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Abstract formation desk for direction) is followed biointing (the

staff worker pointing to a direction) and then BplitUp

We present a novel approach for event detection in video(the two people splitting up). More rich temporal patterns
by temporal sequence modeling. Exploiting temporal infor- among events in an airport scenario are shown inlfFig. 1.
mation has lain at the core of many approaches for video  Modeling temporal relationships and structures de-
analysis (i.e. action, activity and event recognition). -Un scribed above has lain at the core of human action, hu-
like previous works doing temporal modeling at semantic man activity and event recognition. Approaches for action
event level, we propose to model temporal dependenciesecognition usually focus on capturing the underlying tem-
in the data at sub-event level without using event annota-poral structures of actions (i.éntra-dependencigseither
tions. This frees our model from ground truth and addressesthrough feature representatiofisi[11] or using more sophis-
several limitations in previous work on temporal modeling. ticated models[T1318,23]. In the meanwhile, works of ac-
Based on this idea, we represent a video by a sequence ofivity recognition attempt to explore the temporal relatio
visual words learnt from the video, and apply the Sequenceships between primitive actions of an activity (i.eter-
Memoizer [Z1] to capture long-range dependencies in a dependencigsby graphical models such as HMMs and
temporal context in the visual sequence. This data-drivenDBNs [4,[12[17[5].
temporal model is further integrated with event classifica-
tion for jointly performing segmentation and classificatio :
of events in a video. We demonstrate the efficacy of our ap-jii [&
proach on two challenging datasets for visual recognition. |

1. Introduction

intin
0.06 I (PeopleMeet Objectput Embrace) |

The exponential growth of video content today creates
a great need for methods of intelligent video analysis and
understanding. Among them, video event detection plays a
central role in many applications such as surveillancectop ’ sor _ —eebs
d_lscpvery an.d Conte.nt retrieval. The task of event de.'tec_ Figure 1. Temporal patterns exhibited on two cameras in the
tion involves identifying the temporal range of an eventin @ sgp gata [15]. The top images show such an exampleopleMeet—
video (i.e.wher) and sometimes the location of the event as Pointing— SplitUp (best view in zoom and color).
well (i.e. wherg. While there have been increasing efforts
recently to tackle this problem, it remains rather challeng ~ While temporal modeling has been enjoying great suc-
ing due to compounding issues such as large intra-variancesess in video understanding, for effective analysis of wide
of events, varied durations of events and the presence okvents, several issues remains to be addressed. Firgtly, th
background clutter. common practice of temporal modeling based on ttffe

In this work we aim to address the problem of video order Markov assumption can only capture a short interac-
event detection by exploiting temporal dependencies amongion between the current and previous states. While this
events. Realistic video events are often dependent, éxhibi may suffice for human activity modeling where the tem-
ing short or long interactions between them depending onporal ordering of actions in an activity is well defined and
scenarios. As illustrated in Figl 1, in an airport surveitia often strict, it faces great limitations when applied to ex-
environmentPeopleMeefa passenger approaching the in- plore the relatively loose and sometimes long-range tem-
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poral contexts (usually unknown) often presented in eventtemporal contexts and structures inherent in the data and
data. Then-grammodels such a$§]1] used in speech recog- exploiting them to enhance detection. We validate our ap-
nition might help, but in practice they tend to suffer from proach and demonstrate its efficacy using two challenging
insufficient training data for capturing the complex rela- visual recognition datasets.

tionships and computational scalability issues. Secondly

in many cases, there are only a few events of interest in2. Related Work

a video and they are often accompanied with a substan-

tially larger amount ofnull events or background clutter. g M £ th ‘ lassificati
Consequently, the Markov assumption will be heavily bi- tion recognition. _ ost o t_ €m perform classi |c§\t|on_ on
pre-segmented clips, exploiting temporal informatioheit

ased towardsull events and weaken the dependencies be- h ht iofi5] 20 histi
tween true events, leading to unsatisfactory performance.t rough feature representatiofis{LI] 20] or more sophisti-

