. The second advantage is that our definition must
be satisfied by every vertex of the community, ensuring that each vertex “belongs”
to the community. One disadvantage of this definition is that it is not monotone; that
is, a superset or subset of a γ -dense community does not need to be γ -dense, though
basing our definition on the density of the subgraph rather than a maximum number
of disconnections (as in a k-plex Balasundaram et al. 2011; Seidman and Foster 1978)
gives us more flexibility in finding large subgraphs.

If a γ -dense-community contains a number of vertices in a seed or query set, we
call it μ-enriched γ -dense community:
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Fig. 1 An example of (μ, γ )-communities. Filled nodes: seed nodes, empty nodes: normal nodes

Definition 3 ((μ, γ )-community) Given a labeled graph G, a “seed” set of vertices
Q, a real value γ ∈ [0.5, 1], and a real value μ ∈ [0, 1], a γ -dense community S is
μ-enriched with respect to Q, if and only if at least μ|S| vertices of S are contained
in Q.

The “seed” set Q can be used to incorporate the domain scientists’ knowledge.
For example, we can take in a biologist’s prior knowledge as a set of “seed” proteins
and identify all the communities in a biological network that contain some part of the
“seed” proteins.

Figure 1 shows an example of (μ, γ )-communities. If we set μ = 0.2 and γ = 0.75,
then only C1 and C2 in Fig. 1 can be considered (0.2, 0.75)-communities. Subgraph C3
is not a (0.2, 0.75)-community, because it does not contain any “seed” node. Although
subgraph C4 has two “seed” nodes, not all of the vertices in C4 are adjacent to at least
three (i.e. 0.75 ∗ (5− 1)) of the other nodes. Thus, it is also not a (0.2, 0.75)-commu-
nity. But if we relax the requirements to be μ = 0 and γ = 0.5, then all four subgraphs
can be considered as communities.

One of the main ways in which (μ, γ )-communities differ from traditional commu-
nities, such as those produced by modularity-based clustering algorithms (e.g., Clauset
et al. 2004; Wakita and Tsurumi 2007) is that (μ, γ )-communities are allowed to over-
lap. As climatological factors in a particular region may contribute to multiple system
events, this is a very desirable feature for a community detection algorithm to have in
the climate domain, as well as other scientific domains like biological networks, where
pathways or gene modules work in a cross-talking manner. While such algorithms may
have other advantages, such as the parameter-free nature of clustering algorithms that
maximizes modularity, and might work better for other domains like social networks,
these algorithms are partitional by nature and typically heuristic, giving no guarantees
of global optimality or the quality of individual communities.

Definition 4 (Corresponding Community) Given two communities Ci,m and C j,n

belong to networks Gm and Gn , C j,n is a corresponding community to Ci,m if and only

if
|Ci,m

⋂
C j,n |

|Ci,m
⋃

C j,n | > α, where α ∈ (0, 1] and m �= n, and |C | is the number of vertices in
the community.

For example, in Fig. 2, community {V1, V2, V3, V4, V6} of graph G2 and com-
munity {V2, V3, V4} of graph G4 are both corresponding communities to community
{V1, V2, V3, V4} in graph G1, if we set α = 0.6, μ = 0.1, and γ = 0.75. Thus, each
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Fig. 2 An example of corresponding communities and conserved communities. Filled nodes: seed nodes,
empty nodes: normal nodes, dashed circles: communities

community can have multiple corresponding communities, and each corresponding
community can correspond to several communities.

Definition 5 (Conserved Community) Given a set of k different networks {G1, G2,

. . . , Gk}, a community Ci,m of graph Gm , where 1 ≤ m ≤ k, is an (α, β)-conserved
community, if and only if Ci,m has an α-corresponding community in more than β×k
networks, where α ∈ (0, 1] and β ∈ [0.5, 1]. If both α and β are larger than or equal
to 0.5, we call this community a stable community in a group of networks.

For example, community {V1, V2, V3, V4} in graph G1 (Fig. 2) can be considered
as a conserved community, if α, β, μ and γ are set to be 0.6, 0.75, 0.1, and 0.75,
respectively. Although community {V1, V2, V3, V4} does not have any corresponding
community in graph G3, it still meets the requirement of a conserved community,
because it has corresponding communities in the other two graphs.

Definition 6 (Anomalous Community) Given τ different groups of networks {U1, U2,

. . . , Uτ }, a community C is an anomalous community if and only if C is an (α, β)-con-
served community in one group of networks U j , where 1 ≤ j ≤ τ , α ∈ [0.5, 1] and
β ∈ [0.5, 1], but C has no ω-corresponding community among the (α, β)-conserved
communities of all the other groups of networks, where ω ∈ (0, α).

Figure 3 shows an example of anomalous communities, where ω is set to be 0.4, and
we assume that C11, C12, C21, and C22 are conserved communities detected from two
different groups of networks, U1 and U2 with α = 0.6 and β = 0.75. C12 and C22 are
anomalous communities, because they do not have any ω-corresponding community
among the conserved communities of the other group.

Problem 1 (Detecting Predictive and Phase-biased Communities in Contrasting
Groups of Complex Networks) Given a multi-phase system that can be characterized
by different groups of networks, the problem is to detect all the anomalous commu-
nities that are biased toward a target system phase from the training networks, and
utilize all the detected phase-biased communities as the features to build an ensemble
of classifiers to predict the unknown system phases on the testing data.

According to the statement of Problem 1, the main goal of our technique is to
create an ensemble classifier for determining the phase-state of a network based on
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Fig. 3 An example of anomalous communities. C11 and C12 are conserved communities from the network
group U1, and C21 and C22 are conserved communities from the network group U2. Filled nodes: seed
nodes, empty nodes: normal nodes

the phase-biased communities detected in the training set. Given a set of networks,
we form this ensemble by: (1) identifying phase-related system components, (2) enu-
merating the (μ, γ )-communities enriched by these phase-related components, (3)
identifying phase-biased communities, and (4) forming a classifier ensemble, where
each member predicts the phase-state of a network based on the features in these
phase-biased communities.

Next, we present a number of theoretical results that will allow us to efficiently
enumerate all of the (μ, γ )-communities of a network. This step of our technique is
described further in Sect. 3.5. To enumerate all of these communities, we first observe
that so long as μ > 0, every (μ, γ )-community must contain at least one “seed”
node, so we can enumerate all (μ, γ )-communities by iteratively finding all of the
(μ, γ )-communities that contain each “seed” vertex. In order to enumerate all of the
(μ, γ )-communities that contain a specific “seed” vertex, we use the following theo-
rem in order to establish an initial set of candidate vertices that can be added to the
seed vertex to form a (μ, γ )-community.

Let the distance between two vertices be the length of the shortest path between
them.

Theorem 1 Let S be a subgraph of G. For γ ≥ 0.5, any γ -dense community that is a
supergraph of S will consist of vertices at most distance 2 from every vertex of S. We
denote this set as N2(S).

Proof Let C be a γ -dense community with γ ≥ 0.5, and suppose there are two verti-
ces, u and v in C that are distance 3 apart. As u and v are at distance 3, they must have
no neighbors in common. As γ ≥ 0.5, u and v must each be adjacent to two disjoint
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sets of at least (0.5)(|C | − 1) vertices, not including u and v. Thus, between u, v, and
their neighborhoods, there are at least 1+ 1+ 2(0.5)(|C | − 1) = |C | + 1 vertices in
C . This is clearly impossible, so there must not be any vertices in C that are distance
3 apart. Thus, the diameter of any γ -dense community with γ ≥ 0.5 can be at most 2.

