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Abstract—In this paper, we study a challenging problem
of inferring individuals’ role and statuses in a professional
social network, which is of central importance in workforce
optimization and human capital management. Realizing the
natural setting of social nodes associated with dual view
information, i.e., the local node characteristics and the global
network influence, we present a novel model that explores
graph regularization techniques and integrates such informa-
tion to achieve improved prediction performance. In particular,
our prediction model is built upon the graph transductive
learning framework that encodes an uncertainty regularization
term in the conventional empirical risk minimization princ iple.
Through taking advantage of the information from both the
local profile and the global network characteristics, the final
inference of the role or statues achieves minimum an empirical
loss on the labeled set, as well as a minimum uncertainty on
the unlabeled social nodes. We perform extensive empirical
study using real-wold data and compare with representative
peer approaches. The experimental results on three real social
network data sets show that the proposed model greatly
outperforms a number of baseline models and is able to
effectively infer in a wide range of scenarios.

Keywords-Social Role Identification; Graph Regularization;
Dual Uncertainty Minimization

I. I NTRODUCTION

Being hinged with different social roles and statuses,
people tend to behave fairly differently in social networks.
For example, users in some social blogospheres can behave
as content contributors, information sharers, or information
receivers, while in some professional social media like
Linkedin, users experience the professional network in var-
ious roles, such as engineer, sales-person, recruiter etc [1].
Finally, in a collaborated workforce network (e.g, a enter-
prise social network), the users can be largely categoried
based on their job functions and job titles. Note that study-
ing and understanding social roles in a network can gain
actionable insights for organizations and companies since
such learned knowledge can be used to perform optimal
resource allocation and human resource management. In
addition, understanding social roles also help improve the
user experiences since the identified social roles can help to
build effective social network applications in recommenda-
tion systems, question answering systems, and advertising
systems [2], [3].

The problem of identifying social role in social networks
has attracted increasing amount of attention and many

techniques are presented in recent years [1], [4]. Some
previous works studied this social role prediction problem
in a specific network or with some strong assumptions of
the data. For example, researchers have developed methods
for identifying social roles in Wikipedia [5] and email
networks [6], [7]. Recently some work has been proposed
on social network inference problems in different contexts.
Hendersonet al. [4] proposed a role discovery framework
on networks. It is unsupervised and essentially a clustering
approach (using matrix factorization). A semi-supervised
semantic role labeling method is proposed in [8]. In a
very recent study of identifying social roles in online social
networks [1], the authors explored five social principles and
concepts that represent a variety of network characteristics
and quantify their relations with social roles and statuses.
However, it remains as an open challenge to maximize the
usage of all available information such as social profiles
as local node characteristics and the network influence as
global information. Especially in the scenario of online
social networks, data are collected from diverse domains
or obtained from various feature extractors and exhibit
heterogeneous properties. Hence, it motivates us to design
a principled way to leverage such types of information to
carry out the prediction of social role and status.

Motivated by multi-view learning idea [9], [10], here
we propose a graph regularization based learning frame-
work that integrates heterogeneous information. The goal
is to jointly optimizes all the functions to exploit views
of node characteristics as well as graph influence, and
improve the prediction performance. In particular, through
encoding the prediction uncertainty into the conventional
empirical risk minimization principle, we propose an op-
timal prediction with minimum empirical loss, as well as
minimum uncertainty given the observed node characteris-
tics and network information. Different from existing co-
regularization method [11], [12], or co-training framework
[13], which solely enforces prediction agreement across
different views, the uncertainty regularization encourages to
archive predictions with high confidence while exploiting
the complementariness from dual-view data; thus is more
feasible and robust for realistic scenario, where either view
information might be problematic due to some reason. The
extensive empirical studies using three real social network
data sets clearly show that the proposed model consistently
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outperforms a number of competing models with significant
performance margins for a wide range of social role predic-
tion scenarios. Our proposed dual uncertainty minimization
framework can be easily generalized to analyze other appli-
cations with the consideration of heterogenous factors from
multiple view information.