Thirdly, most approaches build temporal models directly cated mc_)dels mfﬂﬂﬂ?’]- Fo-r examplez Laptey et al.
from ground truth. Such models cannot discover tempo- [11] applied bag of spatiotemporal interest points to éfgss

ral patterns associated with unannotated events regardleshuman motion in re"?‘"s“c video settings. Tran & Sorokin
of how strong the dependencies are. For instance, the rem developed motion context features to learn nearest

lationship betweeReopleMetPointingand SplitUpin the ngighbor metric for classifying actions in Y(_)uTube videos.
above example, would not be captured if any two eventsN'ebleset al. [L3] developed an unsupervised model for
were unavailable in the annotations human actions detection based on probabilistic Latent Se-

) S mantic Analysis. More recently, Tan et &l._[19] developed
To address the aforementioned limitations, we present a5 yariant of HMM model that is trained in a max-margin

novel approach for video event detection based on temporafamework to automatically discover discriminative ane in
modeling. We for_mulate the detectlo_n task as a prqblem Ofteresting segments of video. Zhang et/@ll [23] proposed an
sequence modeling where our goal is to break a visual se-4ppr0ach that can identify both local and long-range motion
quence into segments of varied lengths and label them with;yiaractions to handle long-term activities more effestjv

gvents qf interest or aull_event. Based on this formula- For applications where the temporal range of an action
tion,we first represent a video by a sequence of visual words,, event needs to be identified in a video sliding win-

learnt f_rom our data in an unsupervised way with k-means 4oy is a popular techniquél[B] 9] to turn a classifier into
clustering (Fig[B). We then apply the Sequence Memo- 5 getection method. For example, Chemal. [B] built

izer (SM) [21] to explore temporal dependencies among the 5y event classifier based on a Fisher vector coding repre-
visual words in the sequence. The SM, a non-parametriCsentation for surveillance events, and then combined tech-
Bayesian approach initially developed for language model- niques of sliding windows, multi-scale detection and non-
ing, can effectively model long-range contexts in discrete avimum suppression for event detection. The difficulty
sequence data as well as the power-law propeffiés [24] exf such approaches is the determination of a classification
hibited in a wide variety of problems. More specifically, - thyeshold for true events. Due to this limitation, more re-
SM-based sequence model is empowered with the ability togeny efforts have proposed to learn framework for simul-
predict the occurrence of a subsequent visual word in a s€ygneous segmentation and recognition in longer video se-
guence conditioned on all its previous contexts obsented. | quences[1€,14]6]. For example, ®hal. [I4] developed

is this ability that enables a robust way of temporal mod- 4 jinear dynamical system to model honeybee behavior. The
eling without heavily relying on annotation. We finally in- ok of [6] trains a discriminative recognition model with a

tegrate the sequence model and event classification into g, iti-class SVM that maximizes the separating margin be-
framework that performs segmentation and classification of \yeen classes. in a similar spirit aF 18] which maximizes
events jointly in a video.The optimal segmentation can be e gverall classification scores.

found efficiently by dynamic programming, similar to the  apother related direction of our work is human activity

work of [6]. recognition. Most of works in activity recognition explore
An overview of our approach is illustrated in Fig. 2. To the temporal relationships between primitive actions of an
the best of our knowledge, this is one of the very few ap- activity (i.e. inter-dependenci@ausing graphical models
proaches that apply a viable statistical approach to modelsuch as HMMs and DBNs[ 7 L2 1l7, 5]. However, such
long-range contextual dependencies for a visual recogni-approaches usually require domain knowledge to build or
tion problem. It presents several advantages over previouguide temporal modeling.
works. The sequence model is built upon visual words (sub-  Our approach is different from these previous methods
events), not on annotated events, thus it does not requirén several aspects: 1) our model can capture both intra-
ground truth. As demonstrated later, such temporal model-dependencies and inter-dependencies simultaneously by ex
ing on sub-event level is superior to its event-level conte plicitly modeling the temporal relations over video seg-
part. In addition, our approach automatically discovees th ments; and 2) the model can capture and exploit long-range

