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Abstract

In this paper. we describe a technique for optimizing com-

munication for out-of-core distributed memory stencil prob-

lems. In these problems, communication may require both

inter-processor communication and file 1/0. We show that

in certain cases, extra file 1/0 incurred in communication

can be completely eliminated by reordering in-core compu-

tations. The in-core computation pattern is decided by:

(1) how the out-of-core data distributed into in-core slabs

(tiling) and (2) how the slabs are accessed. We show that

a compiler using the stencil and processor information can

choose the tiling parameters and schedule the tile accesses so

that theextra file I/O is eliminated and overall performance

is improved.

1 Introduction

The use of parallel computers to solve large scale scientific

problems has increased considerably in recent times. Ma-

jority of these problems exhibit large memory requirements

(of order of GBytes). Since main memories are not large

enough to hold such large amount of data, data needs to be

stored in files and accessed repeatedly during execution of

the program. Consequently, performance of these Out-of-

core problems depends on how fast the input-output (1/0)

is performed.

Many scientific problems exhibit regular computation

patterns. This class of computation arises in cellular au-

tomata and numerical solutions of partial differential equa-

tions, e.g., explicit CFD problems. A regular problem can

be characterized by the corresponding stencil. Figure 1 il-

lustrates some of the commonly used stencils: (I) 5-point

stencil, (2) 9-point star stencil and (3) 9-point, cross sten-

cil. More complex stencils are found in problems in cellular

automata and seismic modeling [BHMJ91, BCR95].

In this paper, we analyze two-dimensional out-of-core

stencil problems. Specifically, we focus on compilation is-

sues for such problems when developed using data-parallel

languages like High Performance Fortran (HPF)[Hig93]. We
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Figure 1: Commonly Observed Stencils.

show that communication for out-of-core problems involves

file 1/0 as well as inter-processor communication. We de-

scribe compiler techniques for minimizing file 1/0 incurred

during communication.

The paper is organized as follows. In Section 2, we de-

scribe a concise way of representing two-dimensional sten-

cils. Section 3 describes compilation of out-of-core stencil

problems. Section 4 analyzes the tiling problem and presents

a simple tiling heuristic based on the 1/0 cost and the

communication pattern of the stencil. Section 5 describes

techniques for computing schedules which eliminate file 1/O

from communication. Section 6 presents experimental per-

formance results. Section 7 outlines future extensions of

this work. Related work is described in Section 8. Finally
we conclude in Section 9.

2 Algebraic Representation of Stencils

We define a stencii G as a set of elements defined over a

two-dimensional lattice L*, G={(i, j) I (i, j) c IL 2}. Each

stencil is associated with a seed, s and a neighborhood set,

Vl [Lee90]. Usually the seed of a stencil is an element in the

computational domain which is updated during the com-

putation. The neighborhood set, 91 is computed as { (i, j) I

(i, j) #s, (i, j) EiL2}. The elements of W are called neighbors

366



of the seed s.

Each element of a stencil can be indexed usine a 2-

element vector (t, y). For simplicity. we assume that the seed
.

is always situated at the origin O = (O, O). Using the seed as

the origin, each neighbor can be appropriately indexed. For

example, the 5-point cross stencil, E55 x, can be described

by the set G,x= {(0,0),(1,0), (–1,0),(0,–1),(0, l)}. The

corresponding neighborhood set, tll~ x, is given by

{(1,0 ),(-1,0),(0,-1),(0,1)}.

The stencil matrix S provides a concise way of represent-

ing a given stencil. For a given stencil G, the stencif matrix

stores the relative indices of the neighbors. The generalized

stencil matrix S is a 2 x n matrix. where n is the number of

directiora.s in which neighbors of the seed may lie. Figure 1:4

illustrates the order in which the directions are indexed. If

there are more than one points spanned in a given direction

(e.g., (1,0) and(2,0)), only the largest point in that direction

is chosen ((2,0) in this case). For example, the stencil ma-

trix for the first-order stencil 69* (Figure 1 :2), S: is given

by

(

o 01–11–1 1 –1

1–10 01–1–11 )
A given stencil can also be represented using the stencil-

direction matrix SD. The stencd-direction matrix can be

computed from the corresponding stencil matrix using the

direction operator II IID. Specifically, SD (i, j)=llS(i, J)IID

and ll~llD is 1 if z > 0, IIzIID is -1 if x <0 and IIzIID is O if

z = O. Hence forth, a given stencil G will be analyzed using

its stencil matrices S and SD.