��
By methodically exploring all subgraphs of the vertices within distance 2 of a seed

vertex, we can be assured that we will find all of the (μ, γ )-communities. However,
as this set of subgraphs may form a very large search space, we wish to establish some
additional results that will allow us to prune the search space without missing any of
the (μ, γ )-communities (see Algorithm 2 in Sect. 3).

The remaining theorems will enable us to eliminate candidates from consideration,
reducing the search space for the algorithm. The intuition behind Theorems 2–3 is
that if we are unable to satisfy the density or enrichment requirements after adding
all of the candidate vertices that are query vertices or adjacent to a vertex of our
(μ, γ )-community, then we know that there is no way to form a (μ, γ )-community
from the current subgraph, and we needn’t explore this branch of the search space.
Theorems 4–7 deal with placing limits on the number of non-adjacent query candidate
vertices or non-query adjacent candidates vertices we may add to our subgraph based
on a combination of the density and enrichment requirements.

Theorem 2 Let S be a subgraph of G, and let V be the set of all possible vertices that
may be contained in some supergraph of S that is a γ -dense community. Let v be any
vertex of S, and let sa and ca be the number of vertices of S and V , respectively, that
are adjacent to v. If sa + ca < γ (|S| − 1+ ca), no supergraph of S can be a γ -dense
community. And if sa + ca ≤ γ (|S| + ca), neither S ∪ {v} nor any supergraph of it
can be a γ -dense community.

Proof Suppose the negation: sa + ca < γ (|S| − 1+ ca) and there exists a supergraph
H of S that is a γ -dense community.

Let ha be the number of vertices of H \ S adjacent to v. By the definition of the set
V , ha ≤ ca . Subtracting γ (ca − ha) from both sides of the previous inequality, we
see that sa + ca − γ (ca − ha) < γ (|S| − 1 + ha). As 0 < γ ≤ 1 and ca − ha ≥ 0,
ca − ha ≥ γ (ca − ha), so

sa + ha = sa + ca − (ca − ha)

≤ sa + ca − γ (ca − ha)

< γ (|S| − 1+ ha)

Since H must have at least |S| + ha vertices, γ (|S| − 1 + ha) ≤ γ (|H | − 1), so
sa + ha < γ (|H | − 1). However, H has only sa + ha vertices adjacent to v, implying
that H is not a γ -dense community. This is a contradiction; therefore, the claim must
be true.

Similarly, we can prove that if sa + ca ≤ γ (|S| + ca), neither S ∪ {v} nor any
supergraph of it can be a γ -dense community. ��
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Theorem 3 Let cq be the number of vertices in V ∩ Q. If there are fewer than μ|S| −
(1− μ)cq vertices in S ∩ Q, then neither S nor any supergraph will be μ-enriched.

Proof Suppose not, and let H be a supergraph of S that is a μ-enriched. Let hq be
the number of vertices of H \ S that are in Q. Since V contains cq vertices in Q,
hq ≤ cq . As S contains less than μ|S| − (1 − μ)cq vertices in Q, H contains less
than μ|S| − (1−μ)cq + hq ≤ μ|S| − (1−μ)hq + hq = μ(|S| + hq) vertices in Q.
However, as |H | ≥ |S| + hq , this implies that H contains less than μ|H | vertices in
Q, contradicting our assumption that H is μ-enriched. ��
Lemma 1 Let H be a (μ, γ )-community, let S be a subgraph of H, and let v be a
vertex of S. Let sa be the number of vertices of S adjacent to v, sq be the number of
vertices in S that are not in Q, caq be the number of vertices in H \ S that are in Q
and adjacent to v, and caq be the number of vertices in H \ S that are adjacent to v

but not in Q.

(1− μ)(sa + caq + caq + γ )− γ (sq + caq) ≥ 0

Proof H must contain at least μ|H | vertices in Q, so it contains at most |H |−μ|H | =
(1 − μ)|H | vertices not in Q. By our definitions, sq and caq both represent vertices
in H that are not in Q, so this fact implies that

sq + caq ≤ (1− μ)|H |. (1)

Similarly, H must contain at least γ (|H | − 1) vertices adjacent to v, so

γ (|H | − 1) ≤ sa + caq + caq , or (2)

γ |H | ≤ sa + caq + caq + γ. (3)

Multiplying Eq. 1 by γ and Eq. 3 by 1− μ (both of which must be positive), we see
that

γ (sq + caq) ≤ γ (1− μ)|H | and (4)

γ (1− μ)|H | ≤ (1− μ)(sa + caq + caq + γ ). (5)

Thus, γ (sq + caq) ≤ (1− μ)(sa + caq + caq + γ ), proving the claim.

Theorem 4 Let v be a vertex in S. Let sa be the number of vertices of S adjacent to
v, sq be the number of vertices in S that are not in Q, caq be the number of vertices
in V that are in Q and adjacent to v, and caq be the number of vertices in V that are
adjacent to v but not in Q.

If γ < 1−μ and (1−μ)(sa + caq + caq + γ )− γ (sq + caq) < 0, then neither S
nor any supergraph of S will be a (μ, γ )-community.

Proof Consider an arbitrary (μ, γ )-community H such that S is a subgraph of H . If
we let haq and haq represent the number of vertices in H \ S that are adjacent to v
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and are in Q and not in Q, respectively, then haq and haq must satisfy the inequality
(1 − μ)(sa + haq + haq + γ ) − γ (sq + haq) ≥ 0 by Lemma 1. As H must be a
subgraph of S ∪ V , haq and haq must satisfy 0 ≤ haq ≤ caq and 0 ≤ haq ≤ caq . As
γ < 1− μ, (1− μ)(sa + haq + haq + γ )− γ (sq + haq) is maximized at haq = caq

and haq = caq , so if (1 − μ)(sa + caq + caq + γ ) − γ (sq + caq) < 0, no subgraph
of S ∪ V containing v may be a (μ, γ )-community.

Theorem 5 Let v be a vertex in S, and let sa, sq , and caq be as in Theorem 4.
If γ ≥ 1 − μ and (1 − μ)(sa + caq + γ ) − γ sq < 0, then neither S nor any

supergraph of S will be a (μ, γ )-community.

Proof The proof for Theorem 5 is similar to the proof for Theorem 4, with the excep-
tion that (1−μ)(sa + haq + haq + γ )− γ (sq + haq) is maximized at haq = caq and
haq = 0.

Lemma 2 Let H be a (μ, γ )-community, let S be a subgraph of H, and let v be a
vertex of S. Let sq be the number of vertices of S in Q, sa be the number of vertices in
S \ {v} not adjacent to v, caq be the number of vertices in H \ S that are adjacent to
v and in Q, and caq be the number of vertices in H \ S that are in Q but not adjacent
to v.

(1− γ )(sq + caq + caq)− μ(sa + caq + 1− γ ) ≥ 0

Proof This lemma follows from the inequalities (1 − γ )(|H | − 1) ≤ sa + caq and
μ|H | ≤ sq + caq + caq , similar to Lemma 1. ��
Theorem 6 If γ < 1− μ and (1− γ )(sq + caq + caq)− μ(sa + caq + 1− γ ) < 0,
then neither S nor any supergraph of S will be a (μ, γ )-community.

Theorem 7 If γ ≥ 1− μ and (1− γ )(sq + caq)− μ(sa + 1− γ ) < 0, then neither
S nor any supergraph of S will be a (μ, γ )-community.

