
Batch Mode Active Learning with Hierarchical-Structured

Embedded Variance

Yu Cheng∗ † Zhengzhang Chen ∗ Hongliang Fei† Fei Wang† Alok Choudhary∗

Abstract

We consider the problem of active learning when the cate-

gories are represented as a tree with leaf nodes as outputs

and internal nodes as clusters of the outputs at multiple

granularity. Recent work has improved the traditional tech-

niques by moving beyond ”flat” structure through incorpo-

ration of the label hierarchy into the uncertainty measure.

However, these methods have two major limitations when

used. First, these methods roughly use the information in

the label structure but do not take into account the train-

ing samples, which may lead to a sampling bias due to their

crude approximation of the class relations. Second, none of

these methods can work in a batch mode to reduce the com-

putational time of training. We propose a batch mode active

learning scheme that exploits both the hierarchical structure

of the labels and the characteristics of the training data to

select the most informative data for human labeling. We

achieve this goal by first using an approach based on graph

embedding that embeds the relationships between the la-

bels and data points in a transformed low-dimensional space.

Then, we compute uncertainty by calculating the variance

among the points and the labels in the embedding space. Fi-

nally, the selection criterion is designed to construct batches

and incorporate a diversity measure. Experimental results

indicate that our technique achieves a notable improvement

in performance over the state-of-the-art approaches.

1 Introduction

Multi-class classification is a problem that arises in
many applications of data mining, such as document
and web categorization. Large scale classification prob-
lems usually involve hundreds or even thousands of pos-
sible classes and need a lot of training data that requires
expensive and time-consuming labeling work. To make
the learning task more efficient, it is imperative to in-
telligently choose specific unlabeled instances to be la-
beled by an oracle/user. The general problem of opti-
mally choosing these instances is known as active learn-
ing [1]. Within an active learning framework, instances
that maximize model uncertainty are the most informa-

∗EECS Department, Northwestern University, IL 60208, USA
†IBM T.J. Watson Research Center, NY 10582, USA

tive ones and are the ones that are selected. The uncer-
tainty is usually quantified by entropy of class posterior
probabilities or distances from the decision hyper-plane,
with the assumption that all the class priori probabili-
ties are known.

Previous active learning techniques modeled the
label relationship with a “flat” structure [2,3], in which
each class/category was independently tackled by a
binary active learning algorithm. However, it is often
the case that the categories are not just discrete classes,
but organized in a hierarchical structure, or a category
tree. For example, web pages can be categorized into the
Yahoo! web hierarchical taxonomy, and images can be
organized according to the WordNet hierarchy. When
considering the hierarchical multi-class classification
problems, most of these approaches treat all the class
labels independently and largely ignore the rich inherent
relationships among the multi-class labels.

Most recent approaches exploit information in the
hierarchy structure [4,5] into the active learning setting.
For example, [4] estimated the cost of misclassification
based on the geodesic distance of two class labels in
the category tree. And [5] proposed a variance-based
measure with incorporating the label hierarchy. Al-
though modeling the label relationship using the ”hier-
archy tree” can boost the performance compared to the
”flat” structure, these methods have two main limita-
tions when deployed to hierarchical classification. First,
in reality, it is not sufficient to estimate the uncertainty
information using only the information embedded in the
label structure. The class label is usually a very crude
approximation of the class relations created by an editor
with knowledge of the true underlying semantic space
of the class [6]. And it would be even worse when the
prior knowledge is wrong. It may lead to sampling bias
by exploiting the label information. Second, instead of
selecting a batch of samples simultaneously, these active
learning methods are designed to select a single sam-
ple for each learning iteration which requires too much
computational effort. Directly applying the none-batch
methods may also result in selecting multiple examples
that are similar (or even identical) to each other. We
refer to these two problems as “label bias” problem and

10 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

“batch sampling” problem, respectively.
To address the “label bias” problem, in this pa-

per, we propose a graph embedding based active
learning approach for hierarchical classification, named
Hierarchical-Structured Embedded Variance (HSEV).
It handles the “label bias” problem by exploiting
both the externally provided class hierarchy and the
training data into active learning selections. To
solve the “batch sampling” problem, we propose the
Batch Mode Hierarchical-Structured Embedded Vari-
ance (HSEVDive), which can select multiple samples si-
multaneously via a combined strategy incorporating di-
versity measure. We show that the proposed approach
results in notable improvement upon the learning rate
(and performance) of the state-of-the-art active learning
methods. In summary, our contributions are:

1. We propose a graph embedding based approach ex-
ploiting both the hierarchical structure of the label
tree and characteristics of the training data to mea-
sure the uncertainty. The structure information of
the labels is induced into the learning algorithm.