A stencil G is called an irregular stencil if the seed s has

no neighbors in at least one direction, otherwise, it called

regular stencil[BCR95]. In this paper, we focus only on reg-

ular stencils.

3 Compiling Out-of-core Stencil Computations

In this section, we focus on stencil computations involving

out-of-core arrays. Figure 2 presents an HPF program per-

forming 9-point stencil computation on array A. The global

array A is marked OUT.OF_CORE using a special compiler direc-

tive. In this example, array A is distributed in BLOCK fashion

in both dimensions. The underlying processor grid consists

of nine processors arranged as a 3 x 3 grid (Figure 4: B).

Each processor has an out-o~-cor-e locrd array (OCLA) cor-

responding to the global array A. Computation on the OCLA

is carried out in several stages. Each stage reads parts of

OCLA into memory, performs computations on the in-core

local array (ICLA) and stores the ICLA back in the file (if

necessary).

REAL A(1023 ,1023) , B(1023,1023)

!HPF$ PROCESSORS P(3,3)

! HPF$ DISTRIBUTE A(BLOCK ,BLOCK) OETO P
!HPF$ 0UTJ3F_CORE:: A

FORALL (1=2: 1022, J=2 : 1022)

A(I, J) = (A(I, J-I)+A(I, J+ I)+A(I+I, J)+A(I-I, J)
+A(I+i, J+l)+A(I+l, J-l)+A(I-l, J-l)+A(I-i, J+i))/8

Figure 2: HPF Program Fragment performing a 9-point re-
laxation over an out-of-core array A.

We focus on the compilation of a FORALL st atement which

uses the out-of-core array A. For compiling such FORALL

statements, we assume the underlying execution model to

be the Local Placement Model (LPM) [Bor!36]. In the Lo-

cal Placement Model, each processor stores its OCLA into

a separate logical file called the Local Army Fiie (LAF).

LPM can be considered as a straight-forward extension of

the distributed memory model where the secondary memory

is extended to include the file system.

3.1 In-core Communication Method

For the example illustrated in Figure 2, what is the amount

of data communicated among processors? Figure 4:A illus-

trates the data which a processor may be required to fetch

from its neighbors and which is required for computation of

the entire OCLA (called overlap or ghost da,t a).

In in-core problems (i.e., when OCLA can fit into mem-,.
ory), the stencil computation illustrated in the Figure 4 re-

quires each processor to communicate its ghost data with its

neighbors. This communication pat tern is known as n ea rest-

rzeighbor corrwnrmication[ FJL+88] and can be easily imple-

mented by exchanging data between processor pairs. Alf

regular stencils exhibit the exchange communication pat-

tern.

In out-of-core problems, computation on the OCLA is

carried out in steps. Therefore, one can fetch the ghost data

for the entire OCLA before the OCLA computation starts

or in each step, one can fetch the ghost data for the ICLA.

The first method is called Generafized Collective commu-

nication method while the latter is called In-core commu-

nication method [Bor96]. It has been observed that for

stencif problems, In-core communication method performs

better [Bor96], therefore, we will focus on the In-core com-

munication method. Figure 3 illustrates the sequential code

generated for the Locaf Placement Model using the In-core

communication method.

DO 10 1=1 , k

Call 1/0 routine to read the ICLA.

Call communication routine for ghost data

DO j = [oweT-bound, upper--bound

DO i = lowe7_bound, upper_ bound

TEF4PA(i, j)=(A(i, j-l)+A(i, j+l)+A(i-l, j)+A(i+l, j)

+A(i-f, j-l)+A(i+l, j-l)+A(i+l ,j+l)+A(i-l, j+l))/8

ENDDO

EEDDO

Call 1/0 routine to store the results.

10 COIiTIINJE

Figure 3: Sequential Output Program for Locaf Placement

Model using the In-core communication method.

Figures 4:B shows ghost areas for two prc,cessors for col-

umn version of the ICLA. The ghost area is colored using

two shades. The ghost area denoted by black represents that

data which needs to be fetched from the LAF of the same

processor (local ghost area). The lighter shade denotes the

data which needs to be fetched from the LAFs of neighbor-

ing processors.