Proof Similar to Theorems 4 and 5, Theorems 6 and 7 follow from maximizing the
expression (1−γ )(sq+haq+haq)−μ(sa+caq+1−γ ) at haq = caq and haq = caq

or 0, respectively. (Note that μ < 1− γ iff γ < 1− μ.)

3 Method

Given the definitions and theorems, in this section we address the aforementioned
technical challenges through some key innovative steps underlying the methodology.
The methodology is summarized in Fig. 4.

3.1 Step 1: Abstracting the dynamic system

We first define the mathematical form for the dynamic system using climate spatio-
temporal data as an example. Formally, let F be a set of variables (or factors) that
characterize the system over spatial locations L over time period T . For example,
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Fig. 4 The overview of our methodology. a Step 1–Step 3. b Step 4–Step 7

the climate system could be characterized by its climatological factors, such as Sea
Surface Temperature (SST), Sea Level Pressure (SLP), and Vertical Wind Shear
(VWS) defined over spatial (latitude, longitude, altitude) grid points over a time period
of 1950–2010 with monthly mean values.

We divide T into disjoint segments T1, T2, . . . , Tm (say, calendar years), where
each Tj can be further split into an observable time period Tj,o and a forecasting time
period Tj, f , according to time frame of the extreme event.

In the context of hurricane extreme events, for example, each time interval Tj

may correspond to a calendar year that is further divided into a hurricane season
Tj, f = {July–November}, for which hurricane activity, say in the North Atlantic
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Fig. 5 Our proposed mathematical form for classification of spatio-temporal data

region, is being forecasted based on the observed or simulated monthly means for
climatological factors defined over the entire globe L during the hurricane pre-season,
Tj,o = {November–June}.

We consider the problem of classifying the climate system’s state P over these
time intervals according to some event-specific taxonomy. For example, according to
paper (Chu et al. 2007), seasonal hurricane activity of Taiwan region could be broadly
categorized as “above normal” (say, more than four hurricanes during the hurricane
season), “normal,” or “below normal” (say, less than three hurricanes in a season).

Based on the aforementioned notations, the mathematical form can then be defined
as follows (Step 1, Fig. 4). Let each row of the matrix correspond to each time inter-
val Tj , j ∈ {1, 2, . . . , m}, and let each column of the matrix correspond to a 3-tuple
defined over F = F × L × T∗,o, where T∗,o is replaced with Tj,o for the correspond-
ing row Tj . Thus, each (row, col) cell of the matrix is filled in with the value of the
corresponding variable in F for column col defined at the corresponding spatial point
in L and the corresponding time Trow,o.

Furthermore, let us assume that a set of known extreme events E is defined over
some spatial region Le, and the class label from P is assigned to each time interval
Tj based on the accumulative statistics of the observed events over Tj, f time period
in region Le.

Figure 5 illustrates this mathematical abstraction using SST as variable, or pre-
dictand, defined over T = (1970–1972) during the months of T∗,o = {May, June}
over (latitude, longitude) spatial grid points for the sea-level altitude. The class label
is inferred based on the historical record of observed hurricanes in North America
during T∗, f = (July–November) hurricane season.

3.2 Step 2: Data preprocessing

Given the aforementioned mathematical form of the original system data, the next
step of our algorithm is data preprocessing designed to help us identify phase-related
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community seeds in Step 3 (see Sect. 3.3). While the choice of which data preprocess-
ing techniques to employ may be dependent on the type of data under consideration, for
preprocessing spatio-temporal data, we use two techniques including spatio-temporal
deseasoning and discretization-based denoising.

Spatio-temporal deseasoning If temporal data can exhibit seasonality, such as win-
ter, spring, summer, and fall, each variable’s time series at each spatial location is
first transformed into the time series with zero mean and unit variance per season.
This technique avoids learning a strong seasonality signal and also enables multiple
variables with different scales of measurement to be combined into different columns
of the same matrix.

Discretization-based denoising Dynamic system data like the climate data contains
a lot of “noise” or irrelevant signals, so another important preprocessing step is to
perform data cleaning or data denoising. We use a discretization method by Fayyad
and Irani (1993) to filter out noise or irrelevant features in the data. This technique has
been found to be effective in some domains like microarray analysis (Tan and Gilbert
2003), where non-discriminatory genes are filtered out before performing actual learn-
ing process on the gene expression data.

3.3 Step 3: Identifying phase-related system components

In this section, we aim to detect the phase-related system components or features,
which can be used as seeds to generate (μ, γ )-communities in a network (see Step 5).

Given the mathematical classification form (Step 1) and the preprocessed spatio-
temporal data (Step 2), we deploy decision tree based procedure for identifying the
candidate system phase-related components or features.

There are multiple reasons for why we use a methodology based on decision trees
for our feature space partitioning, including (a) their efficiency in processing many fea-
tures (unlike Bayesian Belief Networks (BBNs), which have exponential complexity
relative to the number of features), (b) support for multi-class data sets (unlike Support
Vector Machines (SVMs), which are inherently binary classifiers), (c) the ability to
handle continuous and multi-variate types of features (unlike Neural Networks (NNs),
for which distance metrics are poorly defined for mixed data types), among others. We
use the Classification and Regression Trees (CART)-decision tree algorithm (Breiman
et al. 1984) to select a set of discriminatory features from the available feature space.
Basically, CART builds a decision tree by choosing the locally best discriminatory
feature at each split step based on the Gini Index Impurity Function. To avoid overfit-
ting, CART employs backward pruning to build smaller, more general decision trees.
CART chooses features in a multivariate fashion, which allows the feature selection
process to find a set of discriminatory features instead of considering one feature at a
time.

More importantly, especially in the context of underdetermined or unconstrained
problems, CART’s inherent feature pruning capability often leads to a smaller number
of features. Also, decision boundaries themselves could result in rules that are more
interpretable and could provide additional insights to domain scientists on how much
the identified features affect the system’s state. Not only is it important to know what
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group of features contributes to the system’s state, but also to what extent the feature
values influence the system’s state.

Algorithm 1: Phase-related component enumerator
Input:

F : a set of features
D: a set of training data over F
P : a set of system states over D
A : basic classification algorithms

: (e.g., decision tree, SVM, Naïve Bayes, etc.)
Output:

C I G: identified community seeds
C I G ← ∅;1
while stopping criterion is not met do2

/*Run CART-decision tree to get a set of candidate features */
Run decision tree algorithm on D with feature set F to get a pruned decision tree M ;3
Let FM be a set of all features that belong to the internal nodes of M ;4
DFM

← Extract the data from D only with the features in FM ;5

Predictive skill score εM ← applying A to train DFM
;6

if εM meets the training accuracy criterion then7
Add FM to C I G;8

Remove features in FM from F ;9

return C I G;10

Specifically, we identify a candidate set of discriminatory features by building a
decision tree model M using CART and extract the features that correspond to the
internal nodes of M (Lines3–5 in Algorithm 1). The candidate system’s features are
then assessed in terms of their ability to contribute to the system’s states. Basically,
the goal is to define a scoring function that measures how well each group of fea-
tures discriminates between system states. We define a scoring function in terms of
classification accuracy (training accuracy in our experiments) provided by multivari-
ate discriminant methods, such as SVMs, BBNs, neural networks, or decision trees.
Specifically, we ask a question: if we used only the given set of candidate features to
determine the system’s state, how much predictive ability would this set have? Since
individual features within the candidate group could be related to each other in a com-
plex manner, we first let a proper classifier (e.g., kernel SVM or BBN) learn these
complex relationships from the candidate features and predict the state of the system
by using the candidate features only (see Lines 5–6 in Algorithm 1). If the training
accuracy of the candidate feature set is above the threshold we set, the features are
added to the community seed set.