II. RELATED WORK

A. Social Roles Mining

In real social network, due to the missing, outdated and
non-standard data issues, the task of social roles mining is
quite challenging. In summary, most of the existing methods
can be categorized in the following three groups: 1) rules
based methods to identify roles from textual information;
2) unsupervised learning methods such as clustering social
nodes with matrix factorization techniques; and 3) semi-
supervised learning methods using node properties or link
information. For example, editors in Wikipedia have been
studied in [5]. Email users of Palins email network have
been analyzed in [7]. In [14], the authors study user attribute
inference in university social networks by applying com-
munity detection. Recently some work has been proposed
on social network inference problems in different contexts.
Hendersonet al. [4] proposed a role discovery framework on
networks. Zhaoet al. [1] explored five social principles and
concepts that represent a variety of network characteristics
and quantify their relations with social roles and statuses.
We extract the same categories of the features used in [1]
as the node features in our experiments.

B. Graph Regularization

Single Graph Regularization: In graph based transduc-
tive learning setting, we haveiid (independent and identi-
cally distributed) labeled samplesXL = {xi, yi}l

i=1 and
unlabeled samplesXU = {xi}

l+u
i=l+1 (l + u = N). The

objective is to infer the missing labelsYU = {ŷi}
l+u
i=l+1

corresponding to the unlabeled dataXU . We can construct
a similarity graphG from X = {XL,XU}, where the
vertices represent data samples and the weighted edges
W = {wi,j}n

i,j=1 denote similarities between samples. Let
f(xi) be the classifier, a classical regularization framework
solves the following minimization problem:

f∗ = arg min
f

T (f ;G)

= arg min
f

l∑

i=1

V(f(xi), yi)) + λLG(f) (1)

whereV is some loss function,λ is parameter to balance
the empirical fitness and function smoothness,LG(f) is the
single-view graph regularizer. Denoting the degree matrix
D = diag(d1, d2, ..., dn), di =

∑
j wij and the unnormalized

graph Laplacian [15] byL = D − W, a single-view graph
regularizerLG(f) over the functionf can be written as:

LG(f) =
∑

i,j

wij ||f(xi) − f(xj)||
2

= trace(fT(D − W)f) = trace(fTLf) (2)

where f = [f(x1), f(x2), ..., f(xn)] is a column vec-
tor. Based on the aforementioned graph Laplacian based
regularization framework, various semi-supervised learning
algorithms are proposed, including the local and global
consistency formulation [16], Gaussian fields and Harmonic
function formulation [17], transductive support vector ma-
chines [18], and the manifold regularization formulation
[19].

Graph Co-Regularization: In the two-view semi-
supervised learning setting, each samplex = (xa,xb) is
seen in two views withxa ∈ Xa andxb ∈ Xb. The setup
and the algorithms can also be generalized to more than
two views. For simplicity, we assume the case with two
graphsGa = {Wa,Da,La} andGb = {Wb,Db,Lb}. The
goal is to learn the prediction function pairf = (fa, f b)
associated withGa and Gb, in a joint form. Considering
function smoothness over single graphs and the agreement
between two views, the graph co-regularization is formed
as:

LGa,Gb(fa, f b) = λa||f ||
2
Ga + λb||f ||

2
Gb + γS(fa, f b)

= λa||f ||
2
Ga + λb||f ||

2
Gb + γ||fa − f b||2

= trace(λa(f
a)TLafa + λb(fb)TLbfb

+ γ(fa − f b)T(fa − f b)) (3)

where ||f ||2Ga and ||f ||2
Gb are regularization terms over in-

dividual views, andS(fa, f b) is the term interpreted as
a requirement of smoothness over the graph for the pair
f = (fa, f b). The core part of graph co-regularization is
to utilize the agreement among learners trained on different
representations of the same problem to improve the over-
all performance. However, the “consensus” assumption of
multiple view could be questionable since each data graph
might contribute different and complementary prediction
power. And for the extreme case, the view agreement will
significantly weaken the prediction performance when either
of the view data is not reliable.