In Figure 4:B, for the given ICLA, processor 3 requires

data from its top and bottom neighbor (processors O and

6). However, for the similar ICLA, processor 4 requires

data from 5 processors; namely, its top, bottom, top-left, top-

bottom and right neighbor (processors 0,1,3,6 and 7).
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Figure 4: In-core communication Patterns for the stencil 6;

Next question to ask is. when a processor requests data,

where does this data come from? From other processors

memory or from its LAF or from the LAF of the requesting

rmocessor? To answer these uuestions. let us make the fol-

lowing assumptions: (I) Each processor has same amount

of available memory, (2) Each processor has same lCLA

shape and size and (3) All processors execute computations

in SPNf D fashion. i.e, all processors fetch their ICLAS in the

same order.

In Figure 4 processors 3 and 4 are both using the first

ICLA. For this ICLA. processor 3 requires data from its

top and bottom neighbor (processor O and 6). Since these

processors will also be working on the first ICLA, they have

the necessary boundary data in their memory and there is

no need of fetching it from external file.

However, for the first ICLA. processor 4 needs to com-

municate with processors 0.1,3,6 and 7. Processor 4 needs
to fetch the last column from processor 3 and the corner

elements from processors O and 6. Since processor 3 is also

working on the first ICLA, it does not have this data in its

memory. Hence processor 3 needs to read column from its

LAF and send it to processor 4. This results in processor

3 performing extra file accesses. Similarly, processors O and

6 perform extra file accesses. Moreover, processor 4 has to

wait until processors 3, 0 and 6 have read the data and sent

it to processor 4. This also results in extra overhead. We

can conclude the following:

1. Amount of data communicated for a processor depends

on the logical mapping of the processors. For a given

ICLA. amount of data communicated depends on the

size. shape and relative location of the ICLA.

3. In-core communication method modifies the exchange

communication pattern of the stencil computation. In

other words, for a given ICLA, it, may not be necessary

for a processor to exchange the data with its neighbor

(processors 3 and 4, Figure 4: B).

One may then ask a natural qnestion- is it possible to

eliminate the extra file accesses? To answer this question,

let us analyze the corresponding scheduling problem.

3.2 The Scheduling Problem

The extra file accesses are generated because we assume

that each processor reads and performs computations on

the ICLAS in the same order (for example, in positive x di-

rection ). Therefore, the ezcharzge communication pattern is

no longer applicable. The extra file accesses can be elimi-

nated ifl ghost data for an ICLA of any processor always

lies in some other processor’s memory. If somehow, we are

able to alter the computational ordering such that there are

no extra file accesses then we can considerably improve the

overall performance.

From Figure 2, we can observe that the basic stencil com-

putation is governed by the semantics of the FORALL state-

ment. By definition, a FORALL statement exhibits copy-in-

copg-out semantics [Hig93]. As a result, there are no depen-

dencies in the FORALL execution and the FORALL iterations

can be executed in any order [Hig93].

In out-of-core problems, the iteration execution order is

decided by the order in which the ICLAS are fetched from

LAFs. Taking advantage of the copy-m-copy-out semantics

of the FORALL. each processor can access its ICLAS in any

arbitrary order. Using the stencil and processor informa-

tion, we can schedule the ICLA accesses so that data to

be communicated is always in-core. Since in In-core com-

munication method, communication depends on the ICLA

parameters (shape and size), it is important to compute ap-

propriate ICLA parameters before scheduling the ICLA ac-

cesses. Formally, we can frame the scheduling problem as

follows: Given an out-of-core regular problem with the as-

sociated stencil G and available memory M, find an access

schedule for ICLAS such that extra file accesses are elimi-

nated.

The scheduling problem can be split into two subprob-

lems:

Tiling Problem: Given the amount of available memory

M and stencil G, compute the ICLA parameters.

Scheduling Problem: For a given ICLA (tile), gener-

ate a ICLA schedule such that extra file accesses are

elirninat ed.

4 Tiling Strategies

This section addresses the first part of the ICLA Schedul-

ing Problem, i.e., computing IC LA parameters for a given

processor grid, given available memory M and the compu-

tational stencil G (and its stencil matrices S and SD).

4.1 Logical Processor Mapping

The logical processor mapping is provided by the source

HPF program using the PROCESSORS directive. Since we
assume 2-dimensional processor map, we consider P pro-

cessors arranged as two-dimensional grid of m rows and

n columns. Viewing the processor grid as a collection of

points in first quadrant of the two dimensional integer lat-

tice IL 2, we can assign address (i, J“) to each processor. Each

processor is also assigned an index (Figure 4: B). There is

a one-to-one mapping between the processor address and

the corresponding index. Using the processor indices and

the addresses, each processor can find its neighborhood set.