A lot of schemes have been proposed for the human ac-
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Figure 2. Given an input video, our approach divides it insea
guence of temporal segments uniformly and then builds adeahp
model on top of the sequence to capture long contextual depen
cies in the visual data sequence. Then the approach conthimes
temporal model and event classification to jointly perfowerg
segmentation and classification.

temporal dependencies in the data; and 3) the model con
struction does not rely on event annotations or ground truth
3. Our approach

Unlike most previous works on event detection such as
[3] that treat video segmentation and event classification
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Figure 3. Samples of visual word sequences related to evénts
same event tends to generate similar visual words. Words for
null events are skipped here for clarity.

3.2. Joint Segmentation and Classification

With the video representation described above, our goal
is to partitionX = {x1,x2, -+ ,x,} Into m units and
label each unit with an event of interest omall event
(Fig.[@). Here a unit is a set of consecutive segments of
X. LetS = {s1,s89, -+ ,s,,} be such a partition where a
units; = X142 = [X,1,...,%.2] andt! andt? specify the
start and end indices of the slegmentsl-inAIso, letY =
{y1,v2, - ,ym} Wherey; € Y is the event class label as-
signed tos;. To model temporal contexts in the data, we
associateS with a visual sequencB = {z1,29, -+, 2}

The quality of the partitior8 with regard to event classifi-
cation can then be evaluated by,

separately, our approach performs video segmentation and

classification jointly with a temporal model described tate
in Sectiorf#. The motivation behind temporal modeling is to
exploit rich temporal structures and dependencies thanoft
exist in event data to enhance detection. We start by intro-
ducing the video representation in our approach.

3.1. Video Representation

Given an input vide&, we first divide it inton temporal
segments of a fixed length.,, i.e. X = {x1,x2, -+ ,x, }.
We then compute the bag of words (BOW) feature for
each segment upon motion SIFT key poiiifls [2]. The seg-
ments are further clustered info visual words using k-
means, and each segment is assigned a visual word. Fi

m

F8,Y) = o(uilsi) +

i=1

l

Z p(zilziok,, zie1)
1<h<ioa

1)
where is a trade-off parameter learnt from data empiri-
cally. Note thatZ can be of any visual data sequence cre-
ated on top o8. For example, a sequence of visual events
or visual words. We will further explain this in Sectibnl4.2.

The first itemep(y;|s;) in Eq.0 measures the likelihood
of the units; being eveny;. We use the SVM classification
score ofs; on eventy; for this item (see Sectidd 5 for detail).

The second item(z;|z;—k, - - - , z;—1) is provided by our
sequence model discussed in Secfiad 4.2. To put it sim-

nally, the video is represented by a sequence of visual wordsple, it is the probability of predicting; as the next sym-

W = {w1, w2, - ,wy}. In our experimentd,., was set
invariantly to the total length of the video, akdusually
ranges from600 to 900 depending on the complexity of the
data.

Fig. @ illustrates a few subsequences learnt from our
data. One immediate observation is that the same even
tend to generate similar visual words. A visual word from
one event may statistically interact with another one from a
different event, even though the two words can be tempo-
rally distant. For instancdy and P. We shall show how to
model this type of long-range interactions later on in Sec-
tion[.

bol after seeing the previodssymbols fromz; _j to z; 1.
Whenk = 1, this item degrades to the well-studiédf-
order Markov property. On the other handkif= i — 1,

it puts the entire history of the sequence into considenatio
Addressing such long contexts is a valid concern in previ-
pus work [22]. However, a recently developed probabilistic
model [Z1] broke through this limitation by exploring an
infinite length of context in a discrete data sequence.

Before detailing how to model the temporal sequence us-
ing the technique of21] in the next section, we briefly de-
scribe how the above objective function can be solved effi-
ciently by dynamic programming.



