
An Efficient Uniform Run-time Scheme for Mixed Regular-Irregular
Applications *

Dhruva R. Chakrabarti Nagaraj Shenoy Alok Choudhary Prithviraj Banerjee

Center for Parallel and Distributed Computing
ECE Dept., Tech. Institute, Northwestern University

2145 Sheridan Road, Evanston, IL 60208
{dhruva, nagaraj, choudhar, banerjee}@ece.nwu.edu

Abstract

Almost all applications containing indirect array address-
ing (irregular accesses) have a substantial number of direct
array accesses (regular accesses) too. A conspicuous per-
centage of these direct array accesses usually require inter-
processor communication for the applications to run on a
distributed memory multicomputer. This study highlights
how lack of a uniform representation and lack of a uniform
scheme to generate communication structures and parallel
code for regular and irregular accesses in a mixed regular-
irregular application prevent sophisticated optimizations. F-
urthermore, we also show that code generated for regular
accesses using compile-time schemes are not alzvays compat-
ible to code generated for irregular accesses using run-time
schemes. In our opinion, existing schemes handling mixed
regular-irregular applications either incur unnecessary pre-
processing costs or fail to perform the best communication
optimization. This study presents a uniform scheme to han-
dle both regular and irregular accesses in a mixed regular-
irregular application. While this allows for sophisticated
communication optimizations such as message coalescing,
message aggregation to be made across regular and irregu-
lar accesses, the preprocessing costs incurred are likely to
be minimum. Experimental comparisons for various bench-
marks on a 16-processor IBM SP-2 show that our scheme is
feasible and better than existing schemes.

1 Introduction

A significant amount of research has been devoted to the de-
velopment of compilers which automatically parallelize reg-
ular applications for distributed memory multi-computers.

For the purpose of this study, we refer to regular applica-
tions as those which contain array references of the form
A(f) where A is an array distributed regularly either in a
blocked or cyclic(k) fashion among processors and f is an

‘This research was partially supported by the National Science
Foundation under Grant NSF CCR-9526325, and in part by DARPA
under Contract DABT-63-97-0035.

ph&on to m&e di&al or hard copies of all 0r pti ofthis work fbf
personal or clwmm use is granted without fee provided that copi-
are not m&z of distributed for profit or commercial advantage and that
copies &m this notice and the full citation on the first page. To COPY
ofi&se, b republish, to post on servers or to redistribu~ to lists,
requ&s prior specific permission and/or a fee.
ICS 98 Melbourne Australia
cqyrightACM 1998 0-89791-998~x/98/7...$5.00

affine function of the enclosing loop variables. Irregular ap-
plications are another important class. For the purpose of
this study, we refer to irregular accesses as those array refer-
ences addressed using one or multiple index arrays. The use
of arrays for addressing other arrays makes communication
patterns input-dependent, disabling traditional compiler op-
timizations. Simultaneous use of distribution patterns which
are not regular leads to lack of structure in the code present-
ing difficulties in specifying data and computation distribu-
tion while complicating communication generation. How-
ever, a large subset of these applications has communication
that repeats across multiple iterations. This feature can be
exploited by providing a run-time library which analyzes the
structure of the irregular accesses before actual computation
in a preprocessing step and generates optimized communi-
cation. This is typically referred to as an inspector-executor
[I] paradigm. Runtime libraries like CHAOS/PA RTI [2]
and PILAR [3] simplify implementation of this preprocess-
ing step and subsequent inter-processor communication.

We refer to applications containing a mixture of regu-
lar and irregular accesses as mixed regular-irregular appli-
cations. While most run-time libraries for such applications
focus on optimizations for the irregular accesses, the op-
timizations done for the regular accesses are often not the
best and often incompatible with those for irregular accesses.
This problem is discussed in more detail in subsections 2.1
and 2.2. This paper presents a unified scheme to handle
both regular and irregular accesses in a program by employ-
ing the same representation for both of them.

The outline of the remainder of the paper is as follows.
Section 2 explains in detail the problem we are trying to
solve while Section 3 outlines the scheme used by us. Ex-
perimental results are presented in Section 4. Comparisons
with other existing schemes show the feasibility of our ap-
proach. The last two sections discuss the relevance of this
work in the context of some related work and present our
conclusions.

2 Problem Description

2.1 Common References among Regular and Irregular Ac-
cesses

We analyze a typical program fragment that may occur in
a mixed regular-irregular application. Figure l(a) shows a
program fragment where a dense array a is accessed both
in a regular (line 3) and irregular (line 8) manner. Some
examples where this feature is observed are the Lanczos Al-
gorithm and the Conjugate Gradient Algorithm when sparse

61

(“1 I \“I I \-/

1: do i = 1, n-l
2: doj=l,n
3: b(j,i) = a(j,i+l)
4: enddo
5: enddo
6: do i = 1, n-l
7: do j = 0, ar(i+l)-ar(i)-1
8: c(i) = a(i,ar(i)+j)
9: enddo
10: enddo