The neighborhood set N of a processor pk is defined as

~(Pk) = {(z’, ~’) I (Z, ~)P, – (~,.? )p, }, where pt and pk are

neighbors. The neighborhood set N can be represented

using a matrix called, the Neighbor Matrix ~. In a 2-

dimensional processor grid, each processor can have upto

8 neighbors, Therefore, the neighbor matrix has 2 rows and

8 columns. Each column represents the normalized address
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Figure 5: Choosing the Tile Shape. Figure shows the effect
of computational stencil on tile shape.

of a neighbor. The neighbors are arranged using the order
used to store neighbor information in stencils. Note that un-

like the stencil matrices S and SD, each processor will have
a different Af matrix. Any processor using its own address,
the index mapping information and the Neighbor matrix Af,

can find the indices of its neighbors.

4.2 Computing Tiling Parameters

An ICLA (or tile) is a section of the out-of-core array which

can fit in the in-core memory. Physically, an ICLA is a se-
quence of data stored in memory using a predefine storage

order (e.g., Fortran column-major), The ICLA parameters

determine the logical address space of a given tile. For out-
of-core problems, this address space forms the local strip-

rnined address spacel. A tile can be characterized using the
following parameters: Size, Dimension, Shape and Position.

For a given application, the tile size is decided by the amount

of allocated memory and the tiles dimensions are decided by

the out-of-core array. Hence the tile size and the dimensions
are fixed. However, the tile shape can be adjusted according

to the given application. The tile position depends on how
the tile accesses are scheduled.

4.3 Choosing the Tile Shape

For simplicity, we allow only rectangular tiles in 2-dimension.
Shape of a given tile will be decided by the extent in each

dimension. The shape of a tile is dependent on:

1. Associated 1/0 Cost: 1/0 cost of a tile is determined

by the number of file accesses required to access it.

Number of file accesses required for a tile are decided
by the amount of contiguous data in the tile. Assuming

Fortran storage order, the 1/0 cost of a rectangular

tile can be approximated by the number of contiguous

columns in that tile. For example, among row and

column tiles, row tile will have the largest 1/O cost.

Ideally the (rectangular) tile shape should chosen such

that it requires minimum 1/0 cost (in other words, the

tile should have minimum number of non-contiguous

columns). This is called the 1/0 Constraint.

1Not to be confused w]th the local address space m in-core dis-
tributed memory problems

2. Communication Pattern:

The communication pattern in a stencil application

is determined by the type of stencil and the logical
processor mapping. Consider an asymmetric regular

stencil 2 shown in Figure 5. Assume the processors

are arranged in a two-dimensional grid. For the given
stencil, each processor will have to exclhange data with

its eight neighbors.

Since each processor has the same tile shape3, each tile

should be large enough to satisfy the communication
requirements of the tiles from the neighboring proces.

sors.4 This constraint is called the Communication

Constraint. According to the stencil pattern, each
processor receives 4 elements per seed from its bottom-

right neighbor (and sends 4 elements per seed to it’s

top-left neighbor). Therefore, the tile should contain

at least 4 elements on its diagonal. Similar constraints

should be also satisfied for the remaining stencil direc-
tions. Figure 5:2 illustrates the corresponding tile.

Note that the stencil matrix S denotes the amount
of data to be received and the stencil-direction ma-
trix SD denotes the direction of communication. In
order to find an appropriate tile shape, therefore, re-

quires analyzing the stencil matrices S and SD, and
the neighborhood matrix ~. Since the order of storage
in both these matrices is the same, it is straightforward
to find out whether communication is required and to

whom a processor should send/receive data.

4.3.1 Conforming Directions

The application stencil G determines the cc,n~orming direc-
tions for the given application. Conforming directions serve

two purposes: (1) Using SD and Af, determi]me the processor

pairs which should exchange data and (2) Using S and ~,

compute data to be sent/received per seed.