2. We demonstrate that the proposed sequential mode
Hierarchical-Structured Embedded Variance sam-
pling is a generalization of some other active learn-
ing methods for hierarchical classification.

3. We present a framework for actively selecting a
batch of unlabeled examples simultaneously. It has
low computational requirements making it feasible
for large scale problems with thousands of samples.

2 Related Work

2.1 Active Hierarchical Classification The goal
of active learning is to choose informative instances to
label, so as to achieve a low classification error with few
iterations [7,8]. Given a large set of unlabeled instances
(x1, ...,xn) ∈ U , in each step, the learner is allowed
to use the query function Q and select an unlabeled
instance x ∈ U to be labeled. The most commonly
used query function is entropy based sampling. Given
the posterior p(yi|xi) of every point xi in U , the query
instance is found by maximizing the entropy function:

(2.1) Entropy(~y,x) = −
m∑

α=1

pα log pα

where pα = p(y = α|x) and y ranges over all possible
labels. Nader et al. [9] found that using variance to
measure uncertainty has a very similar performance to
entropy. The variance-based measure is to select the
instance which maximizes the variance function:

(2.2) Var(~y,x) =
m∑

α=1

pα(1− pα)

Relatively few approaches exploit the relationship
of the labels to incorporate label structure for active
learning. One way to incorporate the structural rela-
tionship of the labels is to use cost-based measure [4],
which estimates the cost of misclassification using the
geodesic distance of two class labels in the category tree
to calculate the uncertainty:

(2.3) Cost(~y,x) =
m∑

α=1

m∑

β=1

Cαβpαpβ

where Cαβ is a cost measure of misclassification, and set
to be the geodesic distance between node α and node β
in the hierarchical label tree. This method is referred as
cost-based sampling in the paper. Yu et al. [5] proposed
a variance-based measure with incorporating the label
structure, denoted as hierarchy active sampling (HAS):

(2.4) HAS(~y,x) = Tr(
m∑

α=1

pαvα
T vα − dT

~y d~y)

where vα is transformation of label space y, which is
approximately estimated using the geodesic distance

of the labels, and d~y =
m∑

α=1
pαvα is the mean vector

of each label vector. However, these methods either
model the label relationship as “flat” or roughly take
the label hierarchy into consideration with ignoring the
training data information. In contrast, the proposed
method, Hierarchical-Structured Embedded Variance,
exploits both the structure of the label tree and the
training data in measuring the uncertainty, and is able
to achieve higher sampling efficiency.

2.2 Batch Mode Active Learning Pool-based ac-
tive learning methods can be sub-categorized as two
sets: one is sequential mode, where a single point is
queried at a time; another is batch mode, where a batch
of points is queried simultaneously before updating the
classifier. Amidst batch mode techniques, Hoi et al. [10]
used the Fischer score matrix as a measure of model un-
certainty and proposed to select a batch of points which
reduced the Fischer score. Brinker [11] proposed a strat-
egy in SVM setting which queried a diverse batch of
points where diversity was measured as the distance be-
tween the candidate point to all other selected points.
Xu et al [12] combined the relevance, density and di-
versity measure to select a batch of candidate queries.
Our batch mode strategy is similar to Brinker’s and
Xu’s work, which exploits the diversity function into
the active batch selection. But different to their diver-
sity functions which are based on single point distance
measure, our proposed graph-based diversity function,
is more robust due to the k-NN graph structure.

11 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

3 Sequential Mode Hierarchical-Structured
Embedded Variance

In this section, we propose the sequential mode
Hierarchical-Structured Embedded Variance method
HSEV, for active learning to select new instances.

3.1 Hierarchical Structured Embedding One so-
lution for combining both label structure and data infor-
mation is using the embedding-based methods [6,13,14],
which discover a representation of the data points where
distances reflect the underlying dissimilarities and prox-
imities based on topic membership. In this paper, we
employ the graph embedding scheme to perform the em-
bedding and propose a quadratic programming frame-
work to transform the graph, including training data
points and class labels, into a low-dimensional space
that preserves the relationships among the labels and
training data. The overall framework of the proposed
embedding is illustrated as in Figure 1. After embed-
ding, 1) data points within the same or related classes
should be close; 2) data points within highly different
classes should be well separated; and 3) the embedded
label prototype should be able to characterize the label
tree structure. Then the label variance, which is com-
puted by treating each label as a point in the trans-
formed space, is utilized to measure the uncertainty,
which can well estimate informativeness of a new data
point.

We assume that the input data consists of instances,
represented as a set of vectors x1,x2, ...,xn in the
training dataset ζ. In addition, each instances xi is
accompanied by a single topic label α ∈ {1, 2, ..., m}
organized into a label tree T with m total topics. A
label tree [15] is a tree T = (VT , E) with nodes VT and
edges E. Each node v ∈ VT is associated with a set of
class labels l(v) ⊆ {1, · · · ,m} so that the set of labels
{1, · · · ,m} has a one-to-one mapping to the set of leaf
nodes, and each non-root node’s label set should be a
subset of its parent’s label set.