/-\

Analyze comm. requirements for
regular access to 0 at compile-time
Generate communication code at
compile-time
do i = lb, ub

doj=l,n
b(j,i) = a(j,i+l)

enddo
enddo
Analyze comm. requirements for
irregular access to a at run-time
Generate communication code
at run-time
do i = lb, ub

do j = 0, ar(i+l)-ar(i)-1
c(i) = a(i,ar(i)+j)

enddo
enddo

Il.1

Analyze comm. requirements for
regular access to a at run-time
Analyze comm. requirements for
irregular access to a at run-time
Compute union of the two sets
at run-time
Generate communication code
at run-time
do i = lb, ub

doj=l,n
b(j,i) = a(j,i+l)

enddo
enddo
do i = lb, ub

do j = 0, ar(i+l)-ar(i)-1
c(i) = a(i,ar(i)+j)

enddo
enddo

/,-J

Figure 1: Exploiting Common References in a Mixed Regular-Irregular Application

matrices are involved. A framework which handles regular
accesses using compile-time schemes and irregular accesses
in the same program using run-time schemes is shown in
Figure l(b). However, since the communication sets for the
regular accesses are generated at compile-time and the com-
munication sets for the irregular accesses are generated at
run-time, it is not possible to combine them even when there
are common accesses among the two. This will potentially
lead to redundant communication. On the contrary, a uni-
fied run-time scheme for regular and irregular accesses as
that shown in Figure l(c) will be able to generate much
less communication decreasing both its number and volume.
The above observation holds good also in cases where both
the regular and irregular accesses to the same array occur
within the same loop.

There exists no current framework which tries to in-
tegrate the analysis for regular and irregular accesses us-
ing a representation that suits both. Such a representa-
tion must have support for regular sections in order to ef-
fectively deal with regular accesses and spatial regularity
in midst of irregularity, it must have support for total ir-
regularity and it must have efficient mechanisms for con-
version between sections obtained from regular and irreg-
ular accesses. The popular run-time library for irregular
applications, CHAOS [2, 4, 51, has special support for ir-
regular accesses alone. This library cannot be used effi-
ciently for mixed regular-irregular applications; compilers
using the CHAOS library create expensive preprocessing
structures for regular o@-processor accesses. In the pres-
ence of a run-time library that has special support for mixed
regular-irregular applications, much of this preprocessing
cost can be amortized. Using such a library PILAR [3],
it has been shown in [6] how preprocessing costs can be re-
duced to a minimum. On the other hand, multi-block PARTI
[7] has support for regular sections but it has not been inte-
grated with CHAOS and hence not entirely usable for mixed
regular-irregular applications.

2.2 General Compile-time and Run-time Schemes

General compile-time schemes for regular accesses accept
arbitrary HPF data alignment and distribution directives,
loop iterations and array accesses and ultimately generate
distributed code with space-efficient array allocation, tight
loop bounds and optimized communication [8, 9, 10, 11, 12,
131. Using a linear algebra framework [12], the HPF compi-
lation problem can be converted into solving a set of linear
equalities and inequalities while polyhedron manipulation

doi=l,n
a(i) = . .

enddo

(a) Serial Code

do i= 0, n
do j = 0, r(i)

a(h(i)+j) =

(c) Serial Code
do i = 0, n

do j = 0, r(i)
a(i) = b(c(i)+j)

enddo
enddo

e) Serial Code (f) Parallel Code

do i = lbi, ubi
do j = lbj, ubj

dl = . .
d2= . . .
a(dl,dl) =

enddo
enddo

(b) Parallel Code
count = 0
do i = 0, n

do j = 0, numInt(i)
do j2 = 0, newH(countf1)

-newH(count)-1
a(newH(count)+j2) =

enddo
count = count + 2

(d) Parallel Code

The schemes shown in (b) and (d)
cannot be combined here for lack
of compatibility in the loop
structure.

Figure 2: Lack of Compatibility of Code Structure for Reg-
ular and Irregular Accesses

and scanning techniques can be used to generate code for a
distributed-memory machine from the linear form. In this
framework, the structure of loops and the array accesses in
the code generated are often different from that in the serial
code. Moreover techniques which change the dimensionality
of a matrix are often used. [13] uses a technique where for
cyclic(b) distributions, each dimension may be cast into two
dimensions. More details can be found in [13] and [14]. A
typical change in the structure of the code in the case of
regular applications is shown in Figure 2(a, b).

Distributed memory code generated by run-time schemes
for irregular accesses often changes the structure of the serial
code in a way that is not compatible to the change effected
by compile-time schemes. This is because irregular accesses
and distributions cannot be represented by linear equalities
and inequalities. One such scheme has been implemented
by the run-time library PILAR (Parallel Irregular Library
with Application of Regularity) [15]. Owing to the data
distribution, an interval in globals may get decomposed into
multiple intervals and sub-intervals, Hence an extra loop is
usually required in the distributed code to enumerate all the
sub-intervals. An example of such a change in structure of

62

the loop nests in the case of irregular applications is shown
in Figure 2(c, d). Clearly, this change in structure is not
compatible to the change in structure generated by compile-
time schemes as highlighted in Figure 2(e, f).

2.3 Commercial HPF compilers

We have studied two commercial HPF compilers, The Port-
land Group’s (PGI) HPF compiler (version 2.2) [16] and
IBM’s HPF compiler (version 1.1.0.0) [17]) in order to ob-
serve the amount of communication since reduction of com-
munication is one of the focus of our work. We present here a
simple code fragment and the amount of communication (in
bytes) generated by the PGI HPF compiler and our scheme.
More details of our experiments can be found in [14]. Our
scheme is described in detail in subsequent sections. The
code fragments were run on 4 processors of an IBM SP-2
and the amount of communication was obtained from the
Visualization Tool (vt).