Combined Graph Laplacians: Except for Graph Co-
Regularization, another way to construct a multi-view reg-
ularizer is Combined Graph Laplacians [20], [21], which
applies to convex combinations of graph kernels parameter-
ized by a compact set. Given two view representationsGa

andGb, the convex combination of the graph Laplacians is
defined asK(λ) = λLa + (1 − λ)Lb (λ > 0). Then the
learning problem is formulated as:

(f∗, K(λ)∗) = arg min
f,λ

l∑

i=1

V(f(xi), yi)) + γ||f ||K(λ) (4)
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which is a joint minimization problem overf and K(λ),
and can be solved via an alternative optimizer iteratively
proposed in [22].

III. T HE PROPOSEDMETHODS

A. Preliminaries

We first introduce some notations and definitions that
we will use throughout the rest of the paper. As-
sume we have a partially labeled social networkG =
(VL,VU ,E,Xa,Xb), whereVL is the set of labeled users
with social roles/statuses andVU is the set of unlabeled
users in the social network. We note that the set of all users
in the networkV = {vi}

N
i=1 = VL∪VU andVL∩VU = ∅.

E represents the set of all edges in the network.Xa andXb

are are two-view data representations ofV , whereXa is
node view from users andXb is the link view, separately.
Let yvi

be the label for uservi, xa
i be a vector of node

attributes andxb
i be the link view representation. Suppose

we have the set of labels to beC = {1, ..., c}, which contains
C different roles. The task is to infer labels of users with
unknown social roles:yvi

∈ C wherevi ∈ VU .
We formulate this problem as the graph-based transductive

learning problem. That is, given the labeled nodesVL and
unlabeled nodesVU with dual view representationXa and
Xb, we aim to learn the pair functionf = (fa, f b) with a
graph regularization framework, then the label ofVU can
be predicted by combiningfa and f b.

Dual View Representation: For each uservi, the repre-
sentation from the node viewxa

i is pretty straightforward:
either a BOW (bag-of-words) of profile information, or a
combination of social factors [1], such as Local Clustering
Coefficient, Degree Centrality, Average Neighbor Degree ,
Embeddedness and Number of Communities. There are var-
ious of methods for the representation ofxb

i , such as direct
link, demonstrating friend/follower/following information in
social network.xb

i is represented asN -dimension vector,
with the j-th elementxb

i,j denoting link connectivity of
user vj . Then we use a very natural way called neighbor
node overlapping to measure link connectivity by Jaccard
similarity [23].

B. Dual View Uncertainty Regularizer

In the co-regularization framework, the termS(fa, f b)
measures of smoothness to enforce the right complexity for
the dual view prediction. In this work, instead of the smooth-
ness term in co-regularization, we propose a new term called
uncertainty regularizer, which measures the uncertainty and
complementariness of the prediction from different views.
The objective is to enforce minimum uncertainty for the
prediction from dual views instead of purely enforcing
agreement between different views.

Given the two view dataXa = {xa
i }

u+l
i=1 and Xb =

{xb
i}

u+l
i=1 , the predictions over the two views arefa(xa

i )
and f b(xb

i ). For the predictions over a data pointxi, let

pik = P (fa(xa
i ) = k) be the probability of the prediction

of xi of view A, andqik = P (f b(xb
i ) = k) be the probability

of the prediction ofxi of view B, wherek ∈ C = {1, ..., c}
is the class label. The uncertainty of the prediction measured
by entropy is computed as:

H(pi) = −
C∑

k=1

piklogpik, H(qi) = −
C∑

k=1

qiklogqik (5)

where pi =
∑C

k=1 pik and qi =
∑C

k=1 qik. And the
uncertainty over all the data points is expressed by:

U(Xa,Xb) =

N∑

i=1

H(pi) + H(qi) (6)

Note that the entropy from each single view presents dif-
ferent confidence for individual data points. And Eq. 6
measures the prediction uncertainty over the two views.