In order to use the graph embedding algorithm to
embed the label and training data, we first construct
the intrinsic graph G. Let G = (V,W) be a weighted
graph with the set vertex V and the edge matrix W.
V contains all the category labels α ∈ {1, 2, ..., m}
and all training data points xi ∈ ζ. The edge matrix
W ∈ RN×N (N = n+m) is a similarity matrix and wij

defines the similarity coefficient of vertices vi and vj in
V . The edges of the intrinsic graph include: (1) edges
joining each data point vertex to its nearest neighbor in
the data space, and (2) edges joining each label vertex
to the data point vertices of the corresponding class.
Two vertices connected by an edge in the intrinsic graph
means that their embedded points should be close to

each other. In other words, the larger the similarity
coefficient wij is, the smaller the distance between two
vertices should be. Formally, the edge matrix W of the
intrinsic graph is defined as follows:
(1) For data points xi and xj , the weight of the edge
connecting them is:

(3.5) wij =
{

1, if i ∈ Nk1(j) or j ∈ Nk1(i)
0, otherwise

where Nk1(j) indicates the index set of the k1 nearest
neighbors of the sample xi with the same label. The
data points should be near to its k1-nearest neighbors
that has the same label.
(2) For a data point xi with label yi and a label point
xα, the weight of the edge connecting them is:

(3.6) wiα =
{

1, if α = yi

0, otherwise

These edges enforce each label prototype to be near to
all the training data with that label, so that the label
prototype is representative of the training data with this
label. The diagonal matrix D and the Laplacian matrix
L of the graph G are defined as:

(3.7) L = D−W, Dii =
∑

j 6=i

Wij

In addition, an intra-class penalty graph Gp =
(V,Wp) is defined as a graph whose vertices V are
the same as those of G, but the weighted edge matrix
Wp, corresponding to the similarity characteristics is
opposite to W in the embedding feature space, i.e., the
larger the edge element wp

ij is, the larger the distance
between vi and vj should be. The edges of the intra-
class penalty graph include: (1) edges joining two
data point vertices with different classes, and (2) edges
joining two label vertices. The Wp of the penalty graph
is constructed as follows:
(1) For data points xi and xj , the weight of the edge
connecting them is:
(3.8)

wp
ij =

{
1, if (i, j) ∈ Pk2(ci) or (i, j) ∈ Pk2(cj)
0, otherwise

where ci is the class of data xi, Pk2(ci) is a set of data
point pairs that are the k2 nearest pairs among the
set {(i, j), yi = c, yj 6= c}. These edges maintain the
neighborhood structure of the nearest data point pairs
by pushing the data points that have different labels
further away.
(2) For a label point xα and a label point xβ , the weight
of the edge connecting them is

(3.9) wp
αβ = Cαβ

12 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Figure 1: A schematic layout of the proposed graph embedding approach. An intrinsic graph and penalty graph
are constructed to reflect the structure of the data and the categories. These graphs are then used to embed the
all training data as well as the category labels to a low-dimensional space.

where Cα,β is the class distance between classes α and
β (Cα,α = 0), which is the length of the shortest path
between the corresponding nodes in the label tree. In
this way, the distance of the labels that are further away
in the label tree will be penalized more heavily in the
graph embedding.

Given all the category labels α ∈ {1, 2, ..., m} and
the labeled dataset ζ = [(x1, y1), (x2, y2), ..., (xn, yn)],
we would like to embed both the labels and the data
into the same space Z ∈ RN×d. We represent the
embedded space as a vector Z = [z1, z2, ..., zN]T , where
zi is the d-dimensional representation of data point xi or
a label α. The goal of graph embedding for the intrinsic
graph G is to find the desirable low dimensional vector
representation zi that best characterizes the similarity
relationship between the vertex pairs in G, where the
criterion formulated based on Gp is also preserved [14].
By setting the intrinsic graph W and the penalty
graph Wp as inputs, the graph-preserving embedding
algorithm works by minimizing the following objective
function:

(3.10) Z = arg min(Tr(ZT(L−B)Z) + λ||Z||2F)

where Tr() is the trace function, λ||Z||2F is a regular-
ization term to bound objective function, and B is the
matrix determined by the penalty graph Gp:

(3.11) B = Dp −Wp, Dp
ii =

∑

j 6=i

W p
ij

where Dp is the diagonal matrix. The i-th row of the
matrix Z is the embedded vector representation zi of
the graph. The optimization of Eq. 3.10 is a Quadratic
Programming (QP) problem [16], and the objective
function is strictly convex when λ ≥ abs(ψ),∀ψ ∈ Ψ,
where Ψ is eigenvalues set of (L − B) (it is easy to

prove the positive definiteness). It has a unique local
minimum which is also a global minimum. Ellipsoid
method [17] can find global minimum of the objective
function in polynomial time.