rral .(loo,laa). c(100,100)
int.p.r d(lOO,lOO)
l”PF8 rlign with a::c,d
IHPFI distribute a(*,BLOCK)
IHPFI indapandant

do i = 1, 100
do j = 1, 100

r.(j,i) = j
c(j,i) a j
d(j,i) = 2*i+S

.nddo
rnddo

lHPF8 indmpmndent
do i = 1, 48

do j = 1, 100
a(j,i) = c(j.d(j.i))

+ c(j,Z*i+3)
.nddo

.nddo
cdl dummy(a)

(8’)

l-

Figure 3: Communication for 4 processors of IBM SP-2

Figure 3(a) shows a code fragment where common el-
ements have been accessed by the references on the r.h.s.
and the messages can be potentially coalesced. One of the
accesses is regular while the other is irregular. The amount
of communication, incurred by the PGI HPF compiler, il-
lustrated in Figure 3(b), and other experiments performed
by us show that the messages have not been coalesced by
the PGI HPF compiler. Our scheme generates the mini-
mum amount of communication and this is illustrated in
Figure 3(c).

In our opinion, based on our study of various code frag-
ments with different distributions and accesses (not every-
thing is shown here), though the type of memory allocation
and communication used by the PGI HPF compiler may
simplify the array accesses, excess communication is likely
to lead to a substantial increase in run-time.

In the experiments we have performed (not shown here
for lack of space), we have observed that the HPF compiler
from IBM on the SP-2 (xlhpf90) obtains a copy of the entire
portion of the non-local array from other processors when-
ever an indirect access is encountered. Though this avoids
preprocessing costs, this is likely to give rise to lots of un-
necessary communication for most irregular applications.

2.4 Solution for Mixed Regular-Irregular Applications

We advocate using a uniform run-time scheme for handling
both regular and irregular accesses in mixed regular-irregular
applications. Quite frequently, spatial regularity exists in ir-
regular accesses and a dense array is accessed both in a reg-

ular and irregular manner [18, 191. All such accesses should
be handled using an interval representation [15]. Irregu-
lar accesses devoid of any regularity whatsoever need to be
handled using an enumerated representation. However, the
interval representation has to be compatible to the enumer-
ated representation in the sense that efficient conversion be-
tween the two representations should be possible depending
on various factors.

3 Details of Our Scheme

The following subsections describe the scheme that we have
used for handling applications containing both regular and
irregular accesses. The scheme is described in detail in [14].
The scheme uses the inspector-executor paradigm to han-
dle irregular as well as regular accesses. However, though
the analysis for purely regular accesses conforms in general
to the inspector-executor paradigm, it is much simpler and
does not incur the type of preprocessing overheads associ-
ated with irregular accesses. The scheme has been imple-
mented in the PARADIGM compiler [20] and the run-time
library PILAR (Parallel Irregular Library with Application
of Regularity) [3]. The basic irregular compiler support re-
quired for irregular applications has been reported in [15].
More details are being reported in a separate study.

We will use the synthetic benchmark (Figure 4) as a run-
ning example to illustrate our scheme. The code is written
in HPF version 2.0 [21] format. We wish to show how com-
munication can be optimized across regular and irregular
accesses. This is why we have used a dense array x accessed
both in a regular and irregular manner. It may be noted
that a frequently occurring access pattern in sparse code,
data(ind(i) + j), is present in the code too. This will show
the effect of spatial regularity in the midst of irregularity.
We also have a totally irregular access to array d and we
show in later sections how this example is handled by our
scheme.

real a(8), x(16), d(16)
integer map(l6), ind(S), e(l6)
parameter (map=/1,2,2,3,1,4,3,1,4,4,4,3,3,2,1,2/)

!HPFI processors p(4)
!HPFI align a(i) with ind(i)
!HPF$ distribute ind(BLOCK) onto p
!HPFI align x(i) with e(i)
!HPFg distribute e(CYCLIC) onto p
!HPF$ distribute map(BLOCK) onto p
IHPFI distribute d(INDIRECT(map)) onto p

do k = 1, 100
!HPF$ independent

doi=l, 7
do j = 1, ind(i+l)-ind(i)

a(i) = x(i) + x(ind(i)+j-1) + d(e(ind(i)+j-1))
enddo

enddo
enddo

Figure 4: A Mixed Regular-Irregular Program Fragment

3.1 Supported Array Distributions

The current implementation supports block, cyclic, block-
cyclic and an indirect distribution. The indirect distribution
is used for specifying an irregular distribution where an in-
teger mapping array is used to specify the target processor
of each individual element of the array dimension being dis-
tributed. The &h element of the mapping array specifies the
processor number owning the &h element of the data array.

63

The mapping array is typically distributed in a blocked fash-
ion among processors. All these distributions are supported
in any number of dimensions.

3.2 Supported Internal Representations

PILLAR is a C++ library designed to support different types
of applications which have purely regular accesses, purely
irregular accesses and mixed regular and irregular accesses.
This has been made possible by having support for multiple
internal representations including an interval-based repre-
sentation and an enumerated representation.

3.3 Translation Tables

A translation table encodes information about the home pro-
cessor and the local address in the home processor for array
elements. For block and cyclic(k) distributions, no transla-
tion tables are required and all translation information are
encoded by simple analytical functions. In the case of an in-
direct distribution, each entry of the translation table stores
the element index, the processor to which the element is al-
located and its local offset in that processor. Several impor-
tant considerations are linked to the design of the translation
table. All information associated with the translation table
are stored as sets and not as lists. This not only reduces the
memory requirement substantially but also improves run-
time performance. Table lookup is another primary consid-
eration. Since only the bounds of array segments are stored,
the size of the translation table is small in most cases and
we can often afford to have it replicated in each processor’s
local memory.