Given a sequence of discrete random variakleg =
{x1,%2, -+ ,xr} of arbitrary length T, each taking values
in a symbol set. The joint distribution over the sequence
estimated by the SM is

T

p(xl:T) = Hp(xz‘|x1:i71) 4)

=1
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a. prefix trie for cacac. b. prefix tree for oacac.

Figure 4. An example i [21] of prefix trie and prefix tree foeth
stringoacac

which hints that eacly; is predicted given a context of all
preceding variables;.; ;. Note that this is different from
annt"-Markov assumption &8 here can go to infinity the-
oretically.

3.3. Dynamic Programming The SM represents a sequence by a prefix trie[(Fig.4.a),
or a more efficient prefix tree (Fi@l 4.b) that can be con-
structed from an input string in linear time and space com-
plexity. Based on this representation, the SM places a
Pitman-Yor prior (PYP) to approximate the frequency of
each subsequence in the tree. This nicely addresses the
problem of insufficient training data often encountered by

Performing segmentation on a new video sequétcan
be casted into the task of maximizing the objective function
f(S,Y). Given any video flipX,.,, with lengthu € (0, n].
let us consider a variation objective functif(S, Y, u) ac-
cording tou. LetZ, ;.. be the visual sequence &, _;.,,

andZo., = {21, 22, - } be the union of visual sequences ., i) sequence modeling based rotth Markov as-
backward. The transition functiai{u, /) can be expressed . . g :
as: sumption. Mathematically, the probability efe 3" given

its previous context G|s), Is expressed by
9(u, l) maﬂ?(@(mxufl.u) + /LP(Zufl.u|Z0.ufl) (2) G[S] |d[s] » Cls)> G[S/] ~ Py(d[s] ) Cls] G[S/]), (5)
lmin S l S lmam
wherec andd are the parameters of the Pitman-Yor prior.
wherey ranges all the possible event labels,, ., lina.] [s] = [ss]. As shown in[Z1], using some special analytic
gives the minimum and maximum durations of an event, marginalization techniqué;|, can be computed efficiently
which can be obtained from ground truth. The final task is in linear time. We refer the reader m21] for further degail
to computef (S, Y, len(X)), which can be done by: In SM, the later symbols in a context are more im-
portant in predicting the subsequent symbol. Based on
f(S,Y,u) = aremax {0(w, 1) + F(S, Y, u—=1)} (3) this idea, in the example illustrated in Fi@. 3, the simi-
e larity between the two subsequences shown at the bottom
Unlike [6] which does exhaust search on each frame in (i.e.--- KLLMNNOP--- and--- KLMMNNOP---)
the dynamic programming, our approach searches only onis high as they share a long suffix. On the other hdtids
segments. The complexity of the implementation for seg- more important than others for predictiigas K L occurs
mentation orX is O(mwwlen(x)). in both of the two subsequences.

4. Temporal Modeling by Sequence Memoizer 4.2. Temporal Sequence Modeling

) A natural thought is to apply the SM to model an event

To solve Eq.0l, we need to compute the probabil- sequence, similar to what an HMM does. This is straight-
ity of a visual labelz; conditioned on an observed se- fgnward and can be done easily by settingn Eq.00 toy;
quence{z; ,---,z-1}. We adopt the Sequence Mem- gjrectly. We call this methodvent-level sequence modeling
oizer (SM) [21] here for such a purpose. (ESM). However, such a method, though being widely prac-
ticed, requires ground truth for model learning. As pointed
out previously in Sectiofil1, this model can not take full

Sequence Memoizer (A Stochastic Memoizer for Se- advantage of the SM due to event sparsity and extremely
guence Data) is an unbounded-depth, hierarchical, Bayesia unbalanced distribution, and is also less robust in hagdlin
nonparametric model of discrete sequences. Compared taull events.
other techniques for sequence modeling, the SM can more Realizing that Eq[]1 takes flexible visual sequences, we
effectively learn a joint distribution over discrete seqoes model the visual word sequence with the SM inHg. 1. Such
of flexible lengths and capture long-range dependenciesmodeling ata granular level, referred to as segment-level s
The approach has demonstrated state-of-the-art results foquence modeling (SSM) here, turns out to be more effective
language modeling and data compression. and robust in our experiments. This largely lies in that a) a