3.2 Variance-based Uncertainty Measure After
embedding each class label α into a point zα in embed-
ding space Z, the variance can be defined as the trace
of the covariance matrix of all the label points:

(3.12) VOI(~y,x) = Tr(
m∑

α=1

pαzα
T zα − dT

~y d~y)

where VOI(~y,x) is the uncertainty measure, d~y =
m∑

α=1
pαzα is the mean vector of each label vector, and pα

is the estimated probability that x belongs to class α.
In each step, the point x with the greatest uncertainty
is selected for labeling. We refer this sequential mode
Hierarchical-Structured Embedded Variance method as
HSEV.

Here we demonstrate that HSEV is a generalization
of the variance-based, cost-based and Hierarchy Active
Sampling (HAS) measures. If all the labels are equiva-
lent, they can be embedded uniformly into a high dimen-
sional Euclidean space. Suppose y ∈ {1, ..., m}, then we
can embed them into a m-dimensional space. Formally,
we can embed a label y = α to eα, (zα = eα), where
eα is a vector with its α-th element 1 and the rest of
elements 0. Then, the uncertainty measure Eq. 3.12
can be derived as:

VOI(~y,x) = Tr(
m∑

α=1

pαeT
αeα − (

m∑
α=1

pαeα)T
m∑

α=1

pαeα)

=
m∑

α=1

pα(1− pα)(3.13)

13 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Thus, the HSEV can be viewed as a generalization of the
variance-based measure. When considering the distance
of two label points in the embedding space Z, if we set
||zα−zβ || = Cαβ , the HSEV is equivalent to cost-based
measure:

VOI(~y,x) = Tr(
m∑

α=1

pαzT
αzα − (

m∑
α=1

pαzα)T
m∑

β=1

pβzβ)

=
m∑

α=1

m∑

β=1

||zα − zβ ||pαpβ

=
m∑

α=1

m∑

β=1

Cαβpαpβ

Similarly, if we consider the distance of two label
points in the embedding space Z to be equal to their
distance in the transformed label space V in Eq. 2.4,
the HSEV is equivalent to HAS.

4 Batch Mode Hierarchical-Structured
Embedded Variance

4.1 Combined Strategy with k-NN Graph-
based Diversity The serial-based HSEV suffers from
one main limitation: the training process requires the
construction of the similarity graph matrix and solv-
ing quadratic programming, which is computationally
expensive. Despite working well for selecting a sin-
gle unlabeled instance, it is difficult to extend it to
select multiple instances. Here, we present a batch
mode Hierarchical-Structured Embedded Variance, de-
noted by HSEVDive, by incorporating a diversity to mea-
sure the distance between an instance and the selected
set. We first propose a graph-based diversity measure
and use a graph structure to identify highly connected
points. We build a k nearest neighbor graph with
Pi,j = 1 if d(xi,xj) is one of the k smallest distances
of xi with Manhattan distance. The graph is symmet-
ric and weighted with a Gaussian kernel by variance σ:

(4.14) Qij = Pijexp(
−d(xi,xj)

2σ2
)

This weight matrix Q is used to rank all data points
according to their diversities. The intuition behind
this is that representative data points for one class
are usually well embedded in the graph structure and
thus have many edges (>> k) with high weights.
To distinguish among data points with many small
weighted neighbors, we normalize these weights by the
number of edges:

(4.15) Gra(xi) =
∑

i Qi,j∑
i Pi,j

We reduce the weights of direct neighbors of the cur-
rently selected node xi with Gra(xi) = Gra(xi) −
Gra(xj)Pi,j. This avoids selecting the same dense re-
gion multiple times. In this way, our method avoids
sampling of outliers, and is more robust due to the un-
derlying k-NN graph structure.

Finally, we build a convex combination of both un-
certainty and diversity measures and proceed to con-
struct a new training batch and incrementally construct
a new training batch as shown in Algorithm 1.

Algorithm 1 Batch Mode Hierarchial-Structured Em-
bedded Variance Sampling
1: Input: trade-off θ between uncertainty and diver-

sity, batch size h, unlabeled instance pool U ;
2: Output: S: a selected training instances batch.
3: Init: Set S = ∅, train the classifier using initial

training data;
4: Repeat
5: Compute VOI(xi)(Eq. 3.12) given instance xi;
6: Compute Gra(xi)(Eq. 4.15) given instance xi;
7: x∗ = arg maxx(θ)VOI(x) + (1− θ)Gra(x);
8: S = S ∪ (xi), U = U ; \(xi);
9: Until card(S)=h

10: return S.