3.4 Trace collection

Trace collection refers to the collection of the array refer-
ences in the global address domain. For regular accesses,
the interval representation is used to collect the start and
end values of a contiguously accessed set of elements and
these are stored in a trace array. For totally irregular ac-
cesses, the enumerated representation is used where every
element has to be stored individually in the trace array ow-
ing to lack of contiguity. However, many irregular applica-
tions contain spatial regularity where the first element ac-
cessed is something random but the next few elements are
regularly spaced among themselves. This corresponds to
the pattern (data(ind(i) + j)) in code segments where data

and ind are the data array and index array respectively.
Though this pattern may not be explicitly present in real-
life applications, it manifests itself once index normalization
is performed.

do ikl, mow
do ka=ia(ii), ia(ii+l)-1

jj = ja(ka)
do kb=ib(jj),ib(jj+l)-1

jcol = jb(kb)

enddo
enddo

enddo

do ii=l, mow
do ka=l, ia(ii+l)-ia

jj = ja(ia(ii)+ka-1)
do kb=l, ib(jj+l)-ib(jj)

jcol= jb(ib(jj)+kb-1)

enddo
enddo

t

I
(a) Original Code 1 (b) Index-normalized Code

Figure 5: Spatial Regularity in Index-normalized code

Let us consider the code segment extracted from SPARS-
KIT [18] and shown in Figure 5(a). As illustrated in Fig-
ure 5(b), spatial regularity is present even in the case of

unstructured code. This feature is exploited by the PILAR
run-time library by using intervals for trace collection in
such cases. For instance, the trace intervals for the array
reference jb in Figure 5 will be bounded by ib(jj+l) and
ib(jj) for appropriate values of jj.

Several important considerations are associated with the
type of trace collection. Collecting traces in the form of
intervals reduces the memory requirement for storing global
accesses and improves performance owing to less number
of assignments. This also has important implications for
other phases of the program in the sense that these result
in fewer local accesses stored, more regularity in schedules
(and hence better communication optimization) and even
better executor performance. This also allows for better
sharing of information since the structures used for regular
and irregular accesses become compatible.

3.5 Localization of Array References and Schedule Gen-
eration

For any communication point Ci, all relevant schedules corr-
esponding to references to the same array can potentially be
combined irrespective of the type of access. When schedules
are combined, the corresponding local references need to be
modified simultaneously so that the correct element is ac-
cessed by the executor. At an implementation level, efficient
set operations are used to manipulate intervals. Conversion
from interval representation to enumerated representation
and vice-versa is performed whenever required. We now
show how local references and schedules are generated when
multiple references to the same array exist. Let us consider
the references Xi, XZ, . . ., Xk to an array X. We denote
the global references made by reference Xi as GZobRef(Xi).

At first, the union of all the global references made for
array X is computed as
GlobRef(XlX2.. .&) = &GlobRef(Xi). The corres-
ponding local references are computed as LocaZRef(XiXs. . .
Xk) = (Localize(GZobaZRef(XiXz.. .Xk))).
Ixj = SearchIndices(GlobRef(XtX2.. .Xk), GlobRef(Xi))
gives the indices of GZobRef (X1X2.. .Xk) if the correspondi-
ng values of GZobRef (X1X2.. .Xk) are present in
GlobRef (Xi). Values of LocaZRef (X1X2.. .Xs) correspond-
ing to indices IX, are copied to LocalRef (Xi).

A schedule stores a communication pattern that encodes
information about the data to be sent and received by a pro-
cessor. The following steps are carried out for the generation
of schedules. Each processor computes the indices of the
off-processor elements it must receive and the processors it
must receive from. This is determined from the global traces
already collected for the reference and the translation infor-
mation. GlobRecvData(X) refers to the indices of the off-
processor data in the global address domain associated with
the references Xi , . . ., Xk while Own(X) refers to the indices
of X owned by the processor. Thus GlobRecvData(X) =
GlobRef (XIX2 . . .Xk) - Own(X). The addresses of the re-
mote processors owning GZobRecvData(X) are obtained by
a dereference request which uses the translation informa-
tion to compute the owning processor address. Let the in-
dices (in the global domain) of the data to be received from
processor p be denoted by GlobRecvDataProc(X,p). The
addresses of the local buffers where off-processor elements
should be received are determined in conjunction with lo-
calization of off-processor global references and are given
by LocaZize(GZobRecvDataProc(X,p)). Once a processor
knows the addresses of the processors it needs to receive data
from and the local buffer addresses where the data have to

64

be received, the global indices (GZobRecvDataProc(X,p))
are exchanged among processors. This enables all proces-
sors know the addresses of the processors they need to send
data to and the local addresses of such data. The exact
scheme for doing this may differ with implementation; our
implementation uses incremental schedules, derived data-
types, message aggregation, etc., before actual communica-
tion. The schedule for the example program is not shown
here for lack of space.

3.6 Schedule Optimizations

Various communication optimization support present in CH-
AOS are described in [4]. A!1 of these optimizations are
supported by PILAR too. Efficient set, operations are used
to compute the various information required for schedules
whenever the global references are presented as intervals.
All optimizations are possible irrespective of the regularity
of accesses since both the interval and enumerated represen-
tations are employed by the same paradigm and conversion
from one to the other is effected depending on the granu-
larity of regularity. In order to perform optimizations on
schedules spanning different references, efficient set opera-
tions have been defined. The operation Merge merges sched-
ules and removes duplicates while Concat merges schedules
without removing duplicates. The operation Intersection
finds duplicates among schedules. The D$erence opera-
tion is used to obtain an incremental schedule. Operations
are provided to expand a schedule, replicate a pattern in
a schedule with or without an offset, invert a pattern in a
schedule etc.