To embed the uncertainty measure into the graph regular-
ization, let us rewrite the uncertainty formulation withfa

andf b as:

U(fa, f b) = −
N∑

i=1

H(fa(xa
i )) + H(f b(xb

i ))

=
N∑

i=1

fa(xa
i )Tlog(fa(xa

i )) + f b(xb
i )

Tlog(f b(xb
i ))

=

N∑

i=1

C∑

k=1

fa
iklog(fa

ik) + f b
iklog(f b

ik) (7)

where fa
ik = fa(xa

i )|i=k and f b
ik = f b(xb

i )|i=k represent
the prediction values ofxa

i andxb
i , separately. Apparently,

the uncertainty regularizer is monotonically related to the
uncertainty value in Eq. 5. In general, we tend to derive
the prediction with less uncertainty from at least one of the
views and want to minimize Eq. 7.

Final Objective Combining the objective function
T (fa;Ga) and T (f b;Gb) from each individual view (as
defined in co-regularization), and the dual-view uncertainty
regularization proposed, we can suggests the following ob-
jective function:

(f (a)∗, f (b)∗) = argmin
fa,fb

T (fa;Ga) + T (f b;Gb) + γU(fa, f b)

=
l∑

i=1

V(fa(xa
i ), yi)) + λaLGa

(fa)

+

l∑

i=1

V(f b(xb
i ), yi)) + λbLGb

(f b)

+ γU(fa, f b) (8)

where the empirical loss function over labeled data is
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formulated as a squared loss form:

V(fa(xa
i ), yi)) =

l∑

i=1

||fa(xa
i ) − yi||

= trace((fa − y)T(fa − y)) (9)

wherey is the label indicator over thel samples. And the
graph regularizerLG(fa) is defined as:

LG(fa) = trace(faT(Da − Wa)fa) = trace(faT
Lafa) (10)

Then the pair prediction function(f (a)∗, f (b)∗) can be
obtained by minimizing the objective function.

C. Optimization and Solution

We can derive the optimal solution for Eq. 8. Let’s denote
the objective function asO and take the partial derivatives
over fa andf b:

∂O

∂fa
= fa − y + λaL

afa + γ
∂U(fa, f b)

∂fa

= Fa + γ
∂U(fa, f b)

∂fa
(11)

∂O

∂f b
= f b − y + λbL

bf b + µ
∂U(fa, f b)

∂f b

= Fb + µ
∂U(fa, f b)

∂f b
(12)

where for both equations, the first parts are expressed with
matrix format as:Fa = fa − y + λaL

afa and Fb = f b −
y + λbL

bf b, separately. However, the second part, need to
be computed at the elements level:

∂U(fa, f b)

∂fa
ik

= 1 + logfa
ik,

∂U(fa, f b)

∂f b
ik

= 1 + logf b
ik

Hence, given the computed partial derivatives, the update
of fa and f b can be iteratively computed using the gradient
descent as

fa|t+1 = fa|t − α(
∂O

∂fa
), f b|t+1 = f b|t − β(

∂O

∂f b
) (13)

whereα andβ are the learning step lengths. In particular, at
single element level,fa

ik andf b
ik can be updated iteratively

using the gradient descent

fa
ik|

t+1 = fa
ik|

t − αF a
ik|

t − αγ(1 + logfa
ik)

f b
ik|

t+1 = f b
ik|

t − βF b
ik|

t − βγ(1 + logf b
ik) (14)

wherefa
ik|

t is the updated values offa
ik at time stampt, and

F a
ik and F b

ik are thei-th row andk-th column element of
Fa andFb. The iterative updates can be terminated if there
change for consecutive calculations are small enough for the
two vectors||fa|t+1−fa|t|| ≤ ǫ and||f b|t+1−f b|t|| ≤ ǫ with
a threshold constantǫ. Finally, after bothfa andf b achieve
the convergence, the final prediction can be simply obtained
by Ŷ = 1

2 (fa + f b), (Ŷ is the labels of all samples), similar
to that used in co-regularization.