4.2 Computational Complexity The running
time of our HSEVDive algorithm depends on the active
learners used as subroutines (model training, variance
measure, or diversity sampling). Summing up training
time and sampling time, the sequential mode requires
computational time of order O(Ttrain + Tvoi), where
Ttrain is the time to run model training and Tvoi is
the time to run the variance-based measure. This
time complexity is dominated by the training time
part Ttrain as it is larger than Tvoi. In comparison to
the distance strategy, the combined strategy requires
additional computational time of order O(Tdiv), where
Tdiv is the time to run diversity sampling (Tdiv is much
smaller than Tvoi). Specifically, the expected time com-
plexity of the HSEVDive is O(Ttrain

h + Tvoi + Tdiv) with
batch size h. As a result, the overall time complexity
of the HSEVDive gets decreased as h increases.

4.3 Parameters Setting The hierarchical SVM [18,
19] is employed in this paper as the default classifier.
The hierarchical SVM algorithm travels from the root
until it reaches a leaf node, and at each node follows
the child that has the largest classifier score. In this
case, the label at the final leaf node is output as the
classification label. We use a standard SVM with RBF
kernels. The proposed framework has some parameters

14 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 1: Some statistics of Hglass, RCV1-v2 and
GPCR-Interpro.

Dataset |y| |ι| |n| Train Test

Hglass 27 20 9 150 64

RCV1-v2 101 77 47236 600 600

GPCR 201 199 450 2444 5000

and we did not tune our parameters to match the test
datasets. The embedding dimension d was set to be half
of the number of the leaf labels. The hyper-parameters
of SVM classifier were set at standard values. How
to set parameters k1 and k2 is still an open problem
[14]. Therefore, we empirically set the two parameters.
Specifically, we sampled five values of k1 between 4
and (min{Nα} − 1) and chose the value of the best
performance, where Nα is the number of labeled data
with label α. Similarly, we chose the best k2 by sampling
between 10 and 4Nα. The question of how to choose an
optimal value for θ depends on the training process and
the datasets. We empirically set it to be 0.7 in our
experiments.

5 Experimental Study

5.1 Experimental Setup We evaluate our proposed
approach on three real-world datasets: (1) Hglass [20]:
a hierarchical classification dataset that contains 214
data points and 20 leaf labels, which uses attributes as
features; (2) RCV1-v2 [21]: a widely used benchmark
dataset. The documents have been tokenized, stopped
and stemmed to 47,236 unique tokens (features) and
represented as L2-normalized log TF-IDF vectors; (3)
GPCR-Interpro [22]: a protein function dataset whose
features are 0/1 “protein signature”.

The details of the datasets are described in Table
1, where |y| is the number of all nodes in the class
hierarchy, |ι| is the number of leaf labels, and |n| is
the number of features. We employ two evaluation
criteria to evaluate the performance. The first is average
accuracy. The second is tree-loss [23], which is the sum
of the misclassification cost on the test data.

5.2 Sequential Mode Active Learning Compar-
ison We first compare the sequential HSEV to three
baselines: 1) entropy-based uncertainty sampling: de-
noted as ENTROPY; 2) cost-based uncertainty sam-
pling: denoted as COST; 3) Hierarchical Active Sam-
pling, the method proposed in [5], denoted as HAS.

In Figure 2 and 3, we show the average accuracy and
tree-loss for the four competing methods at each learn-

ing step. Our HSEV achieves the best accuracy among
all the methods. The HAS and COST methods get sim-
ilar performances and their results are better than EN-
TROPY. Classification on Hglass data is a tough task
since the training data is limited and the total number
of features is very small. Both HAS and COST per-
form poorly on this dataset while the proposed HSEV
performs well even when only a small amount of data
is labeled. This illustrates that our proposed measure
is very effective even when the training data is very
scarce. From the experimental results on the real-world
datasets, we show that the Sequential HSEV does im-
prove the learning rate and the classification perfor-
mance compared to all the baseline methods.

5.3 Batch Model Active Learning Comparison
In this experiment, we compare the proposed batch
mode HSEV approach, HSEVDive to the following algo-
rithms: 1) Batch mode SVM active learning (SVMDive):
a heuristic modification of SVM active learning by incor-
porating diversity in the batch sampling procedure [11].
2) Batch Mode Hierarchical Active Sampling (HASDive):
a modification of the Hierarchical Structure Sampling
by incorporating diversity in the batch sampling proce-
dure. 3) The Sequential Mode Hierarchical-Structured
Embedded Variance approach (HSEV): selecting top-h
samples with high uncertainty scores.