The combinatorial nature of this task necessitates heuristic approaches. Our strategy
is inspired by the way biologists often conduct their mutagenesis studies. Namely, they
knock-out a group of genes (e.g., via gene deletion) and observe the mutant system’s
response. By analogy, our methodology knocks-out the selected candidate feature sets
and proceeds in an iterative fashion until some stopping criterion is met (see Line 2 in
Algorithm 1). Under this approach, each iteration produces a subset of features out of
the current feature set (see Line 4 in Algorithm 1), then removes these features from
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Fig. 6 A table-view of spatio-temporal data

the set so that they can’t be selected again (see Line 9 in Algorithm 1). The maximum
number of iterations is set as our stopping criterion. A set of phase-related features or
components is output, when the stopping criterion is met.

3.4 Step 4: Constructing contrast-based groups of networks

There are several steps to construct climate networks, including constructing nodes of
a network, calculating anomaly value, building edges of a network, and partitioning
the networks into different groups.

The nodes (or oscillators Tsonis and Roebber 2004) of a climate network are iden-
tified with the physical locations or spatial grid points, which correspond to the time
series of gridded climate data (see Fig. 6).

At each grid point, we calculate for each month m = 1, . . . , 12 (i.e., separately
for all Januaries, Februaries, etc.) the mean θm = 1

Y

∑
zm,y and standard deviation

σm =
√

1
Y−1

∑
(zm,y − θm)2, where y is the year, Y is the total number of years

in the dataset, and zm,y is the value of series Z at month m and year y. Each data
point is then transformed by using z-score transformation, that is each data point is
(zm,y = zm,y−θm

σm
) subtracted the mean and divided by the standard deviation of the

corresponding month.
The edges between pairs of nodes exist depending on the degree of statistical

interdependence between the corresponding pairs of time series taken from the cli-
mate data set. The Pearson correlation coefficient is chosen as a measure of link
strength (Tsonis and Roebber 2004). For two series Z and X the correlation r is com-

puted as r(Z , X) =
∑

(zi−z̄)(xi−x̄)√∑
(zi−z̄)2

∑
(xi−x̄)2

, where zi is the i th value in Z and z̄ is the

mean of all values in the series. Note that the correlation coefficient has a range of
[−1, 1], where 1 denotes perfect agreement and−1 perfect disagreement, with values
near 0 indicating no correlation. Since an inverse relationship is equally relevant in
the present application, we set the correlation score to |r |, the absolute value of the
correlation coefficient. Although nonlinear relationships are known to exist in climato-
logical systems, the observed similarity of Pearson correlation still can be considered
statistically significant, as concluded by Dongesv et al. (2009). Thus, we use Pearson
correlation to measure the similarity between a pair of nodes in this work.

A correlation-based pruning is applied to the networks to prune the edges, that is
only the pairs of nodes with the correlation scores above some threshold would be
considered connected. To avoid the multiple comparison problem, the Monte Carlo
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method is used. Specifically, for each network, we randomly sample N sets (say,
N = 1, 000) from the entire edge set of the tenth size as the original network, and
compute the corresponding correlation threshold with p value = 0.05 from each
sample set. The selected threshold for the target network is the one that meets 95 %
confidence level within the threshold distribution for N samples.

Because the networks change over time, we build a network according to a calendar
year. For example, for a time period over 1950–2009 with two climate variables (e.g.,
SLP and SST), up to 120 different networks can be built, with one network per year
for each variable.

The complex networks of a dynamic system can be partitioned into different groups
corresponding to different system’s states (i.e., class P in Fig. 5). For example, in a
tropical cyclone (TC) prediction system, we can build three different groups of cli-
mate networks, with one corresponding to strong TC years, one with normal TC years,
and another with low TC years, based on the distribution of historical data. Different
groups of networks may exhibit different properties of the community structure.

3.5 Step 5: Enumerating (μ, γ )-communities

We hypothesize that if the system feature or component is key to defining the system’s
state then its value distributions will be separable between the observations from dif-
ferent states. If the separation is strong, then such a feature, alone, is likely able to
discriminate system states. And almost any method, like entropy-based, would likely
succeed in detecting those features. However, with real data sets such a strong separa-
tion is less likely. There are different reasons for such an assumption. For example, the
evolution of system behavior may induce non-functional changes to the system fea-
tures. Thus, the effective analysis should not only include an individual feature with a
strong discriminatory signal, but also extend to a group(s) of interplaying features out
of a set of thousands of features. This creates a multiplicity of possible combinatorial
interplays to search for and excludes a possibility for a brute-force enumeration.

In some cases, the domain knowledge may assist with constraining the search space
of possible interplays. For example, climate index El Niño/La Niña–Southern Oscilla-
tion (ENSO) has been found to be highly correlated with hurricane activities (Camargo
et al. 2010). For a more general and domain-independent solution, however, the issue
of properly constraining the search space still remains.

Standard algorithms would attempt to find all dense subgraphs throughout the net-
works. However, in real-world dynamic system data, there are a lot of irrelevant fea-
tures or “noises.” Including all features including the “noises” to generate the dense
subgraphs would retrieve a huge number of results irrelevant to the system phases
or states. We hope to reduce the problems of high algorithmic complexity and the
number of irrelevant results by integrating the system phase-related components or
features into the search in the form of a “seed set” of vertices. For example, given a
phenotype-expressing organism, a biologist might have known a set of proteins that
are related to the target phenotype. By using those proteins as the “seed” set, we can
identify all the dense functional modules in a biological network that contain some
part of the “seed” vertices.
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Specifically, given the set of phase-related system components as seeds (Step 3)
and a constructed network (Step 4), the basic premise of our method is that we will
build the (μ, γ )-communities one vertex at a time, starting with a single query vertex
v0 and backtracking as we find maximal (μ, γ )-communities or subgraphs that cannot
be contained in a (μ, γ )-community. For this section, we continue the convention that
S represents the current subgraph under consideration, and C represents the set of
vertices that could extend S to produce a (μ, γ )-community. A pseudocode outline of
the algorithm appears in Algorithms 2 and 3.

Algorithm 2: (μ, γ )-community generation algorithm, continued in Algorithm 3
Input:

G : a given graph
μ : an enrichment parameter
γ : a density parameter
Q: a “seed” vertex set

Output:
C : Communities or dense enriched subgraphs in graph G

foreach v0 ∈ Q do1
S← {v0};2

V ← N 2(v0);3
/*dv = sa + ca − γ (|S| + ca): condition of Theorem 2 */
Calculate dv for all v ∈ S ∪ V ;4
/*ε = μ|S| − (1− μ)cq : condition of Theorem 3 */
Calculate ε ;5
/*gv = (1− μ)(sa + caq + caq + γ )− γ (sq + caq ): condition of Theorem 6 and 7 */
;6
Calculate gv for all v ∈ S ∪ V ;7
/*mv = (1− γ )(sq + caq + caq )− μ(sa + caq + 1− γ ): condition of Theorem 6 and 7 */
;8
Calculate mv for all v ∈ S ∪ V ;9
Remove all unpromising vertices of V ;10
if S ∪ V is maximal then11

Call Enumerate();12
13

From Theorem 1, we can see that the vertices at most distance 2 from every vertex
of S can serve as an appropriate starting point for our set V . However, rather than
recalculating this intersection of sets every time a vertex is added to the set S, we
first define V as the set of all vertices within distance 2 of the initial vertex, N 2(v0),
(in Line 3 of Algorithm 2) and intersect V with N 2(v) for each vertex v we add to
S as part of line 12 of Algorithm 3. As these N 2(v0) sets can be precomputed and
stored in a matrix, this technique should make for a much more efficient way to apply
Theorem 1.