Compile-time schemes incur similar overhead while gen-
erating send/receive and in/out, sets as fhat involved in
schedule generation in an inspector-executor scheme. How-
ever, we feel that for irregular applications, our scheme would
incur a lower communication cost since the number of com-
munication startups and the total communication volume
are likely to be less.

Contrary to schemes which often approximate accessed
references by some smallest regular section and communi-
cate the entire section, our scheme always communicates
exactly what is required for computation. In PILAR, the in-
stantiation of a schedule is decoupled from its creation. De-
coupling saves the overhead of instantiation when the same
schedule is used with different, elementary types or when
simple schedules are only used for building complex ones.
Derived data types are created for every pair of processors
that needs to communicate among themselves. This allows
message aggregation and message coalescing.

We are not aware of a scheme which reuses schedules
efficiently across regular and irregular accesses in a mixed
regular-irregular application. In our opinion, efficient reuse
of schedules in a mixed regular and irregular application is
possible if support is available for efficient representation of
both regular and irregular accesses and support is available
for derived data types. This is possible in our scheme since
compatible representations are used throughoue the appli-
cation. It may be observed that in many applications (like
the Lanczos algorithm [19]), the same array is accessed in
both regular and irregular manner, either inside the same
loop or inside different loops. In the case of such applica-
tions, schedules generated for regular accesses can be reused
for irregular accesses. PILAR supports both blocking and
non-blocking global communication primitives. This way of
implementation usually results in better performance than
blocking communication since it allows overlap of computa-

tion and communication.

3.7 Executor

The executor tries to exploit the features of interval repre-
sentation and is different from traditional executors found
in many run-time libraries. The actual computation loop
tries to preserve regularity in the subscript structure (of the
form data(ind(i) + j)) as illustrated in Figure 6. The call
MergeLocallnterval makes the intervals (for the arrays men-
tioned) compatible (the same number of local intervals of
the same size). A reasonable sequential compiler will pull
out of the innermost loop the invariant portion of the access
to the array leaving a regular access in the innermost loop.
On the contrary, loops not possessing this structure may
incur the cost of twice as many loads assuming that the in-
nermost loop has a reasonable average trip count. Moreover
adding accesses to a large index array in the innermost loop
may increase cache conflicts further degrading single-node
performance.

Call MergeLocalInterval(a,~~)
Call MergeLocalInterval(sz,d)
do iter = 1, 100

count~ll = 0
count-12 = 0
do i = 1, NIntervals-1

do j = 0, refLocOff-o(count-ll+l) - refLocOffa(count-11)
do k = 1, NIntervalsS

do 1 = 0, refLocOffx2(count-12+1) -
refLocOff_x2(count-12)

a(j+refLocOfKa(count-11)) =
x(j+refLocOffxl(count-11)) +
x(l+refLocOff-xZ(count-12)) +
d(l+refLocOffd(count-12))

enddo
count-12 = count-12 + 2

enddo
enddo
count-11 = count-11 + 2

enddo
enddo

Figure 6: Executor for the Example Program

4 Experimental Results

4.1 Methodology

In this study, whenever we refer to results its obtained by
the scheme Pilar (Em), we mean that the enumerated rep-
resentation (similar to that used by CHAOS) has been used
throughout irrespective of the type of accesses. ’ Other-
wise, the interval representation is used whenever possible
and this will henceforth be referred to as Pilar (Int). A
number of benchmark kernels have been used in compar-
ing the various schemes, code generated employing calls to
the PILAR library (both Pilar (Int) and Pilar (Enu)), code
generated by the IBM HPF compiler (IBM-hpf) and code
generated by the PGI HPF compiler (PGI-hpf). The bench-
marks are a synthetic benchmark shown in Figure 4, sub-
routines to compute the infinity norm of a matrix (extracted
from ITPACK [22]), a subroutine implementing the Lanc-
zos algorithm [19]. All these benchmarks contain a mixture
of regular and irregular accesses and are representative of
real-life irregular applications.

‘In a separate study [3, 151, we have demonstrated that the run-
time performance of enumerated-based PILAR is actually better than
that of CHAOS/PAR27 library primarily due to different implemen-
tation styles. Hence we believe that this is a fair comparison.

65

The platform chosen was a 16-processor IBM SP-2 run-
ning AIX 4.1. The SP-8 is a distributed-memory paral-
lel machine and the installation uses sixteen 120 MHz thin
nodes each with 128 MB of main memory. For all results
reported in later sections, the high performance communi-
cation switch has been used for inter-processor communica-
tion.

PGI’s HPF compiler (version 2.2) for PGI-hpf and IBM’s
Standard XL High Performance Fortran compiler (version
1.1.0.0) for IBM-hpf have been used. We have selected MPI
as the communication library to be used by PILAR. The
MPI version used was IBM’s own optimized version of MPI.
All programs were compiled at an optimization level of 2.
All results were taken using the SP-2 user space library as
the communication subsystem library. All timings reported
are wall clock times in seconds.