We conduct experiments with the four active learn-
ing approaches by varying the batch size after 30% of
the training data is labeled. Tables 2, 3 and 4 show
the average accuracy and tree-loss performance on the
three datasets separately. “MAR” stands for the mean
of average results (accuracy or tree-loss). The proposed
algorithm consistently outperforms the other three ap-
proaches with significant improvement. The perfor-
mances of sequential mode HSEV drops when the batch
size increases. In contrast, the relative improvement in
HSEVDive tends to become more significant and this
performance increases when the batch size is increased.
These results show that the proposed batch mode active
learning algorithm is more effective in selecting a batch
of informative unlabeled samples for labeling.

5.4 Sensitivity Analysis of Embedding Dimen-
sion We now study how the choice of the embedding
dimension d affects the performance. With fixed ac-
tive learning settings, we vary d, to evaluate the robust-
ness of our method after 30% and 60% of training data
are labeled. Since the number of attributes in Hglass
is small, the test is only performed on RCV1-v2 and
GPCR-Interpro datasets, with d varying from |ι|

4 to |ι|.
As shown in Figure 4a and 4b, as d increases from 20 to
80, the performance of both accuracy and tree-loss do

15 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

Table 2: The average accuracy and tree-loss performances with different batch sizes on the Hglass.
HSEVDive SVMDive HASDive HSEV

Batch Size accuracy tree-loss accuracy tree-loss accuracy tree-loss accuracy tree-loss
5 0.522 1.613 0.425 1.727 0.483 1.515 0.529 1.625
10 0.537 1.611 0.423 1.725 0.505 1.624 0.505 1.641
15 0.549 1.597 0.431 1.715 0.522 1.635 0.493 1.629
20 0.556 1.523 0.475 1.678 0.525 1.641 0.485 1.662
30 0.576 1.475 0.513 1.635 0.531 1.649 0.472 1.675

MAR 0.548 1.553 0.465 1.687 0.513 1.626 0.486 1.645

0 30 60 90 120 150
0.52

0.56

0.60

0.64

0.68

test data: Hglass

Ac
cu

ra
cy

Number of queried samples

 ENTROPY
 COST
 HAS
 HSEV

(a)

0 200 400 600

0.65

0.70

0.75

0.80

0.85

0.90
test data: Rcv1-v2

Ac
cu

rac
y

Number of queried samples

 ENTROPY
 COST
 HAS
 HSEV

(b)

0 500 1000 1500 2000
0.35

0.40

0.45

0.50

0.55

0.60

test data: GPCR

Ac
cu

ra
cy

Number of queried samples

 ENTROPY
 COST
 HAS
 HSEV

(c)

Figure 2: Accuracy comparison on different datasets.

not change too much. Similar trends can be observed
in Figure 4c and 4d, with d varying from 50 to 200. It
is concluded that the trends in accuracy and tree-loss
remain almost the same regardless of the choice of d in
the range from |ι|

4 to |ι|.

5.5 Running Time Comparison We measure the
efficiency of our implementation on the three experi-
mental datasets. Our C++ implementation runs on
a dual-core 3.3 GHz machine with 8 G memory. We
compare it with the running time of SVMDive, HASDive

and sequential HSEV. Figure 5a and 5b show the re-
sult of average running time for selecting one sample
while batch size is 5 and 10, separately. Although the
complexity of our algorithm is higher than SVMDive and
HASDive, our method achieves comparable running time
with the two baselines. Compared with the sequential
HSEV method, our method is more efficient, which is
consistent with the analysis presented in Subsection 4.2.

6 Conclusion

We proposed sequential and batch mode active learn-
ing schemes for multi-class hierarchical classification. In
particular, we presented a unified learning framework
for incorporating the hierarchical structure of the label
tree as well as the characteristics of the training data to
select the most informative data for human labeling, and

HGlass RCV1-v2 GPCR-Interpro
0

10

20

30

40

ru
nn

in
g

tim
e

(s
ec

on
d)

method

 SVM_Dive
 HAS_Dive
 HSEV
 HSEV_Dive

(a) Batch size is 5.

HGlass RCV1-v2 GPCR-Interpro
0

10

20

30

40

ru
nn

in
g

tim
e

(s
ec

on
d)

method

 SVM_Dive
 HAS_Dive
 HSEV
 HSEV_Dive

(b) Batch size is 10.

Figure 5: Running time of 4 algorithms on different
datasets.

developed a new batch mode active learning algorithm
based on diversity measure. Experimental results have
demonstrated that the proposed sequential and batch
mode methods can improve the learning rate and per-
formance over the state-of-the-art methods. The results
indicate that utilizing both the hierarchical structure of
the category labels and information of the training data
are very helpful for active learning.