By Theorem 2, we know that for any vertex v ∈ V , if sa represents the number of
vertices of S adjacent to v, ca represents the number of vertices of V adjacent to v, and
sa + ca ≤ γ (|S| + ca), then neither S ∪ {v} nor any supergraph can be a (μ, γ )-com-
munity. Rather than recomputing this inequality every time we add or remove a vertex
from S, we calculate and maintain the value of sa + ca − γ (|S| + ca) as dv (lines 4
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Algorithm 3: Enumerate function
Input:

G: a given network or graph
μ : an enrichment parameter
γ : a density parameter
V : the set of all vertices within distance 2 of the initial vertex
S : the current subgraph under consideration

Output:
Communities that contain initial vetex in graph G

T ← V ;1
while some vertices of V are marked do2

Remove all marked vertices from V ;3
if S violates one of the theoretical constraints then4

Restore all vertices of T \ V to V ;5
return;6

Update ε and all dv , gv , and mv values as appropriate;7
if S ∪ V is nonmaximal then8

Backtrack until some vertex of V is restored;9
10

while V �= ∅ do11
Choose v in V according to some heuristic and move v to S ;12
Update ε and all dv , gv , and mv values as appropriate;13
if gv < 0 or mv < 0 for some v ∈ S then14

Restore vertices of T \ V to V ;15
Update ε, dv , gv , and mv values appropriately;16
return ;17

Mark all vertices of V to be removed;18
if S does not violate any of the theoretical constraints then19

Call Enumerate();20
21

Remove v from S;22
Update ε and all dv , gv , and mv values as appropriate ;23
if S violates one of the theoretical constraints then24

Restore vertices of T \ V to V ;25
Update ε and all dv , gv , and mv values ;26
return ;27

Iteratively remove unpromising vertices of V ;28
Update ε and all dv , gv , and mv values as appropriate ;29
if S ∪ V is nonmaximal then30

Backtrack until some vertex of V is restored;31
32

if no recursive call of Enumerate() found a (μ, γ )-community then33
Output S;34
Update the maximality index for each vertex in S;35

Restore vertices of T \ V to V ;36
Update ε, dv , gv , and mv values appropriately ;37
return ;38
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of Algorithm 2 and lines 7, 13, 16, 22, 25, 28, and 36 of Algorithm 3), reducing the
value when we remove an adjacent vertex from the candidate set or when we add a
nonadjacent candidate to the current subgraph. When this dv value becomes zero or
negative, v may be removed from V . We also maintain a dv value for each v ∈ S, as
we know from Theorem 2 that sa + ca ≤ γ (|S|− 1+ ca), where sa and ca are defined
as before. When the value of du becomes negative for a vertex u ∈ V , we can remove
u from V by the result of Theorem 2. Additionally, when dv decreases below γ for
a vertex v ∈ S, we can remove all vertices of V that are nonadjacent to v, as adding
such vertices to S would violate Theorem 2.

In a similar fashion, we calculate the initial values for ε and each gv and mv value
(see Lines 4 to 7 in Algorithm 2 for definitions) and update these values as the algo-
rithm progresses. We can then remove vertices from V whose addition to V would
violate Theorems 3, 4, 5, 6, or 7.

In order to decide when a (μ, γ )-community is maximal, we propose maintaining
a bitmap index of the (μ, γ )-communities that contain each vertex. As the algorithm
identifies (μ, γ )-communities, it assigns numbers to them sequentially and adds these
values to the indices for the vertices contained in the (μ, γ )-communities. Then, as we
add and remove vertices from set V , we check to see if there is an already-discovered
(μ, γ )-community that contains all vertices of S ∪ V by performing a bitwise and
of the associated indices. If there is an already-discovered (μ, γ )-community that is
a superset of S ∪ V , we may safely backtrack, as no further extensions of S will be
maximal.

We use a hierarchical bitmap index rather than a prefix tree because we need to be
able to detect subsets of a set, as well as equality. While prefix trees are very good
at detecting equality or initial substrings, being able to recognize an arbitrary subset,
such as the subset {b, c, e} of the set {a, b, c, d, e}, would require a very dense prefix
tree. In terms of bitmaps, to recognize {b, c, e} as a subset of {a, b, c, d, e}, we apply
a binary “and” to all of the bitmaps associated with vertices b, c, and e to see if a
previous clique contains all three of these vertices simultaneously, and if {a, b, c, d,
e} were the nt h clique discovered, the nt h bit of all five bitmaps would be set.

3.6 Step 6: Detecting and tracking anomalous communities in contrasting groups
of networks

The anomalous communities in the contrasting groups of networks are more “biased”
towards the target system phases than the communities in a single network, or con-
served (or stable) communities in a group of time-varying networks. Thus, in this
section, our goal is to extract only the anomalous communities from all communities
generated from different groups of networks.

Based on the Definition 6, in order to identify anomalous communities, we first
need to detect all (α, β)-conserved communities in each group of networks, where
1 ≤ j ≤ i , α ∈ [0.5, 1] and β ∈ [0.5, 1]. A stable community should have at least one
α-corresponding community in majority of the networks of the same group. That is the
size of overlapping parts between the stable community and its “strict” correspond-
ing community should be larger than half (at a minimum) the size of any of them.

123



Z. Chen et al.

Algorithm 4: Anomalous community detection algorithm, continued in
Algorithm 5

Input: C : All communities generated from all graphs
in contrasting groups {U1, U2, ..., Uτ }
β, ω, α: Parameters
Output: χ : A set of anomalous communities
/*Detecting stable communities in each group of networks */
for i = 1 : τ do1

anomaly_indicator = 0;2
SCi = Call Detecting();3

/*Using the τ sets of SC as inputs for detecting anomalous communities */
anomaly_indicator = 1;4
α = ω ;5
χ= Call Detecting();6

Algorithm 5 summarizes the aforementioned stable community detection procedure.
After detecting stable communities from all groups of networks, each stable commu-
nity is examined to see if it has any “looser” corresponding community (with minimum
intersection factor ω, where ω ∈ (0, α]) in the set of stable communities of all the
other groups. Only those communities that do not have any “looser” corresponding
community will be considered as anomalous communities.

The anomalous community detection between the different sets of stable commu-
nities (with each set generated from each group of networks) only requires a little
change with regard to the input variables (see Lines 4 to 6 in Algorithm 4) and the
output process (see Lines 16 to 17 in Algorithm 5).

3.7 Step 7: Building an ensemble of classifiers from anomalous communities

While the enumerated set of anomalous communities is important in its own right (as
illustrated in Sect. 4), here we combine them altogether by building an ensemble of
classifier models.

For each of the anomalous communities χ identified, we specifically distinguish
between treating it as a binary feature (i.e., the community is present or absent in a
graph) or continuous features, that is we form a new data set Dχ by restricting the
original data to include only the features (or spatial grid points) Fχ in χ . We then train
a separate base classification algorithm A (e.g., decision tree, SVM, Naïve Bayes,
etc.) on the binary data set or the restricted data set to construct a candidate classifier
model ζ . The candidate classifier model ζ will only be included into the ensemble of
classifiers if it meets the model selection criterion. The resulting class prediction for
the event with the unknown class label is based on the majority voting of the selected
classifiers ζ ’s.