Assume that processors are arranged in a rectangular

grid. Any processor’s top neighbor can be found by checking

the first column of the Neighborhood matrix Af. The first
column of SD will show whether the processor should com-

municate with its top neighbor and the amcmnt of data the

processor should receive from its top neighbor will be found
by checking the first column of stencil matrix S. Similarly,

any processor’s bottom neighbor can be found by checking
the second column of the neighborhood matrix and the data
to be received can be found by checking the second column
of the stencil matrix S. For the stencil shown in Figure 5:1,

the stencil matrix S is

(

o 02–11–2 4 –1
2–3001-2–41 )

and the stencil-direction matrix SD is

(

o 01–11–1 1 –1
l–lo 01–1–11 )

For this stencil, a processor receives 2 elements per seed

from its top neighbor and sends 3 elements per seed to its

top neighbor. Consider a processor pair (i, j), where z is

a top-neighbor of j. For this stencil, processor i receives 3

elements per seed from processor j and processor j receives

2Note that the stencil seed has four neighbors nr dn-ection 7 but
only one in direction 8 Such stencils are called a>ymrnetrxc re@ar

stencils.
3A requirement because of SPMD nature of the program
4Since computation requires non-local data, communxation re-

quirements define the computation requirements and vice versa.
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z ~lenlent~ per seed from processor i. Hence, for any pro-

cessor pair which exhibits top-bottom connectivity, amount

of data exchanged can be found by checking columns 1 and
z of the stencfi matrix. The directions 1 and 2 are termed

as conforming dwections and the corresponding columns in
the stencil matrix SD are called conforming columns. If

a processor pair (z, j ) exhibits left-right connectivity. then

the conforming directions will be (3,4). In case of two di-

mensional stencils, possible pairs of conforming directions

include (1,2), (3,4), (5,6) and (7,8). The conforming direc-

tions also provide some extra information. Recall that the

first column of S corresponds to a processor receztirzg two

elements per seed from its top neighbor (i.e., communication

in direction 1). If the processor has a bottom neighbor, this

column also corresponds to the given processor sending two

elements per seed to its bottom neighbor (communication

in direction 2).

How does information about conforming directions help
in finding a suitable tile shape? The communication pattern

depends on the position of a tile. Since a tile can exist in dif-
ferent positions, the tile size should be large enough to store
the data that needs be sent in any position. For example,

for the stencil in Figure 5:1, a processor needs to send 4 el-

ements per seed in direction 8 (top-left) but only 1 element

per seed in direction 3 (right). In this case, each tile needs

to be large enough to store at least 4 elements along the

diagonal but only 1 element along x direction (Figure 5:2).

4.3.2 Tiling Heuristic

For a given stencil matrix S, memory M and the neighbor-

hood matrix Af, the tiling heuristic computes the appropri-

ate shape of the rectangular tile. The tiling heuristic consists

of two main phases:

1. The tiling heuristic first uses the stencil matrix to com-

pute the amount of communication along the conforrr-
ing directions. Using this information, the heuristic

computes the approximate size of a rectangular tile
such that the tile can fit in memory and the Commu-
nication constraint is satisfied.

2. In the next phase, the tiling heuristic analyzes the 1/0

cost and tries to choose a tile shape which has the min-

imum 1/0 cost. The heuristic will try to find a rect-

angular tile with the minimum number of contiguous

columns (e. g., column tiles) so the the 1/0 constraint

is satisfied.

The tiling heuristic represents a tile using a two dimen-

sional diagonal matrix called the tiling matrix T. Diagonal
elements of the tiling matrix denote the extent of the tile

in the corresponding dimension. The tiling matrix T can

be also used to compute the degree of freedom (~) of the

corresponding tile. S denotes the possible direction(s) in

which the next tile can be fetched. For example, the column
and row tiles have ~=1 whereas generalized rectangular tiles

(e.g., square) have ~=2. Let 0 be a diagonal matrix rep-

resenting the out-of-core local array ( OCLA), where each

diagonal element denotes the size of the array in the cor-
responding dimension. Then the degree of freedom $ of a
given tile is computed as the number of the non-unit diag-

onal elements in the diagonal matrix F= [ T ‘1 O 1. Note

that ceiling function takes into account the cases in which
extents of the tiles are not divisors of the OCLA dimensions.

K>;>()10
L

I
()-1

0

Figure 6: Access Patterns for column tiles and the Schedule

Matrices.

The position(s) of the non-unit element(s) denote the direc-

tion of freedom. The determinant of the matrix F denotes
the total number of tiles.

5 Scheduling Techniques for eliminating out-of-core com-
munication

This section discusses the second part of the ICLA schedul-

ing problem. i.e.. for a given stencil, compute the access

patterns of the tiles (ICLAS) so that the extra tile accesses

are eliminated.