There are several interesting research directions for
future work. First, although the combined selection
strategy is fairly robust with respect to the trade-off
parameter θ, the question of how to choose an optimal
value for θ is yet unanswered. Second, the proposed

16 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

0 30 60 90 120 150

1.2

1.4

1.6

1.8

2.0
test data: Hglass

Tr

ee
 Lo

ss

Number of queried samples

 ENTROPY
 COST
 HAS
 HSEV

(a)

0 200 400 600

0.4

0.8

1.2

1.6

2.0

test data: Rcv1-v2

Tr
ee

 Lo
ss

Number of queried samples

 ENTROPY
 COST
 HAS
 HSEV

(b)

0 500 1000 1500 2000

1.1

1.2

1.3

1.4

1.5

test data: GPCR

Tr
ee

 Lo
ss

Number of queried samples

 ENTROPY
 COST
 HAS
 HSEV

(c)

Figure 3: Tree-loss comparison on different datasets.

20 30 40 50 60 70 80
0.6

0.8

1.0

1.2

1.4

test data: Rcv1-v2

Pe
rfo

rm
an

ce

embedding dimension d

 Accuracy
 Tree-Loss

(a) Rcv1-v2, 30% labeled.

20 30 40 50 60 70 80
0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00
test data: Rcv1-v2

Pe
rfo

rm
an

ce

embedding dimension d

 Accuracy
 Tree-Loss

(b) Rcv1-v2, 60% labeled.

40 60 80 100 120 140 160 180 200 220

0.4

0.6

0.8

1.0

1.2

1.4

1.6
test data: GPCR

Pe
rfo

rm
an

ce

embedding dimension d

 Accuracy
 Tree-Loss

(c) GPCR, 30% labeled.

40 60 80 100 120 140 160 180 200 220

0.4

0.6

0.8

1.0

1.2

1.4

test data: GPCR

Pe
rfo

rm
an

ce

embedding dimension d

 Accuracy
 Tree-Loss

(d) GPCR, 60% labeled.

Figure 4: Sensitivity analysis of d on Rcv1-v2 and GPCR-Interpro datasets.

Table 3: The average accuracy and tree-loss performances with different batch sizes on the Rcv1-v2.
HSEVDive SVMDive HASDive HSEV

Batch Size accuracy tree loss accuracy tree loss accuracy tree loss accuracy tree loss
5 0.752 1.363 0.623 1.427 0.683 1.415 0.725 1.472
10 0.757 1.311 0.625 1.425 0.703 1.362 0.704 1.524
15 0.774 1.259 0.622 1.415 0.721 1.335 0.692 1.563
20 0.796 1.223 0.625 1.378 0.754 1.321 0.686 1.568
30 0.805 1.215 0.631 1.335 0.773 1.294 0.675 1.605

MAR 0.772 1.261 0.623 1.387 0.723 1.315 0.692 1.569

Table 4: The average accuracy and tree-loss performances with different batch sizes on the GPCR-Interpro.
HSEVDive SVMDive HASDive HSEV

Batch Size accuracy tree loss accuracy tree loss accuracy tree loss accuracy tree loss
5 0.462 1.261 0.385 1.342 0.423 1.256 0.455 1.255
10 0.507 1.211 0.393 1.325 0.457 1.224 0.445 1.281
15 0.519 1.197 0.411 1.341 0.482 1.225 0.413 1.296
20 0.535 1.163 0.475 1.274 0.495 1.192 0.418 1.306
30 0.546 1.135 0.513 1.235 0.501 1.168 0.372 1.357

MAR 0.522 1.191 0.465 1.272 0.473 1.191 0.429 1.295

17 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

method provides a general platform to develop new al-
gorithms for active learning with embedding label rela-
tionships. It would also be very interesting to consider
active learning problems with more complicated label
structures [24,25] (such as directed graphs).

References

[1] B. Settles, “Active learning literature survey,” Tech.
Rep., 2010.

[2] P. Jain and A. Kapoor, “Active learning for large multi-
class problems,” IEEE Computer Society Conference
on Computer Vision and Pattern Recognition, pp. 762–
769, 2009.

[3] A. J. Joshi, F. Porikli, and N. Papanikolopoulos,
“Multi-class active learning for image classification,”
in IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2009, pp. 2372–2379.

[4] T. Gao and D. Koller, “Active classification based on
value of classifier,” in Advances in Neural Information
Processing Systems 24, J. Shawe-Taylor, R. Zemel,
P. Bartlett, F. Pereira, and K. Weinberger, Eds., 2011,
pp. 1062–1070.

[5] Y. Cheng, Z. Kunpeng, Y. Xie, A. Agrawal, and
A. Choudhary, “On active learning in hierarchical clas-
sification,” in Proceedings of the 21st ACM Interna-
tional Conference on Information and Knowledge Man-
agement. ACM, 2012, pp. 2467–2470.