Some of the key characteristics for building a robust classifier ensemble include
(a) the diversity among the classifier models in the ensemble and (b) the reasonably
high accuracy of the individual members in the ensemble. In our case, the former is
ensured due to our feature set knock-out strategy (Step 4) and the latter is guaran-
teed by a combination of the scoring function (Step 2) and the statistical significance
assessment (Step 3) that, in combination, also reduce possible redundancy among the
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Algorithm 5: Detecting function
Input: α, β: Parameters for conserved community
C : All communities in k graphs,
or stable communities from k groups
anomaly_indicator: An indicator for anomalous community detection
Output:

η: A set of detected communities
Initialize count;1
for snapshot s = 1 : (k − 1) do2

for snapshot n = s + 1 : k do3
indicator =0;4
for each community Cs,i in Gs do5

for each community Cn, j in Gn do6
overlap_part = |Cs,i

⋂
Cn, j |;7

if overlap_part/|Cs,i
⋃

Cn, j | > α then8
counts,i = counts,i + 1;9
if indicator=0 then10

countn, j = countn, j + 1;11

indicator =1;12
13

break;14
15

if anomaly_indicator = 0 then16
17

[I J]=find(count > β ∗ k);18
else19

[I J]=find(count < β ∗ k);20

Add CI,J to η for each pair of I and J at the same row;21
Delete duplicate communities in η;22
Output η;23

models and thus reduce the possible bias (e.g., due to a significantly large portion of
highly similar models).

Finally, in the last step (Step 7 in Fig. 4), we need to combine the predictions of all
the classifiers that pass statistical significance criterion (Step 3) to come up with the
final prediction value. In order for the ensemble to make a prediction, each classifier
is given a weighted vote, and the class with the most votes is the prediction of the
ensemble. We tested three possible weighting schemes (Tao et al. 2006): a simple
majority voting scheme, in which every classifier is given equal weight; a training
error-based method, in which every classifier is weighted based on its training error;
and a confidence-based method, in which each classifier is weighted by that model’s
associated confidence value. Due to space limitations, we present results for a simple
case, majority voting.

4 Experimental results

The nature of the proposed methodology suggests that detected anomalous communi-
ties from contrasting groups of networks (Steps 1–7) (1) could play an important role
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in defining the system’s state(s) and (2) collectively, could improve the predictive skill
of the system’s states (Step 7). We also demonstrate the efficiency of our algorithm by
applying it to the synthetic datasets.

4.1 Data and tasks

Two real-world extreme event prediction tasks are considered in this paper:

1. Seasonal tropical cyclone prediction: The first task is to predict the seasonal trop-
ical cyclone (TC) count in some spatial region (Goldenberg and Shapiro 1996;
Kim and Webster 2010). TCs, especially hurricanes, have become a serious issue
of our era because they result in enormous loss of life and property.

2. African Sahel rainfall prediction: The second task is to predict the seasonal rainfall
in North Africa, especially, in the Sahel area (Yeshanew and Jury 2007). Rainfall
in this area is highly related to meningitis epidemics that affects more than 200,000
people throughout the region annually.

We use the North Atlantic tropical cyclone (TC) count series from 1950 to 2009
from the seasonal (July through November) Atlantic hurricane database (HURDAT)
at the National Climatic Data Center to form the class labels. We also utilize the North
Pacific seasonal (June through October) TC count series from 1970 to 2006 provided
by the Central Weather Bureau (Chu et al. 2007). Monthly rainfall data is obtained
from the Climate Research Unit at a 0.5◦ × 0.5◦ latitude and longitude resolution for
the period of 1950–1998. East Sahel rainfall indices are obtained by averaging seasonal
(July through September) mean precipitation data over (10–20◦N, 15–30◦E).

The monthly mean sea level pressure (SLP), precipitable water (PW), sea surface
temperature (SST), and tropospheric vertical wind shear (VWS) data are used for the
North Atlantic TC, North Pacific TC and Sahel rainfall class prediction. SLP and PW
are NCEP/NCAR reanalysis datasets. They are available at a 2.5◦ × 2.5◦ latitude and
longitude resolution. SST is from the NOAA Climate Diagnostic Center in Boulder,
Colorado, at a resolution of 2◦ × 2◦ latitude and longitude. VWS is calculated by
computing the square root of the sum of the square of the difference in zonal wind
component between 850 and 200 hPa levels and the square of the difference in merid-
ional wind component between 850 and 200 hPa levels (Clark and Chu 2002) from
NCEP/NCAR reanalysis data.

The observed extreme event count series of the target system are classified into
three classes: below normal, normal, and above normal, with a distribution of 40 % as
normal and 30 % each as below normal and above normal. For instance, in the case of
Taiwan region TC prediction (Chu et al. 2007), years with fewer than three seasonal
TCs are classified as below normal, and years with at least five TCs are classified as
above normal.

We use parameters γ = 0.75 and μ = 0.001, which correspond to searching for
dense but not necessarily complete subgraphs as communities that contain at least
one of system phase-related components. We use parameters α = 0.6, ω = 0.4, and
β = 0.6 for defining the anomalous communities.

123



Detecting communities in contrasting network groups

Table 1 Identified climate
indices related to hurricane
activities

Community ID Variable Spatial location Climate indices

1 SST (4◦N, 114◦W) Niño 3

(2◦S, 168◦W) ENSO

(42◦N, 30◦W)

(32◦S,16◦W)

2 VWS (27.5◦N, 65◦W) MDR

(52.5◦N, 37.5◦W) NAO

(7.5◦N, 122.5◦W) Niño 3

(10◦S, 60◦W)

(27.5◦N, 55◦E)

3 PW (52.5◦N,135◦E) PDO

(82.5◦N, 15◦W) AO

(37.5◦N, 40◦E)

4 SLP (57.5◦N, 22.5◦W) NAO

(60◦N, 155◦E) PDO

(37.5◦N, 162.5◦W)

(12.5◦N, 122.5◦E)

4.2 State determining communities

Climate indices associated with hurricane activities:
Table 1 shows four different anomalous communities, representing functionally

associated or synchronized groups of oscillators (or spatial grid points), detected by
our algorithm for North Atlantic tropical cyclone prediction. In each community, our
algorithm is able to identify at least one oscillator corresponding to a known climate
index related to tropical cyclone activity. For example, for the first anomalous com-
munity detected from the SST networks, we can see that one oscillator is located
in the Niño 3 region. Niño 3 SST has a strong correlation with Atlantic hurricane
activity (Goldenberg and Shapiro 1996; Kim and Webster 2010). Another oscillator
belongs to the El Niño/La Niña-Southern Oscillation (ENSO) region, which has been
found to modulate the tropical systems and strongly influences North Atlantic tropical
cyclones (Camargo et al. 2010).

The second anomalous community identified oscillators in the hurricane main
development region (MDR) and North Atlantic Oscillation (NAO). The MDR index
has been shown to contribute to the hurricanes generated in the MDR region (Saunders
and Harris 1997; Xie et al. 2005). And the NAO index, especially the June NAO, has
been found to be correlated with North Atlantic hurricane tracks of the incoming hur-
ricane season (Elsner 2001; Xie et al. 2005). The Pacific Decadal Oscillation (PDO)
index was identified in our third community. Shifts in the PDO phase can have signifi-
cant implications for Atlantic hurricane activity, and significant differences are shown
in hurricane intensity between El Niño and La Niño years when the PDO is in the warm
phase (Magill et al. 2008). The PDO index is also identified in the fourth anomalous
community. Our algorithm also finds some other anomalous communities, which
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Fig. 7 One anomalous community detected for African Sahel rainfall prediction

correspond to other climate indices like Atlantic multidecadal Oscillation (AMO) and
Artic Oscillation (AO) that might affect the North Atlantic tropical cyclone activities
too, though this has not been reported in the literature. There are other 342 anomalous
communities detected by our algorithm.