4.1. Sequence Memoizer (SM)



large number of visual words are more likely to present a
power-law distribution than real events that are usually on

a few; and b) the sequence model is constructed in a purely -"’7 X i
data-driven way, not from the event annotations. S )

We now show how to compui& z;|z; - - - z;—1) with the Figure 5. Typical video shots of tfR=Ddataset. From left to right
SM. Remember that the visual labglis associated with  arePointing CellToEarandPersonRungvents.

aunits; = [x;1,...,x;.2], which can be represented by a
sequence of visual worCﬂ&tl; e wtf] (See Sectiofl3). By )
taking this into account and applying a chain rule, we can 6-1. Experimental Setup
obtain, We developed three sequence models based on the SM
technique. The first oneEGM+0), as described in Sec-
p(2ilzik - zic1) = plwg, .. we|lwp . we ) tion L2, performs sequence modeling at event level, tak-
2 ing a full length of context into account. The second one
_ H p(wj|wt}7k7 W) (ESM1), is a special case of t_he f|r§t one W.'t.h onkf-
i ' order dependency considered, in a similar spirit of HMMs.

©) The last one$SMec) is what we propose, i.e. a segment-

level sequence model exploiting a full length of context.
These models are integrated into the framework described
in SectiorB for event detection.

BaselinesWe implemented the approach proposed by
Hoaiet. al in [6] and used it as the primary baseline
in our evaluation. This approach performs joint segmenta-
5. Event Classification tion and classification of human actions based on maximiz-

ing the margins of the top two event classification scores.

In Eq.[, we need to evaluatg(y;|s;) for any possible  However, it does not consider temporal relationships among
lengthl (l;min < ! < lmas) Of @ units; on all eventsinclud-  events. On théSED dataset, in addition to Hoai's work,
ing thenull event class. We note that the temporal length the approach developed by Chemn al[8] was included in
of ground truth events can vary significantly. For example, our comparison. While Chen’s approach conducts event de-
the maximum length of ®ersonRungvent is up to 1000  tection by sliding window, it has acheived state-of-the-ar
frames while the minimal Iength is Only 10 frames. Such performance on th8ED dataset, ranking on the top dn
diversity in duration brings information loss if we learn a eyents out of’ in the TRECVID SED 2012 evaluation.
classification model with a single fixed temporal scale. We  Features for ClassificationWe used STIP featureS[iL1]
thus propose to learn classifiers on multiple temporal scale for event classification oRlollywood and spatial-temporal
to match the initial video segmentation by a fixed length of Fisher Vector feature§][3] 0BED We adopted the Multi-
lseq frames described in SectipnB.1. class SVM method4] to train a classifier for each event (ac-

Leth = (lmaz — lmin)/lseg- Then it suffices to solve  tion) plus anull event (action) class for all the approaches
Eq.0 if we trainh classifiers for each event at each scale in comparison except Chen’s, which does multiclassifica-
from [y, 10 h  l4cq. In all our experiments, we used the tion using the one-against-all methodology. For each class
same temporal rang8(( — 120 frames) for all events and 4 classifiers were built at different temporal scale8@f60,
built 4 classifiers for each event at 30, 60, 90, and 120 90 and120 frames, respectively.

frames, respectively, for efficiency. Note that this is con-  Event Detection and EvaluationTo generate visual se-

By settingk = i — 1 in the above equation, the last item
becomep(w;|wy, ..., w,;_1). This can be computed by the
SM efficiently.

sistent with the factl = h x lseq, (h = 2,4,6,8),lseg = 15 quences for training our mod&ISMeo, we used k-means
andlyin <1 < linae. We use multi-class SVM_[4] to train  to cluster a sequence of uniformly divided segments. On
a model for each event class. Hollywood & was fixed ta200 in all the tests. OISED, we

empirically determined: for each camera, which usually
6. Experimental Results ranges betweetD0 and900. A more detailed analysis dn

is provided later in Sectidnd.4.