IV. EVALUATION

A. Datasets

The first dataset we used is the email data of IBM
employees, which was collected by IBM’s internal system
to analyze IBM workforce situation. We take a subset of the
data starting from Nov 2011. After pre-processed, this email
dataset is used to build a communication network with 3,547
nodes representing the authors of the emails, and 15,780
distinct weighted edges indicating the email communication
between the nodes. Each node represents an employee asso-
ciated with profile information and email content. The social
roles of those social nodes in the email communication
network consist ofdepartment head, manager, secretary,
researcher, andprogrammer. The second dataset is from
the professional social network Linkedin. We specifically
identify a subsect of25, 265 users in the finance industry.
In total, there are about2.5 millions connections and the
average node degree is100.8. Five social roles are identified
as: Finance, Sales, IT, Support and Operation, which are
corresponding to their job functions and titles. The third
dataset used in our experiments is the IMDB dataset. We take
a subset with the movies taken from the year 2001 to 2005.
The three major social roles are identified asactor/actress,
director, and producer. These social roles are treated as
network nodes that are connected if they collaborate in a
same movie. Finally, we construct a network with a total of
20, 402 nodes connected by4, 903, 605 links.

B. Experimental Settings

Baselines: In order to demonstrate the effectiveness of the
proposed model, we compare the proposed DUMR method
against a number of baselines. Since our method utilizes
both node features and link information, intuitive baseline
are those methods using a single view information, i.e.,
Homophily A with only the link view and Homophily B with
only node view. For both single view based methods, we
apply the popular graph regularization framework proposed
in [18]. In addition, we compared with Social Roles and
Statuses Inference Model (SRS), the method proposed in
[1]. SRS first forms a factorized probabilistic model to learn
a joint distribution over node and edge functions. Then the
final prediction is achieved though an iterative algorithm that
maximizes the marginal probabilities. Finally, we also com-
pare with the co-regularization (Co-Reg) learning method in
[11] and a combined regularization framework (Com-Reg),
as described in [21]. For fair comparison, we use the same
network with the uniform settings like the link weighting
scheme [24], [25].

C. Results

In our experiments, we split the data into two subsets,
a labeled set and an unlabeled set for testing. Specifically,
we vary the fraction of the labeled subset from30% to
80% to evaluate the prediction performance under different
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Table I: The performance comparison on the IBM Email dataset.
Method Homophily A Homophily B SRS Co-Reg Com-Reg DUMR

80% 0.5924(±0.016) 0.6072(±0.016) 0.6945(±0.017) 0.6512(±0.017) 0.6656(±0.015) 0.7556(±0.016)
70% 0.5565(±0.019) 0.5737(±0.018) 0.6521(±0.020) 0.6085(±0.019) 0.6301(±0.018) 0.7322(±0.018)
60% 0.4828(±0.022) 0.5241(±0.021) 0.6202(±0.025) 0.5968(±0.023) 0.6168(±0.021) 0.7168(±0.021)
50% 0.4501(±0.029) 0.4832(±0.028) 0.5998(±0.031) 0.5404(±0.029) 0.5802(±0.026) 0.6705(±0.027)
40% 0.3803(±0.037) 0.4422(±0.036) 0.5313(±0.039) 0.4703(±0.036) 0.5187(±0.032) 0.6032(±0.035)
30% 0.3328(±0.044) 0.3855(±0.043) 0.4752(±0.048) 0.4419(±0.045) 0.4632(±0.041) 0.5481(±0.043)

Table II: The performance comparison on the LinkedIn dataset.
Method Homophily A Homophily B SRS Co-Reg Com-Reg DUMR

80% 0.6524(±0.022) 0.6672(±0.019) 0.7645(±0.020) 0.7512(±0.012) 0.7156(±0.017) 0.8056(±0.015)
70% 0.5965(±0.028) 0.6034(±0.024) 0.7221(±0.024) 0.7085(±0.017) 0.6601(±0.021) 0.7501(±0.018)
60% 0.5428(±0.033) 0.5524(±0.027) 0.6803(±0.026) 0.6649(±0.02) 0.6275(±0.025) 0.7368(±0.021)
50% 0.5001(±0.038) 0.5232(±0.033) 0.6598(±0.032) 0.6404(±0.025) 0.5902(±0.034) 0.7005(±0.026)
40% 0.4703(±0.046) 0.4922(±0.037) 0.5913(±0.040) 0.6003(±0.031) 0.5687(±0.043) 0.6432(±0.035)
30% 0.4028(±0.057) 0.4355(±0.045) 0.5452(±0.047) 0.5419(±0.039) 0.5032(±0.055) 0.6081(±0.042)