Though we present run-times for the various schemes, it
may be noted that the run-times alone may not be enough
to judge the efficiency of the schemes. It needs to be em-
phasized that while the implementation framework for Pi-
lar (Int) and Pilar (Enu) are the same, those for PILAR,
PGI-hpf and IBM-hpf are likely to be vastly different. More
precisely, efficient implementation of low-level routines, in-
telligent transformations etc. can produce substantial dif-
ference in the run-times. This is why we also present the
communication volume which in our opinion is one of the
important yardsticks for comparison.

(4 @I

Figure 7: Runtimes for the Synthetic Benchmark

4.2 Synthetic Benchmark

We have obtained comparative run-times for the synthetic
benchmark shown in Figure 4 in different scenarios. In the
first, scenario, we have observed comparative run-times for
Pilar (Int), Pilar (Enu), PGI-hpf and IBM-hpf. All arrays
except d have the same distributions as that shown in Fig-
ure 4. The distribution of array d has been changed to a
regular one (BLOCK, in this case) since commercial HPF
compilers currently handle only regular distributions. Fig-
ure 7(a) shows the comparative run-times for the various
schemes. The array size chosen is 1024 and the outer loop
iterates 1000 times. Though Pilar (Int) takes more time for
a single processor, it performs the best as the number of
processors is increased. A timeout of 15 seconds was set,;
Pilar (Enu) in the case of a single processor and IBM-hpf
for 4, 8 and 16 processors failed to complete within this time
period.

In the second scenario, we have obtained comparative
run-times for Pilar (Int) and Pilar (Em) for the distribu-
tions specified in Figure 4. It may be noted that this sce-
nario is likely to be more realistic than the previous one. As
Figure 7(b) shows, the run-times in this scenario improve
for both Pilar (Int) and Pilar (Enu) compared to the pre-

vious one. This is because of reduction in inter-processor
communication.

4.3 ITPACK Subroutines

ITPACK [22] contains subroutines for solving large sparse
linear systems by iterative methods. Two kernels were ex-
tracted from ITPACK subroutines. The first of them cal-
culates the infinity norm of a matrix using the ellpack data
structure whereas the second calculates the infinity norm us-
ing the symmetric diagonal data structure. Figure 8(a) gives
comparative run-times for different schemes in the case of
the ellpack data structure. We have used the following ar-
ray sizes: 50000x1024 for the matrix representation array
(of type real) and 50000 for the workspace array (of type
real). The benchmark is too big to run on a single processor
and this is why only run-times for 4, 8 and 16 processors are
presented. This benchmark does not contain any irregular
accesses.

Figure 8(b) gives comparative run-times for different sch-
emes in the case of symmetric diagonal data structure. Each
dimension size was 1024 in this benchmark. This benchmark
contains a number of irregular accesses. A timeout of 400
seconds was set; IBM-hpf and Pilar (Enu) failed to finish
within this period and their runtimes axe not shown in Fig-
ure 8(b).

r I I

Figure 8: Runtimes for Itpack Subroutines

We don’t show the number of bytes communicated for
the ITPACK kernels since the communication requirement
is not very high in this case and both our scheme and the
PGI HPF compiler generate similar amounts of communica-
tion. An execution profile of the code (kernel 2) parallelized
with different versions of PILAR showed that the compo-
nent costs in Pilar (Enu) are much higher than those in
Pilar (Int). These results are not shown here for lack of
space and they can be found in [14].

4.4 Lanczos Algorithm

We have extracted a kernel from the Lanczos algorithm for
determining eigen systems from codes available in [19]. All
sparse matrices are represented in compressed sparse row
(CSR) format. We have obtained comparative performance
for a number of scenarios. The benchmark used by us con-
sists of a two-dimensional dense matrix and a number of
one-dimensional vectors. Every dimension is of size 2048.
The dense array is accessed both in a regular and irregular
manner. Some of the one-dimensional vectors are accessed
in an irregular manner.

Figure 9(a) gives comparative run-times when regular
distributions are used for all the arrays. However, the index
arrays have been initialized in a way so that there is very
little amount of spatial regularity. As shown in Figure 9(b),

66

-- -.,-*
(4

0 800 .._ ...,... ..- .

(b)

1 4 8 16

Cc)

Figure 9: Comparison of Runtimes for the Lanczos Algorithm with Different Data Distributions

the run-times improve once the index arrays take into ac-
count the program semantics and there is spatial regularity.
Figure 9(c) presents run-times for irregular distributions. In
all the cases, Pilar (Int) fares better than other schemes.

Figure 10 shows the communication volume for Pilar
(Int) and PGI-hpf in different scenarios. This was obtained
with the size of every dimension as 128 (since otherwise the
trace arrays become too big) using the Visualization Tool
(vt) on the IBM SP-2. Figure lO(a & b) correspond to cases
when the values of the index arrays are initialized in a way
so that there is very little amount of spatial regularity. We
observed the inter-processor communication volume for this
case in order to roughly estimate the potential worst-case
communication in the case of Pilar (Int). As seen from Fig-
ure lO(a & b), the communication in the case of Pe’lar (Int)
is around hundreds of kilobytes less for every pair of proces-
sors in a total of 4 processors. We wanted to simulate an
irregular distribution which tries to partition data according
to the semantics of the program (thus reducing interproces-
sor communication). We have chosen index array values so
that there is some amount of spatial regularity. It may be
noted that currently available commercial compilers don’t
support irregular distributions directly. The total runtimes
for this scenario are given in Figure 9(b). Figure lO(c &
d) show the inter-processor communication for the second
scenario where intuitively many of the accesses should be
local and consequently reduced inter-processor communica-
tion. In this case, the inter-processor communication in the
case of Pilar (Int) is around 1 megabyte less than that of
PGI-hpf for every pair of processors in a total of 4 proces-
sors.