[6] K. Weinberger and O. Chapelle, “Large margin tax-
onomy embedding for document categorization,” in
Advances in Neural Information Processing Systems,
D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou,
Eds., 2009, pp. 1737–1744.

[7] D. D. Lewis and W. A. Gale, “A sequential algorithm
for training text classifiers,” in Proceedings of the
17th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval.
Springer-Verlag New York, Inc., 1994, pp. 3–12.

[8] H. Raghavan, O. Madani, and R. Jones, “Active
learning with feedback on features and instances,” J.
Mach. Learn. Res., vol. 7, pp. 1655–1686, Dec. 2006.

[9] E. M. N. Ebrahimi, “Measuring informativeness of data
by entropy and variance,” Slottje(ed.), 1999.

[10] S. C. H. Hoi, R. Jin, J. Zhu, and M. R. Lyu, “Batch
mode active learning and its application to medical im-
age classification,” in Proceedings of the 23rd Interna-
tional Conference on Machine learning, ser. ICML ’06.
New York, NY, USA: ACM, 2006, pp. 417–424.

[11] K. Brinker, “Incorporating diversity in active learning
with support vector machines,” in In Proceedings of the
20th International Conference on Machine Learning.
AAAI Press, 2003, pp. 59–66.

[12] Z. Xu, R. Akella, and Y. Zhang, “Incorporating diver-
sity and density in active learning for relevance feed-
back,” in Proceedings of the 29th European Conference
on IR Research. Berlin, Heidelberg: Springer-Verlag,
2007, pp. 246–257.

[13] S. Bengio, J. Weston, and D. Grangier, “Label em-
bedding trees for large multi-class tasks,” in Advances
in Neural Information Processing Systems 23, J. Laf-
ferty, C. K. I. Williams, J. Shawe-Taylor, R. Zemel,
and A. Culotta, Eds., 2010, pp. 163–171.

[14] S. Yan, D. Xu, B. Zhang, H.-J. Zhang, Q. Yang, and
S. Lin, “Graph embedding and extensions: A general
framework for dimensionality reduction,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 29, no. 1, pp. 40–51,
Jan. 2007.

[15] S. Bengio, J. Weston, and D. Grangier, “Label embed-
ding trees for large multi-class tasks.” in Neural In-
formation Processing Systems, J. D. Lafferty, C. K. I.
Williams, J. Shawe-Taylor, R. S. Zemel, and A. Cu-
lotta, Eds., 2010, pp. 163–171.

[16] J. Nocedal and S. J. Wright, Numerical Optimization,
2nd ed. New York: Springer, 2006.

[17] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[18] L. Cai and T. Hofmann, “Hierarchical document cate-
gorization with support vector machines,” in Proceed-
ings of the thirteenth ACM International Conference
on Information and Knowledge Management. New
York, NY, USA: ACM, 2004, pp. 78–87.

[19] S. Tong and D. Koller, “Support vector machine active
learning with applications to text classification,” J.
Mach. Learn. Res., vol. 2, pp. 45–66, Mar. 2002.

[20] J. Metz, M. C. Monard, and E. A. Cherman, “A study
on the selection of local training sets for hierarchical
classification tasks,” in ENIA 2011: Encontro Nacional
de Inteligncia Artificial. Natal, RN, Brasil: Sociedade
Brasileira da Computao - SBC, 2011, pp. 572–583.

[21] D. D. Lewis, Y. Yang, T. G. Rose, and F. Li, “Rcv1:
A new benchmark collection for text categorization
research,” J. Mach. Learn. Res., vol. 5, pp. 361–397,
Dec. 2004.

[22] C. N. Silla Jr. and A. A. Freitas, “A global-model
naive bayes approach to the hierarchical prediction of
protein functions,” in Proceedings of the 2009 Ninth
IEEE International Conference on Data Mining, ser.
ICDM ’09. Washington, DC, USA: IEEE Computer
Society, 2009, pp. 992–997.

[23] O. Dekel, J. Keshet, and Y. Singer, “Large margin hier-
archical classification,” in Proceedings of the Twenty-
First International Conference on Machine learning,
ser. ICML ’04. ACM, 2004, pp. 27–35.

[24] Z. Chen, Y. Xie, Y. Cheng, K. Zhang, A. Agrawal,
W. keng Liao, N. F. Samatova, and A. N. Choudhary,
“Forecast oriented classification of spatio-temporal ex-
treme events,” in IJCAI, 2013.

[25] Y. Cheng, Y. Xie, K. Zhang, A. Agrawal, and
A. Choudhary, “Cluchunk: clustering large scale
user-generated content incorporating chunklet infor-
mation,” ser. BigMine ’12, 2012, pp. 12–19.

18 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

09
/2

9/
14

 to
 1

65
.1

24
.1

29
.6

6.
 R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p