Table III: The performance comparison on the IMDB dataset.
Method Homophily A Homophily B SRS Co-Reg Com-Reg DUMR

80% 0.5724(±0.014) 0.6072(±0.013) 0.6545(±0.015) 0.6412(±0.012) 0.6556(±0.013) 0.6956(±0.011)
70% 0.5265(±0.017) 0.5434(±0.016) 0.6301(±0.019) 0.6085(±0.014) 0.6312(±0.015) 0.6756(±0.013)
60% 0.4628(±0.022) 0.4841(±0.020) 0.6168(±0.025) 0.5968(±0.017) 0.6044(±0.019) 0.6301(±0.017)
50% 0.4301(±0.028) 0.4632(±0.026) 0.5502(±0.030) 0.5404(±0.022) 0.5768(±0.024) 0.6168(±0.020)
40% 0.3703(±0.034) 0.4322(±0.033) 0.5187(±0.034) 0.4703(±0.028) 0.5404(±0.029) 0.5802(±0.026)
30% 0.3228(±0.041) 0.3855(±0.039) 0.4632(±0.041) 0.4419(±0.031) 0.4703(±0.036) 0.5487(±0.031)

amount of labeled data. Table I, II, and III give the average
prediction accuracies after 30 runs for all the compared
methods on the three tested datasets respectively. In all the
testing experiments, two-fold cross-validation is used. From
these reported results, we can easily see that the proposed
DUMR approach consistently outperforms the compared
methods with clear performance gains. In addition, the
SRS approach achieves the second best performance with
significantly higher accuracies than the other four baselines.
Note that both the SRS method and the DUMR method
are specifically designed models for social role prediction,
which utilize sophisticated techniques to integrate multi-
view information from social networks to perform accurate
prediction. However, the proposed DUMR method forms a
semi-supervised prediction model to maximize the usage of
all available data to achieve more robust predictions. Since
the Co-Reg and the Com-Reg approaches are general multi-
view learning methods, they employ simple fusion strate-
gies to combine different data sources that achieve limited
performance gain. However, it is worth mentioning that the
four methods using both link and node information always
generate better prediction than the two Homophily methods,
which confirms that both the local characteristics of nodes
and the influence of the network present complementary
information for better prediction.

D. Running time comparisons

We measure the efficiency of our implementation on
three experimental datasets. Our Python implementation runs
on a dual-core 3.3 GHz machine with 16G memory. We

Table IV: Running time (seconds) comparison between
single-view algorithms and dual-view algorithms on all three
datasets.

Datasets Email LinkedIn IMDB
Single-view

Homophily A 1,245.3 2,046.8 2,312.3
Homophily B 1,138.7 1,982.5 2,156.4

SRS 1,086.7 1,779.1 1,812.3
Dual-view

Co-Reg 1,525.5 2,321.3 2,516.9
Com-Reg 1,711.8 2,950.6 3,100.6
DUMR 1,594.9 2,414.2 2,714.5

compare it with the running time of other baseline methods:
Homophily A, Homophily B, SRS, Co-Reg, Com-Reg. In
each run,40% of the data are labeled and the methods
outperform all the other methods. Table IV summarizes the
results, measured as average running time over 30 runs. On
Email, LinkedIn and IMDB datasets, the DUMP approach
requires1594.9, 2414.2 and 2714.5 seconds to output the
prediction separately. Although the complexity of our algo-
rithm is higher than single-view based methods, Homophily
A, Homophily B and SRS, our method achieves comparable
running time with the three basic methods. Compared with
the dual-view methods, our proposed method achieves the
same efficiency. The Com-Reg methods, on the contrast,
takes even more time on each dataset.
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