4.5 Summary of Results

l Experimental results presented for some mixed regular-
irregular applications show that Pilar (Int) performs
better than other schemes. This also means that a uni-
form run-time scheme performs well for mixed regular-
irregular applications.

l Experimental results corroborate the ideas presented
in previous sections that show that inter-processor com-
munication can be greatly reduced if a uniform scheme
is used to handle both regular and irregular accesses
in a mixed regular-irregular application.

l The preprocessing costs and executor costs along with
the total costs are very high for Pilar (Enu) (as shown
in this study and in [6]). This shows the need for
a representation similar to the interval representation
that takes into account the regularity of accesses and
distributions. It appears to us that a run-time library

having multiple internal representations for handling
different types of accesses is the most suitable one.

l Appropriate irregular distributions need to be used for
arrays accessed in irregular ways. This is likely to re-
duce inter-processor communication. Many existing
schemes have already shown this need [2].

. The commercial compilers use run-time schemes but
there are differences between their and our scheme. In
case of commercial compilers, the support for handling
accesses is implemented as a generic run-time library;
so there is no way they can handle the sparsity which
is specific to a given irregular access unless this infor-
mation is passed on to the run-time library. This is
however not done or probably cannot be done without
complicating the design of the library. This results in
overestimating a sparse region by an enclosing dense
region which leads to redundant communication. In
contrast to this, we try to handle a sparse region as a
collection of intervals or elements by generating appro-
priate inline code. We can avoid overestimating com-
munication by communicating only the required ele-
ments and not the region enclosing them. This further
allows us better communication optimization since we
are performing the set operations at a finer granularity.

5 Related Work

The CHAOS/PARTI [2] library has developed methods for
parallelizing applications that are irregular. The library
uses the inspector-ezecutor paradigm. Since the develop-
ment of this library was initially motivated by irregular ap-
plications, the representation used is an enumerated one.
Multiblock PARTI [7] provides support for block-structured
applications with regular decompositions. The functional-
ity and effectiveness of this library is very similar to that of
interval-based PILAR if regular accesses and distributions
are considered alone. However, in contrast to our scheme,
this scheme is not very suitable for mixed regular and ir-
regular accesses. This library is a stand-alone library in its
current implementation and has not been integrated with
the CHAOS/PARTI library.

Ujaldon and Zapata [23] have proposed an approach to
reduce the number of levels of indirect array accesses. This
method is, however, restricted to a specific set of applica-
tions only. They have proposed new methods (for instance,
the multiple recursive decomposition) for the representation
and distribution of sparse data on distributed memory par-
allel machines and have shown how compiler and run-time
techniques can achieve storage economy and reduce commu-
nication overhead. Their representation exploits the locality
of sparse computations, preserves a compact representation

67

o-1: 2318684 bytel
O-+2: 251%336 bytsm
O-+9: 2105262 bytcm
l-0: 2624760 byte*
l-+2: 1833780 bites
l-5: 2507948 bytes
-2-O: 1623732 bytea
S-+1: 2624760 byte,
2-+S: 2507986 bytea
S-+0: 2418036 bytea
9-l: 2317386 byte.
S-+2: 1800664 byte.

o-+1: 2611716 byte*
O-,2: 2621716 bytee
0+9: 2606332 bytes
l-0: 2624136 bytcn
1-a: 2621606 bytan
l-+9: 2606312 byte*
a-+0: 2622088 byte.
a-1: 2823744 bytes
a-h.3 2606312 bytes
S-PO: 2622088 byte@
S-bl: 2621696 bytes
s-+2: 2623744 byte.

O-bl: 1064664 bytca
O-+2: 1064564 bytes
O-,8: 1030724 bytes
1-O: 1035816 bytes

0+2: 2601236 bytcm
0+9: 2684880 bytes
l-+0: 2603640 byte*
1+2: 2601216 byte.
1+3: 2I584860 byte,
a-0: 2601608 bytes
a-+1: 2603248 byte.
2-9: 2584960 bytea
5-O: 2601608 byte.
9+1: 2601216 bytes
s-+2: 2603248 byte.

(a) Our aehsme (b) PGI-bpf (d) PGI-hpf

Figure 10: Communication volume for Lanczos Algorithm for Different Index Values

of matrices and vectors and tries to exploit the semantic in-
formation present in specific applications. They have also
shown that this distribution is suitable for mixed regular-
irregular accesses. However, they don’t take into consider-
ation the type of regularity exploited by our work. We feel
that our methods can be integrated into their scheme.

LPARX [24] is a domain-specific run-time C++ library
that provides support for dynamic irregular problems in a
variety of platforms. However, its main target is not the
fine grained blocks obtained from unstructured grids but
the larger ones that come from finite difference methods.
Thus it is different from libraries like CHAOS/PARTI and
PILAR.

6 Conclusions

This study highlights how lack of a uniform representation
and lack of a uniform scheme to generate communication
structures and parallel code for regular and irregular ac-
cesses in a mixed regular-irregular application prevent so-
phisticated optimizations. Furthermore, we also show that
code generated for regular accesses using compile-time sch-
emes are not always compatible to code generated for irreg-
ular accesses using run-time schemes. This study presents
a uniform scheme to handle both regular and irregular ac-
cesses in a mixed regular-irregular application. Using mul-
tiple internal representations, it has been shown how this
scheme not only allows for sophisticated communication op-
timization like message coalescing, message aggregation to
be performed across regular and irregular accesses, the pre-
processing costs incurred are also likely to be minimum.
Experimental comparisons for various benchmarks on a 16-
processor IBM SP-2 show that our scheme is feasible and
better than existing schemes.