5.1 Schedule Matrix

The schedule matrix ‘H determines in which order the data
tiles are fetched from the files. The dimensions of the ‘U
are decided by the degree of freedom $ of the corresponding

tile. Since we are concerned only with 2-dimensional arrays,

1 and 2 dimensional schedule matrices are possible.

Figure 6 represents the column tile (3=1) and the cor-

responding schedule matrices. This tile can be fetched in

either positive/negative x or y dimension, i.e., the access

pattern is monotonic. Figure 6 represents the correspond-

()

1
ing schedule matrices. Matrix l-l = ~ denotes access in

()–1
positive x direction whereas matrix W = o denotes

access in negative x direction. A rectangular tile with 3=2

will have two dimensional schedule matrices [BCR95].

5.2 Scheduling Algorithm

This section describes how to use the schedule matrices for

eliminating extra file accesses generated in the In-core com-

munication method.

As noted in the previous section, extra file accesses can
be eliminated ifi the data to be communicated in always

in-core. This condition can be satisfied by: (1) Finding

processor groups which can ezchange data and (2) For every

such group, computing schedules such that communication
is performed only on the in-core data. Such schedules are
called conforming schedules. Formally, we can write

Theorem 5.1 Tile Schedzdmg

Schedules R, and W] eliminate extra file 1/0 ifi they

satwfy the following equality

@SDk = I-$SV1.

where % w the schedule matrix for processors z and j,

SDk, S’Dl denote the k’h and lth column of the stencil.

dw-ection matrix SD (t. e., conforming columns for proces-

sors z and j).
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Proofi

it Part: If schedules w , and ‘Hj eliminate extra file 1/0

then they satisfy the equality, is a natural consequence

of the definition of the conforming schedules. In or-

der to regain the exchange pattern, two neighboring

processors must simultaneously fetch the ICLAS which
are on the processor boundary. Since only monotonic

access pat terns are allowed, the processors i and j,
should exhibit schedules having different directions.

In other words, their schedule directions must corre-

spond with the conforming directions of the SD ma-
trix. Therefore, these schedules must satisfy Theo-
rem 5.1.

only if part: Any schedule pair that satisfies the equality

must eliminate extra file 1/0, can be proved by con-

tradiction. Let us assume that there exists a schedule

pair which satisfies the equality but not eliminate ex-

tra file 1/0. In other words, these schedules do not

differ in directions (i.e., both may correspond to in-

creasing or decreasing access pattern). Recalling the

definition of the conforming directions, if SDk and SDl
denote conforming directions then, SDk =-SDJ or vice
versa. Substituting this property in the equality, we

get ‘H~=-7-1~. Therefore, the schedules that satisfy

the equality must differ in sign (or direction). This

contradicts our assumption. Hence, any schedule pair

that satisfies the equality must eliminate extra 1/0.

Theorem 5.1 is not valid for irregular stencils. In other

words, there may exist schedules H; and 7-I; which will elim-

inate extra file 1/0 but not satisfy the equality.

We now sketch an argument that for a regular stencil,

any schedule computed using Theorem 5.1 does not result

in a deadlock. Formal proof is omitted due to lack of space.

Let us assume that for a stencil 6’ and processor map P’,
the scheduling algorithm generates a schedule which results

in deadlock. Deadlock occurs when data required by the
ICLA of a processor is not present in its neighbor’s memory.
Since extra file accesses are not allowed, the processoi will

suspend its computation. As a result, for the next ICLA,

more processors will suspend their computations because the
data required by them will not be in memory of the already

suspended processor. This effect will snowball; resulting in
a deadlock.

Any legal schedule (i.e., a schedule that satisfies Theo-

rem 5.1 ) satisfies constraints generated by conforming direc-

tions. Conforming directions clearly define groups of proces-

sors which should be scheduled together so that In-core com-
munication will involve only the ezchange of in-core data.
Since data exchange involves communication between pro-

cessor pairs, deadlock is avoided.

The scheduling algorithm consists of three steps:

b

●

●

Assign a symbolic schedule matrix to each processor.
The dimension of the schedule matrix will be equal to
the degree of freedom of the tiles.

Compute the schedule equations for each processor us-
ing the stencil matrix and the conforming directions.
The schedule equations represent the constraints im-
posed by the conforming directions.