African Sahel rainfall-related teleconnection patterns For the African Sahel region
rainfall prediction case, our algorithm also detected some anomalous communities
with one shown in Fig. 7.

Climate variability in the tropical Atlantic involves complex but interacting pro-
cesses that actively or passively exert their influences on rainfall and relative humidity
variability over West Africa (Sutton et al. 2000). Moisture supply over West Africa
primarily emanates from the eastern equatorial and South Atlantic, determined from
the strength of the meridional and the zonal modes. However, other teleconnection
patterns such as ENSO, NAO, and Indian Ocean dipole are competitively engaged to
dictate the rainfall and relative humidity variability at different scales. The equator-
ward extension of the extratropical NAO pattern influences the West African climate by
weakening the northeasterly trades, whose presence is a prerequisite to the formation
of large-scale convergence over the continent to reinforce convective development.
NAO also influences the region’s climate through a modification of the northern lobe of
the meridional mode. Thus, the detected anomaly community shown in Fig. 7 appears
to support the hypothesis proposed by our climate scientists (our co-authors), which
is being further investigated, that the NAO modulates meridional moisture transport
over the tropical Atlantic, mediated mainly through the zonal equatorial trades.

4.3 Predictive skill of system’s states

Performance evaluation method Because of the small sample size of the spatio-
temporal data, leave-one-out cross validation (LOOCV) is employed to evaluate the
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Fig. 8 LOOCV performance for seasonal TC prediction. a North Atlantic TC prediction. b North Pacific
TC prediction

robustness of our methodology. We utilize several metrics to evaluate the perfor-
mances: accuracy, Heidke Skill Score (HSS) (Jolliffe and Stephenson 2003), and
Peirce Skill Score (PSS) (Jolliffe and Stephenson 2003). Accuracy is defined as the
ratio of the number of correctly classified data points to the total number of data points
in the test set. The HSS measures how well a forecast performs compared to a ran-
domly selected forecast (Jolliffe and Stephenson 2003). And PSS, also called “true
skill statistic,” is another popular skill score computed by the difference between the
hit rate and the false alarm rate (Jolliffe and Stephenson 2003).

Performance comparison: Figure 8 compares our algorithm performance to sea-
sonal tropical cyclone predictions by Chu et al. (2007), Kim et al. (2010), and Kim
and Webster (2010), and three benchmark ensemble classification methods: random
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Table 2 Different modules’
contributions on performance

Metric OC OB BF AC RFC

Accuracy 0.82 0.8 0.72 0.75 0.73

HSS 0.72 0.69 0.58 0.60 0.58

PSS 0.72 0.68 0.59 0.62 0.60

GSS 0.71 0.68 0.55 0.63 0.60

forest, bagging, and boosting. The same basic classifier—CART decision tree, and the
same data including four variables (SST, SLP, VWS, and PW) with all features are
used for all methods. For the North Pacific region, there is a roughly 8 % increase over
the 65.5 % reported by Kim et al. (2010). For the North Atlantic region, our method
achieves an increase of at least 16 % in accuracy and 20 % in HSS and PSS over the
four benchmark methods.

To estimate the contributions of each module in our algorithm to the performance
improvement, we implemented different versions of our algorithm: the original-con-
tinuous version (OC) includes all the algorithm modules by using the continuous
community features (see Sect. 3.7); the original-binary version (OB) also includes
all the algorithm modules but uses the binary community features; the brute-force
(BF) version uses all original features without detecting the anomalous communities,
but it builds the classifiers by using our ensemble method (see Step 7 in Fig. 4); the
all-community (AC) version enumerates all γ -dense communities without using the
phase-related components as the query set (see Step 3 in Fig. 4), while keeping
the other steps in the original-continuous algorithm unchanged; and the random for-
est with anomalous community detection (RFC) version changes only one step in the
original-continuous algorithm by using the random forest instead of our ensemble
method to build the ensemble of classifiers. Among those, AC is the most time-
consuming version because it generates all possible γ -dense communities without
using any query vertex. Irrelevant communities containing all “noises” can be gener-
ated as well, which would affect the prediction performance.

Table 2 compares the performances of different versions on seasonal North Atlantic
tropical cyclone prediction. The original-continuous version outperforms the original-
binary version by 2 % using the binary community features. The accuracy decreases
by 10 % if we did not use the anomalous communities as the features, and decreases by
7 % if we used γ -dense communities instead of (γ, μ)-communities. And our ensem-
ble method outperforms the random forest method by 9 % using the same selected
anomalous community features.

4.4 Efficiency test on synthetic data

In our methodology, the most time-consuming step is (μ, γ )-community generation
(see Sect. 3.5). Thus, in this section, we present the experimental results to demon-
strate the efficiency of our community generation algorithm in large, scale-free graphs
like climate networks.
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Table 3 Graph size and number
of communities generated using
R-MAT

|V (G)| |E(G)| Communities

Clique Enriched Dense

27 889 569 23 14

255 1785 1199 64 21

510 3570 2593 104 72

1022 7154 5563 270 257

2039 14273 11831 485 432

4079 28553 24930 943 659

8132 56924 52025 1915 1774

16285 113995 106973 3991 4031

Table 4 Parameter settings for
synthetic experiments

Description γ μ |Q|
Clique 0.999 0.001 |V (G)|
Enriched 0.5 0.90 |V (G)|/10
Dense 0.85 0.85 |V (G)|/6

We used the R-MAT random graph generator (Chakrabarti et al. 2004) to generate
those graphs of increasing size. The graphs were generated to have vertices equal to a
power of two, with an average vertex degree of 14 (|E(G)| = 7|V (G)|). The graphs
were then processed to remove isolated vertices, which do not contribute to our search
for dense, enriched communities. All graphs were generated using the default R-MAT
parameters of a = 0.45, b = 0.15, c = 0.15, and d = 0.25. More details on the
generated graphs can be found in Table 3.

For the synthetic experiments, we ran our algorithm three times in order to detect
three different types of (μ, γ )-communities: high density, low enrichment (“clique”)
communities where Q contains every vertex of the graph; high enrichment, low den-
sity (“enriched”) communities with a small query set (every 10th vertex of V (G));
and moderate enrichment and density (“dense”) communities with a medium-sized
query set (every 6th vertex of V (G)). These settings were chosen to test the algorithm
(and various candidate vertex constraints) under a wide variety of conditions. The
parameter settings for these three types of communities appear Table 4.

For our implementation, we select the candidate vertex to add to the community
using a naïve heuristic: the candidate that appears first in the array is chosen. We tested
our algorithm on the R-MAT graphs described in Table 3 using all three of the param-
eter settings in Table 4, and we calculated the rate at which the (μ, γ )-communities
were produced. The results appear in Fig. 9.

From Fig. 9, we can see that the “clique” communities were generated much more
quickly than the “dense” or “enriched” communities, likely due to the extremity of
the density requirement for the “clique” communities, which ensures that the resulting
communities are fully connected. Also notable is that the time required per community
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Fig. 9 Timing results for (μ, γ )-community enumeration algorithm

Fig. 10 Speedup results for using hierarchical bitmap index in (μ, γ )-community enumeration algorithm

appears to increase linearly on the log–log plot, implying that the time per community
increases polynomially with the size of the graph.