References

[l] R. Mirchandaney, J. Saltz, R. M. Smith, D. M. Nicol and Kay
Crowley, Principles of Run-time Support for Parallel Proces-
sors, Proceedings of the 1988 ACM International Conference on
Supercomputing, pages 140-152, July 1988.

[2] Joel Saltz et. al., A Manual for the CHAOS Runtime Library,
UMIACS, University of Maryland, 1994.

[3] A. Lain and P. Banerjee, Exploiting Spatial Regularity in Irreg-
ular Iterative Applications, Proc. of the 9th International Par-
allel Processing Symposium, pp. 820-827, Santa Barbara, CA,
1995.

[4] Fl. Das, M. Uysal, J. Salts, Y. S. Hwang, Communication
Optimirations for Irregular Scientific Computatione on Dis-
tributed Memory Architectures, Journal of Parallel and Dis-
tributed Computing, vol. 22, no. 3, pages 462-479, September
1994.

[5] Ravi Ponnusamy, Joel Saltz, Alok Choudhary, Runtime-
Compilation Techniques for Data Partitioning and Communi-
cation Schedule Reuse, Proceedings Supercomputing ‘93 pages
361-370, November 1993.

[6] Dhruva R. Chakrabarti, Antonio Lain and Prithviraj Banerjee,
Evaluation of Compiler and Runtime Library Approachen for

Supporting Parallel Regular Applications, To appear in The In-
ternational Parallel Processing Symposium, Orlando, Florida,
March 1998.

[7] G. Agarwal, A. Sussman and J. Saltz, Eficient Runtime Sup-
port for Parallelizing Block Structured Applications, Proceed-
ings of Scalable High-Performance Computing Conference, 1994,
pp. 158-167.

[8] S. Hiranandani, K. Kennedy and C. Tseng, Compiling FortranD
for MIMD distributed memory machines, Communications of
the ACM, vol. 35, No. 8, pp. 66-80, Aug. 1992.

[9] S. Chatterjee, J. R. Gilbert, F. J. E. Long, R. Schreiber and S.
H. Teng, Generating Local Addresses and Communication Sets
for Data-Parallel Programs, Proceedings of the Fourth ACM
SIGPLAN Symposium on Principles & Practices of Parallel Pro-
gramming, San Diego, CA, May 1993, pages 149-158.

[lo] S. P. Midkiff, Local Iteration Set Computation for Block-Cyclic
Distributions, Proceedings of the 24th International Conference
on Parallel Processing, Oconomowoc, WI, 1995.

(111 S. K. S. Gupta, S. D. Kaushik, S. Mufti, S. Sharma, C. H. Huang
and P. Sadayappan, On Compiling Array Expresaiona for Efi-
cient Execution on Distributed Memory Machines, Proc. of the
22nd International Conference on Parallel Processing, IL, 1993.

[12] C. Ancourt, F. Coelho, F. Irigoin and R. Keryell, A Linear Alge-
bra Framework for Static HPF Code Distribution, Proceedings
of the Fourth Workshop on Compilers for Parallel Computers,
Delft, The Netherlands, Dec. 1993.

[13] Ernest0 Su, Compiler Framework for Distributed-Memory
Message-Passing Multicomputers, Ph.D. Thesis, University of
Illinois at Urbana-Champaign, 1997.

[14] Dhruva R. Chakrabarti, Nagaraj Shenoy, Alok Choudhary and
Prithviraj Banerjee, A Uniform Scheme for Parallelizing Mixed
Regular-Irregular Applications, Technical Report No. CPDC-
TR-9802-011, Center for Parallel & Distributed Computing,
Northwestern University, February 1998.

[15] Antonio Lain, Compiler and Run-tine Support for Irregular
Computotione, PhD thesis, University of Illinois at Urbana-
Champaign, 1995.

[16] The Portland Group, Inc., pghpjversion 2.2, 1997.

[17] M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K.
Y. Wang, W. M. Ching and T. Ngo, An HPF compiler for the
IBM SP-2, Proceedings of Supercomputing ‘95, San Diego, CA,
December 1995.

[18] Yousef Saad, SPARSKIT: a basic tool-kit for #parse matrix
computations (Version Z), http://www.cs.umn.edu/Research/
arpa/SPARSKIT/sparskit.html.

[19] Lanczos Algorithm, http://wwzu.netlib.org/lancxos.

[20] P. Banerjee, J. Chandy, M. Gupta, E. W. Hodges IV, J.
G. Holm, A. Lain, D. J. Palermo, S. Ramaswamy and E.
Su, The PARADIGM compiler for distributed-memory multi-
computers, IEEE Computer, vol. 28, No. 10, pp. 37-47, Oct.
1995.

[21] High Performance Fortran Language Specification, Veersion
2.0, High Performance Fortran Forum, January 31, 1997.

[22] ITPACK, http://www.netlib.org/itpack/index.html.

[23] M. Ujaldon and E. Zapata, Eficient rwolution of sparae indi-
rectione in data-parallel compilers, Proceedings of the 9th ACM
International Conference on Supercomputing, pp. 117-126, July
1995.

[24] Scott R. Kohn and Scott B. Baden, A robust parallel program-
ming model for dynamic non-uniform scientific computations,
Proceedings of SHPCC, 1994.

68