We tested our proposed approaches on two challeng- For each video in our evaluation, we first ran our ap-
ing datasetsHollywood[I1] and TRECVID Surveillance  proaches to find the optimal segmentation and class labels.
Event Detection$ED) [15]. The former is a human action At that point, each segment is assigned to a particular event
dataset retrieved from popular movies while the latter is a class with a start and end frame. We then align the detection
visual event detection dataset collected from a surveitan results with the ground truth (i.e the reference annotajion
environment. using a Bipartite matching method developed(inl [10]. If a



Foal ESVE ESVioo SSMiso Foal ESVE ESVioo SSMso
Events = E]R = R = R = R Events = E]R = R = R = R
AnswerPhone| 0.64 035| 064 035] 062 03L| 067 035 AnswerPhone| 0.64 032| 065 036| 064 032| 064 043
HugPerson | 0.46 037| 045 033| 044 035| 047 037 HugPerson | 0.46 029| 049 033 0.48 033| 051 033
Kiss 044 049| 043 051| 043 049| 044 049 Kiss 040 048| 042 052| 042 052| 044 059
Sithown | 0.36 040| 037 043| 034 040| 0.35 043 Sitbown | 0.36 0.36| 038 0.38| 0.39 0.38| 0.39 0.38
Overal 047 040 047 040| 046 039] 048 041 Overal 047 036| 048 040| 048 039] 050 042

Table 1. Precisions (P) and Recalls (R) of different approaches en th Table 2. Precisions (P) and Recalls (R) of different approaches en th
new data set created frohiollywood (no temporal relationships among  new data set created froiollywood (with enforced temporal relation-
actions) ships among actions)

detection is matched to a true event, it is considered a true6'3' Evaluation on SED Dataset

positive. otherwise it is a false positive. The SED dataset was captured fréraurveillance cam-
eras at different locations in a busy airport. The dataset
has been used in the TRECVID SED evaluation track since
2009 to support the development of technologies of visual
event detection in a large collection of streaming videadat

It contains10 surveillance events with people engaged in
particular activities. Among then¥, events were used in
the TRECVID 2012 evaluation, includin@ellToEar, Em-
brace ObjectPuf Pointing, peopleMeetPeopleSplitUmand

6.2. Evaluation on Hollywood Dataset

Data Hollywoodis a video dataset focusing on realistic
human actions. These actions includleswerPhone, Hug-
Person, Kiss, SitDown, SitUp, GetOutCar, HandShake,
StandUp This dataset is divided into two disjoint subsets

with 219 video samples in the training set afdl in the Do )
) . .. PersonRuns This is an extremely challenging dataset for
test set, respectively. Followin@l[6], we selected the first . N
; . event detection, due to many confounding issues such as
four classes as actions to be recognized, and treated the oti‘h. - . .
ers asiull class igh-level activity, camera view changes, large variances
_ ' _ _ of events (i.e. PeopleMeet) and small objects (i.e. Cell-
SinceHollywoodcontains only pre-segmented clips, we ToEar) (Fig[®). The annotations 8EDonly include tem-
created new video clips of longer durations for our evalua- poral extents and event labels.
tion purpose, by concatenating video clips picked from the e ysed the development setED (about 100 hours
original dataset. Two such datasets were created, both uspf video data) for our evaluation. The data were split into
ing all the clips from the training and testing sets. In the two equal parts for training and testing.