Moreover, the time required for these problems increased sublinearly, rising by a
factor of less than 30 in all cases, despite the problem size increasing by a factor of
128. While this scaling is obviously dependent on the graphs being analyzed, this
result does suggest that our algorithm would be able to efficiently calculate dense and
enriched communities on large, sparse graphs with a power-law degree distribution.

As a second experiment, we wished to evaluate the effectiveness of using the hier-
archical bitmap index described in Sect. 3.5. For the purposes of this test, we imple-
mented a second version of the algorithm that used only a flat (non-hierarchical) bitmap
index, and we compared the time per community for both implementations.

From Fig. 10, we can see that as the size of the graph increases, the hierarchical
bitmap index provides a significant speedup in the rate of identifying “clique” com-
munities. When calculating “dense” and “enriched” communities, the flat index offers
a moderate improvement over the hierarchical index (as much as 53 %), though this
advantage disappears on graphs larger than 2,048 vertices. These results are likely due
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to the fact that the graphs in question have significantly more “clique” communities
than “dense” or “enriched” communities—as the size of the index grows, so does
the potential advantage in using a hierarchical index. As such, we conclude that the
hierarchical index is successful at improving the algorithmic runtime as the size of the
index grows.

5 Discussion

5.1 Parameter selection

Our algorithm requires five parameters: the enrichment (μ) and the density (γ ) for
defining the communities, and parameters ω, α, and β for defining the anomalous com-
munities. The description of these parameters (in Sect. 2) suggests that higher values
of γ will produce more connected (clique-like) subgraphs. Similarly, higher values of
the enrichment (μ ≥ 0.5) will produce subgraphs that are primarily composed of the
“query” vertices, whereas a very low value (μ ≤ 0.001) will result in enumeration of
all the subgraphs that satisfy the γ threshold and contain at least one query vertex. And
higher values of α and β will produce fewer conserved communities in each group of
networks, whereas higher ω will result in more anomalous communities.

Parameter thresholds depend on the application. In this paper, we are interested
in identifying phase-biased communities in contrasting groups of climate networks,
given a set of extreme event-related climatological oscillators as a “seed” set. Setting
μ value to 0.001 will result in finding all the communities containing at least one
“seed” vertex that could potentially be related to the spatio-temporal extreme events.
Since climate networks are prone to missing information (edges), the value of γ = 1
could be too stringent, and the algorithm may miss some of the extreme event-related
communities. Hence, we chose a γ value of 0.75 (midpoint of 0.5 and 1) to identify
highly connected (but not fully connected) subgraphs as most probable communities
that are teleconnected (i.e., edges linking geographically distant nodes) with extreme
event-related “seed” oscillators. And due to the dynamics of climatological systems,
we set the value of α = 0.6 and β = 0.6 to find all possible but highly phase-related
conserved communities in each group of networks. Finally, a relatively small value of
ω = 0.4 (smaller than α) is chosen to make sure that the anomalous communities are
only conserved within one group of networks, not in the other groups of networks.

Figure 11 shows the sensitivity analysis results of the five parameters on North
Atlantic TC prediction. The default values for the five parameters are: μ ≤ 0.001,
γ = 0.75, α = β = 0.6, and ω = 0.4. We only change the value of one parameter at a
time to test the sensitivity. The results shown in Fig. 11 agree with the aforementioned
parameter analysis.

5.2 Generalization: detecting biologically relevant functional modules through
biological networks

Thus far, we have presented how to detect phase-biased communities from climate
networks. But our algorithm can be applied to other domains as well. Here, we provide
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Fig. 11 Sensitivity analysis for
seasonal North Atlantic TC
prediction
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a general idea on how our algorithm can be used to detect functional modules through
biological networks.

The biological networks like gene functional association networks can be obtained
from the STRING database (Jensen et al. 2009). The nodes in the networks are genes.
And a pair of nodes is connected with an edge if the corresponding genes are consid-
ered to be functionally associated by some evidence. The edge weights are assigned
by the STRING database based on the evidence that support the functional associa-
tion (Jensen et al. 2009).

For a set of networks corresponding to phenotype-expressing organisms, we hypoth-
esize that the conserved α-corresponding communities across the group of networks
are the phenotype-associated functional modules. After generating all communities
from each biological network, we first detect the α-corresponding communities across
two networks, and then check if the α-corresponding communities detected in the pre-
vious two networks are conserved in the third network. This procedure is continued
until all networks in the group are examined.

We can take it one step further and use a group of contrast biological networks
(i.e., networks of organisms that do not express the phenotype) to filter and obtain
communities that are not only identified as conserved in the previous step but are
also “biased” towards the target phenotype. Here, by biased, we mean occurring in
phenotype expressing organisms but not occurring in the phenotype non-expressing
organisms. To achieve this goal, first, the networks are partitioned into different groups
according to the phenotype(s), and then the conserved community detection algorithm

123



Detecting communities in contrasting network groups

Table 5 Dipole detection
results

Dipole Modularity Our method

North Atlantic Oscillation (NAO) Found
Southern Oscillation Index (SOI) Found
Pacific/North American Index (PNA) Found
Arctic Oscillation (AO) Found Found
Western Pacific (WP) Found

is applied to each group of networks. After getting all the conserved communities from
all groups, we remove all the common conserved communities appearing in at least
two groups of networks. The remaining anomalous communities are the phenotype-
associate functional modules, which can be used to improve the predictive skill of the
system’s phenotypes.

5.3 Comparison to the modularity-based community detection

Since there is no existing algorithm that is specifically designed for solving our prob-
lem (see Problem 1), here we only compare the community detection module in our
algorithm (see Algorithm 2) with the modularity-based approach (Clauset et al. 2004).
Both algorithms are applied on the SLP network of the year 1950. The known pressure
dipoles shown in paper (Kawale et al. 2011) were used as a validation set. Dipoles are
one class of teleconnection phenomena that are characterized by recurring patterns of
climate anomalies related to each other at long distances. Such teleconnections are
important for understanding and interpreting climate variabilities.

Table 5 shows the dipole detection results by the modularity-based method and our
(μ, γ )-community generation algorithm. Only if the opposite polarities of a dipole
appearing at two different locations were both detected in a single community, the
dipole was marked as “found” by the algorithm. Among the five known dipoles, only
AO dipole was found by the modularity-based method, while all five dipoles were
found by our algorithm. Thus, although modularity-based method might work better
for some application domains like social networks, we may lose important telecon-
nection information by using the modularity-based community definition. Also, our
algorithm detected many overlapping communities, which are not shown in the table,
while the modularity-based method could only generate the non-overlapping commu-
nities. As mentioned earlier, climate communities (or biological functional modules)
often work in a cross–talking manner. Ignoring the correlation and interaction between
communities is not a good modeling for some complex systems like climatological
ocean-atmosphere system.

Another advantage of our (μ, γ )-community generation algorithm is that a set of
query nodes can be directly incorporated into the community search to improve the
complexity and the quality of the results. For example, a climatologist might wish
to search an El Niño or La Niña climate network for those communities associated
with El Niño or La Niña events using some of his/her known climate indices as “prior
knowledge.”
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6 Conclusions

In this paper, we introduced the important and challenging problem of detecting predic-
tive and phase-biased communities in contrasting groups of networks. We presented an
efficient and effective method that partitions physical system networks into different
groups according to the system’s phases, discovers phase-related system components,
and uses these components as seeds to identify the phase-biased communities across
different groups. Our method successfully identified climate indices associated with
hurricane activities and found teleconnection patterns related to rainfall in the Africa
Sahel region. Our method also improved the predictive skill of the system’s state by
8–16 % relative to state-of-the-art approaches and other ensemble methods, such as
bagging, boosting, and random forest.
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