Initialize the schedule matrix of any one processor by
a legal schedule and compute the corresponding sched-
ules of the remaining processors by reducing the sched-

ule equations. These schedules satisfy the constraints

imposed by conforming directions and regain the ew

change communication pat tern.

We demonstrate the scheduling algorithm using the run-

ning example (Figure 2) for the column tiles. Initially the

algorithm is explained for 2 x 2 processor grid and then ex-

tended for a generalized m x n processor gricl.

5.2.1 Tile Scheduling for 2 x 2 Processor Grid

Consider 9-point star stencil (G;) application running on 4

processors arranged as 2 x 2 processor grid (Figure 7). Each

processor is associated with an unique two-element address
and a corresponding processor index. For example, proces-

sor wit h index 3 has an address (1,1). Figwre 7 i.llust rates

the ghost area generated for processor 3 by G:. Processor

3 requires data from processors 0,1,2. Processors 0,1 and

2 also exhibit similar communication patterns. Figures 7:C
illustrates the column tiles.

+ ‘+
\8,0 0,/

O~*o (w-: (13
0490

k
/ Q ‘“\ (:)0(:)1

I I -
2 3 2

I I

-

0 1 0

(cl Cdlmo‘m?S (D) Tik SckdJk

Figure 7: Tihg a G: application.

We now outline the computation of schec[ules using the

column tiles. A detailed description of the algorithm using

different tile shapes is given in [BCR95].

Step 1: Assigning Symbolic Schedule Vectors

Since column tiles have 3=1, we use symbolic schedule

(’)
vectors. Let j? denote a symbolic schedule vector for

1
processor 2.

Step 2: Computing Schedule Equations. For example,

equations for Processor 3 are

Step 3: Computing Individual Schedule Matrices

In order to generate individual schedule matrices, ini.
tially assign a random schedule to a processor and compute
the remaining schedules using the schedule equalities. In

our example, let the schedule mat rix for processor 3, H3 be

971
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Using lfs we can compute the following schedules

Figure 7:D presents the corresponding tile access pat-
tern. In this access pattern, for each ICLA, every processor

ezchanges data with its neighbors. Thus communication in-

volves only inter-processor communication and extra file 1/0

is eliminated.

5.2.2 Tile Scheduling for m x n Processor Grid

In the previous section, we described the scheduling algo-

rithm for a simple 2 x 2 processor grid. In this section, we
extend the algorithm to any arbitrary grid of size m x n.

Generalized Algorithm

1.

~.

3.

4.

5.

C;onsider the processor grid as a collection of points
in the integer lattice Lz. Each processor can be ad-

dressed using a 2-element vector (Z, j). Assign indices

to the processors, p,, according to their positions in

the lattice (Figure 8).

Choose a 2 x 2 grid of processors. For simplicity, we
always choose a grid containing processor O. For ex-

ample, in Figure 8 we choose the grid of processors
0,1,3 and 4. We call this grid as a reference grid,

From the chosen reference grid, choose an interior pro-

cessor (not situated on a grid boundary) as a rejerence

processor-. It should be noted that using our index or-
dering, the reference processor will always have odd

index (or address (i,j ), where i and j are odd).

Generate schedule matrices and the corresponding equa-

tions for the reference grid. Assign a random schedule
to the reference processor and compute the schedules

of the remaining processors in the reference grid.

We can now extrapolate the schedule to all the remain-

ing processors in the grid using the following lemma

Lemma 5.1 Generaked Schedzding

Consider a processor from the rejerence grid hauzng ad-

dress (i, J). Let ‘H,ef denote its schedule matrix. Then al!

the processors having addresses (i+ 1 x 2,,1 +/c x 2), O < k, 1

have the same schedule matrix.

Figure 8 presents a schedule for the running example
using the column tiles. In all the cases, processor 3 is cho-

sen as the reference processor. Processors O (address (0,0)),

2 (address (0.2)), 6 (address (0,2)) and 8 (address (2,2))
share the schedule matrix ?tI. It should be noted that this
cookie-cutter approach allows schedule reuse and prevents
computation of schedule for every processor.