first one the clips were selected_in an random order for con-  ResultsThe results of different approaches 8ED are
catenatlor_l. In the secpnd one, in order to enfo_rc_e temporalisted in TabldB. In addition to precision and recall, the
relationships, some”chps were selected to exhlt_)lt terﬂpora scores of the Detection Cost Rate (DCR), a performance
dependency. Specifically, we inserted some actions with 1-yatric adopted in the TRECVID evaluatidi [16], are pro-
order dependency (such &#Down-AnswerPhon@nd 2-  yjged in TabldB. Basically, DCR is a linear combination of
order dependency (suchldagPerson-Kiss-SitDowto the g errors: Missed Detections and False Alarms. It reflects
data. A total of about0 such video samples were formedin 5 tradeoff between these two types of errors by weighing
such away, half into the training set and half into the testin  {hom differently in scoringA lower DCR indicates a better
set. performance More details about this metric can be found
ResultsWe reported the results drollywoodby stan- in [LG].
dard precision and recall metrics. As shown in TdHle 1, First, we observe that while Hoai's approach performs
when there are no temporal relationships among events irreasonably well oidollywood against other approaches, it
the data, all approaches perform similarly, with our pro- fails to yield comparable results GED Also, it has very
posed approachSSMec) doing slightly better than oth-  low recalls forCell2Ear, ObjectPutandPointingevents, the
ers. However, when temporal dependencies were added tonost difficult ones to detect in this dataset. On the other
events in the data, all the approaches with temporal mod-hand, with the help of temporal informatiddSM 1 already
eling outperform the baseline, suggesting that temporal in achieves similar performance to Chen’s approach. By fur-
formation is helpful for event detection. As expect8&M- ther exploring longer temporal contexXe&&SM-oc andSSM-
oo achieves the best results in terms of both precision andoo outperform Chen’s approach, clearly demonstrating the
recall, demonstrating a large improvement over the base-benefit of modeling more complex temporal interactions in
line. There is not much difference betweESM1 and the sequence dat&SMeo produces the best results on all
ESM+o in this test, because the datasets were contrived tothe events except ddell2Ear. Some of the difficult events
exhibit only simple temporal relationships and the scenes i such asPointing and ObjectPuthave seen significant im-
the clips differ significantly from movie to movie, leaving provements irSMeo over the baselines, indicating the ef-
little long temporal context for exploitation. ficacy of temporal modeling by our approach. We also no-



Che Hoai ESML ESMoo SSMec
Bvents | #Grgund —p Rrﬂ] DCR| P RE] DCR | P R DCR| P R DCR| P R DCR
Cell2Ear 374 021 0.06 00953 0.13 0.01 1.002] 0.30 006 0.953] 0.34 0.07 0.933 | 0.28 0.05 0.95
Embrace 479 0.13 0.27 0.835 0.12 0.24 0.856| 0.14 027 0.833]| 0.15 0.28 0.812| 0.17 0.34 0.764
ObjectPut 1898 0.33 0.05 0.985| 0.43 0.01 1.001| 0.39 0.05 0.969| 0.44 0.06 0.941| 0.45 0.09 0.918
PeopleMeet 1376 0.19 0.27 0.931| 0.17 0.26 0.942| 0.19 0.27 0.933| 0.19 0.28 0.919| 0.20 0.28 0.913
Splitup 762 0.20 037 0819 0.17 032 0.897| 0.21 0.36 0.767| 0.21 0.36 0.764| 0.22 0.38 0.715
PersonRun 365 021 052 0573 019 044 0.761| 020 051 0.569| 0.20 052 0.564| 0.23 0.59 0.499
Pointing 2338 021 0412 1.009| 020 0.03 1.018/ 0.21 0.11 0.998| 0.22 013 0.983| 0.26 0.19 0.958
Overall 7592 0.19 015 N/A | 020 017 NA | 020 019 NA | 024 022 NA | 025 027 NA
Table 3. Precisions(P), Recalls(R) and DCRs of different approscmeSED. Note that a lower DCR score indicates a better performafibe. overall

DCR performance is not available as the evaluation tooligea/by TRECVID only outputs a score for each individual éven

events ESM-oo SSMeo
P R DCR P R DCR
! ! j " " ! Pointing 0.27 0.12 1.004| 0.36 0.20 0.950
0.28 + T PersonRun| 0.11 0.20 0.806| 0.15 0.30 0.785
ObjectPut | 0.39 0.06 0.944| 0.45 0.09 0.933
024 Embrace | 0.18 0.22 0.809| 0.2 0.33 0.785
g / Table 4. performance oESMoo and SSMeo based on only partial
& ground truth (only on Camera SED-1)
g 0.20 -
G
o —=— SSM Recall 030 Tef' Data: ?Em 030 . TestKDa!a. SE‘D-Z
0.16 - —e— SSM Precision 028 ‘ e o
—4— ESM-n Recall ] o s = precision]
—v— ESM-n Precision | e o rectocall | o35 \-?&
0.12 . : : : . . e S i
1 2 3 a4 5 6 0.244 J P o .- 4 0244 5
Order of Dependency (n) 0224 s "y 022 = sk SN

Figure 6. The performance (precision and recall) compansing
different lengths of temporal contexts.

600 700 800 900 1000

number of visual words k

560 760 860 960 1 0‘00 500

number of visual words k

tice that our temporal modeling tend to have little effect on Figure 7. Performance of our approach varying by the number o
those events exhibiting no evident temporal dependencies/isual words on two subsets (SED-1 and SED-2)
on other events, such &ell2EarandPeopleRun

500

more effective for the SM to capture the temporal depen-
dencies.
Sensitivity Analysis K-means clustering is used to gen-

6.4. Discussions

Below we provide more detailed analysis of our ap-

proach to support our main claims in this paper.
Long-range Temporal DependenciesTo demonstrate

the efficacy of exploiting long-range temporal dependen-

erate visual sequences for our modeling. Choosing a proper
k can help discover fine-detailed temporal structures in the
data. Generally speaking, has to do with the complex-

cies in modeling, we compared the performance of our pro-jty of the data. The more complex the scene is, a latger

posed approach with thegram temporal model[22]. FId 6
clearly illustrates the benefit of modeling long-range temp

is expected. In our experiments we empirically determined
the number of visual words on each camera. To better un-

ral contexts in the data. As the range of temporal dependengerstand how: affects the performance, we assessed the

cies increases, the performance improves consistently.
Effects of Ground Truth. To further understand the ef-

sensitivity of performance with respectto As illustrated
in Fig[d, while some careful tuning éfis desirable for bet-

fects of ground truth in temporal modeling, we designed an ter performance, choosingiabetween500 and800 on the

experiment by comparing the results of our approaches us-SeDdataset can yield reasonably good performance.
ing the original ground truth set and a reduced one. Specifi-

cally, we took out two events (i.€eopleMeeandSplitUp)
from the event annotations on Camédrén SED, and ran
ESMoso andSSMeo with the modified annotations. Note In this paper we have proposed a joint-segmentation-
that these two masked out events have significant contribu-detection framework with temporal dependencies among
tions to the temporal patterns8ED From Tabld}, we can  events considered to enhance detection in videos. The
see thatESMoo cannot stand up to expectation without dependencies are learned on visual word sequences using
the temporal relationships explicitly indicated in the gnd Squence Memoizer, which can capture long range depen-
truth. In comparisonSSMso has not been affected much dencies and power-law characteristics. In addition, our
by the imperfect annotations. This experiment strongly sup model is constructed without relying on event annotations
ports our claim that at sub-event level granularity itis imuc and is capable to handiall events well. We have shown

7. Conclusions



competitive results on difficult datasets and demonstrated
that our approach outperforms state-of-the-art eventeete
tion methods.

Additionally, note that we undertook only limited joint
segmentation (e.g., overlap between true events and cor-
rectly detected events) and recognition error analysisgfa
positives/negatives) in one corpus of the dataSED)

when the domain experts (NIST and governmental author-

ities) specified the relative weights of the individual esro
in the form of DCR metric[[16]. In near future, we will
more comprehensively explore the performance trade—offs[15]
between localization and categorization.
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