6 Experimental Results

This section summaries experimental performance results
of out-of-core stencil computations using the 9-point stencil

on the Intel Paragon. The reader is referred to [BCR95] for

more detailed results. These experiments were performed on
out-of-core square arrays distributed in BLOCK-BLOCK fash-
ion. The main goal of the experiments was to analyze the
effects of allocated memory, tile shape and ICLA schedule on
the communication cost. Each experiment was run for three

l+--78

l-i--

0-11’112
l++-=s-

Figure 8: Tile Scheduling for @ for a 3 x 3 processor grid.

tile shapes, column, row and square and in each case, the

cost of local 1/O, LIO and inter-processor communication,

COMM was measured. Table 1 presents the COMM times
for the 9-point star stencil using 8K x 8K array distributed
on 64 processors. The table shows COM M for unscheduled

and scheduled access patterns for two memory sizes ( ~tk and
~ th

z of the OCLA size) and computes the resultant perfor-

mance gain. Note that we didnot run experiments using the
row tiles for unscheduled access patterns since the excessive

1/0 cost made them impractical.

Table 1: COMM gain for column, row and square tiles for

GJ. Time in seconds

Tile Memory Unscheduled Scheduled Gain
column 1/16 1.88 0.05 31.86

1/4 2.06 0.05 39,84
Row 1/16 1.88 0.06 28.96

1/4 2.06 0.05 42.4
Square 1/16 213.18 0.015 14025

u iJ4 192.2 0.0053 35992.51

From Table 1, we observe that

● In absence of scheduling, for all three tiles, COMM

does not change significantly as the amount of allo-
cated memory is varied. This is because, as the allo-

cated memory is decreased, the cost of interprocessor

communication decreases (since the amount of data to

be communicated decreases) but the number of file ac-

cesses increase, thus offsetting any gain obtained from
reduction in inter-processor communication. However,
as the amount of allocated memory is decreased, the
number of file accesses increase, thus increasing the lo-

cal 1/0 cost, LIO. When the allocated memory is less,

LIO cost dominates the overall cost. As the amount
of allocated memory increases, COMM becomes dom-
inant.

LIO depends on the shape of the tile. Column tiles,

incur least LIO, followed by square tiles and row tiles.
For the application illustrated in Table 1, when the al-

located memory is &th the OCLA size, LIO for column

tiles is 13.77 seconds, for square tiles is 417.77 seconds
and for row tiles is 1540.95 seconds.

In all cases, the in-core communication cost is signifi-
cantly reduced by scheduling the tiles. The effect of tile
scheduling is more prominent in the cases where the
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communication cost, COM M, matches the local 1/0

cost. LIO. For column and row tiles, improvement in

COMM is relatively small ( upto 260 ), but for square

tiles the improvement in COMM is significant ( upto

36000).

7 Discussion

Though the paper only focussed on 5- and 9-point stencils.
the ICLA scheduling algorithm is also applicable to gener-

alized two dimensional stencils like the Hex stencil [Lee90,

BcR9s]. Note that communication for the Hex stencil would

require more data to be communicated but the communica-
tion pattern would be same as the 9-point stencil. Also.

the scheduling algorithm could be easily extended for three
dimensional stencils like 9- and 13-point stencils. For 3 di-

mensional stencils, the stencil, processor and schedule nla-

trices (S, SD, N and H) would be modified to accommodate

the extra dimension. Currently, we are incorporating the

techniques presented in this paper in a prototype out-of-core

HPF compiler [Bor96].

8 Related Work

Fortes and Moldovan studied stencil-based computations in

the framework of VLSI design [MF86]. Lee [Lee90]analyzed

communication patterns of different commonly observed sten-

cils and described different partitioning strategies to min-
imize the communication-to-computation ratio. A lot of

work has been done for developing compiler techniques for

optimizing stencil based codes for data-parallel languages

like CM-Fortran[BHMJ91, BHTJ94].

9 Conclusions

We showed that communication in out-of-core stencil com-
put ations require file 1/0 as well as inter-processor commu-

nication. We used the In-core communication method for

performing communication. In this method, the communi-

cation pattern and the amount of data communicated is a

function of the in-core data slab (called ICLA). We showed

that by taking advantage of FORALL semantics, ICLA ac-

cesses can be scheduled such that any extra file 1/0 are elim-

inated. Furthermore. we illustrated how the compiler, US-

ing the stencil and processor information, can ardorrmticaiiy

choose the ICLA parameters and decide a suitable schedul-
ing pattern. Finally, we demonstrated. through, experimen-

tal results, that: ( 1 ) In-core communication cost depends

on the ICLA parameters and (2) ICLA access scheduling is

an effective method for eliminating extra file 1/O incurred

in the In-core communication method.
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