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Abstract

Power consumption is becoming increasingly important
for both embedded and high-performance systems. Off-chip
data buses can be a major power consumer. In this paper,
we present a strategy called “power protocol” that tries
to reduce the dynamic power dissipation on off-chip data
buses. To accomplish this, our strategy reduces the number
of bus lines that need to be activated for data transfer by em-
ploying a small cache (called “value cache”) at each side
of the off-chip data bus. These value caches keep track of
the data values that have recently been transmitted over the
bus. The entries in these caches are constructed in such a
way that the contents of both the value caches are the same
all the time. When a data value needs to be transmitted over
the bus, we first check whether it is in the value cache of the
sender. If it is, we transmit only the index of the data (i.e., its
value cache address) instead of the actual data value and,
the other side (receiver) can determine the data value by us-
ing this index and its value cache. Our experimental results
using a set of fifteen benchmark codes from embedded sys-
tems domain show that power protocol is very effective in
practice, and reduces the bit switching activity on the data
bus by as much as 70.7% (with a value cache of 128 en-
tries). We also present results from an implementation that
combines our strategy with 1-to-2 encoding, a popular bus
encoding strategy for low power. Our results indicate that
this combined optimization strategy reduces bit switching
activity by 67.8% on the average(across all benchmarks).
These reductions in bit switching activity lead to more than
7% reduction on overall system energy on the average for
a value cache of 256 entries. We also study the sensitivity
of our savings to the value cache capacity and data cache
capacity.

�This work was supported in part by NSF Award #0093082 and by
DARPA’s Power-Aware Computing and Communications Program under
contract No. FF33615-00-C-1631.

1. Introduction

Architectural-level power optimization can target differ-
ent system components such as CPU, caches, main memory,
and buses [5, 6, 22, 4]. Power spent in off-chip buses can be
a significant portion of the overall power budget. As an ex-
ample, the core power consumption of Intel Celeron at 266
MHz is 16W, while its off-chip bus (for a standard configu-
ration) operating at 133 MHz consumes 3.3W [12, 13]. The
contribution of off-chip bus power consumption to the over-
all power budget increases even more for embedded systems
with low-power processor cores and memories, making off-
chip buses a potential candidate for power optimization.
Figure 1 shows the power consumption due to off-chip data
bus for several embedded benchmark codes as a percentage
of the overall power consumption (which includes proces-
sor datapath, caches, buses, TLB, register file, instruction
issue logic, clock, and off-chip memory) for an embedded
processor. From this figure, we see that the off-chip data
bus consumes between 9.8% and 23.2% of the total power
consumed by the system depending on the benchmark be-
ing run. So, reducing the power consumption of the off-chip
data bus would reduce the overall power consumption of the
system to a considerable extent.

Power dissipation on off-chip data buses can be reduced
by at least two techniques: by reducing the number of bus
lines activated during data transfer and by reducing the
number of bit transitions on the active bus lines. Con-
sequently, maximum benefits can be obtained by apply-
ing both the techniques. In this paper, we present a data
bus transmit protocol, calledpower protocol,to reduce the
power consumption on off-chip data buses. In this ap-
proach, we employ a small cache (called value cache, or
VC for short) at each side of the off-chip data bus. These
value caches keep track of the data values that have recently
been transmitted over the bus. The entries in these caches
are constructed in such a way that the contents of both the
value caches are the same all the time. When a data value
needs to be transmitted over the bus, we first check whether
it is in the value cache of the sender (whether it is memory
or cache). If it is, we transmit only the index of the data
(i.e., its value cache address, or index) instead of the actual
data value and, the other side (receiver) can determine the
data value by using this index and its value cache. Since



Figure 1. Contribution of the off-chip data bus power to
the overall power consumption (0.18 micron technology;

8KB, direct-mapped data cache with 32 byte cache lines).

The overall power consumption includes the power con-
sumed in on-chip components (including data and in-

struction caches), off-chip buses as well as off-chip

memory. We see that the off-chip data bus consumes
between 9.8% and 23.2% of the total power consumed by

the system depending on the benchmark being run.

the value caches employed by our power protocol are very
small, the width of the index value is much smaller than the
width of the actual data value. Consequently, fewer off-chip
bus lines need to be activated for transmission. The details
of our power protocol are explained in Section 3.

We applied this strategy to fifteen benchmark codes from
the embedded systems area. The results given in Sec-
tion 4 indicate that data bus power savings are around
54.8% on the average. Section 4 also evaluates the en-
ergy/performance overheads due to our optimization strat-
egy. We compare our approach to two popular bus encod-
ing schemes, namely, 1-to-2 encoding and Gray encoding,
as well as a performance-oriented bus width enhancement
scheme. Our strategy can also be integrated with these en-
coding mechanisms to further reduce the power consump-
tion on the data bus. We report on results from an imple-
mentation that combines power protocol with 1-to-2 encod-
ing. These results indicate that the combined optimization
strategy can improve off-chip data bus power consumption
by 67.8% on the average. More importantly, the combined
strategy reduces the overall power dissipation for all value
cache sizes used in our experiments. These improvements
come from both reduced number of bus line activations and
reduced bit switching activity on the bus. Based on the re-
sults of our experiments, we conclude that power protocol
is an effective technique in reducing energy consumption.
In Section 5, we summarize our major contributions.

2. Related Work

Most of the existing work in bus encoding aims towards
improving the performance and effective bandwidth of the

bus. For example, Citron and Rudolph have described a
technique to encode data on the bus using a table-based ap-
proach [9]. In this method, they divide a given data item (to
be transferred over the bus) into two parts. The lower part is
sent without being encoded, while the upper part is encoded
using a look-up table (LUT). Their method aims at reducing
the size of the data being sent. The upper part of the data
is broken into a key, which is used to search the data in the
LUT, and a tag, which is used to match the data in the LUT
to find if there is a hit. If there is a hit, the data sent over
the bus is compacted to y [y=Comp(x)], where x is the orig-
inal data and the lower d bits of y is the same as the lower
d bits of x. On the receiving end, a component called bus
expander expands y to original data x [x=Expn(y)]. It fol-
lows that x=Expn(Comp(x)). Citron and Rudolph have used
a bus of smaller width than the normal word size of the ar-
chitecture. Our work is different from theirs in at least two
aspects. First, the two studies use different encoding strate-
gies. Second, our work tries to reduce the power dissipation
on data bus rather than increasing the effective capacity of
the bus. Later in the paper, we compare our technique quan-
titatively to the strategy proposed by Citron and Rudolph.

In the recent past, the encoding paradigms for reducing
the switching activity on the bus lines have been investi-
gated (e.g., [24, 23, 18]). Most of the common encoding
techniques rely on the well-known spatial locality princi-
ple. An analysis of several existing low-power bus encoding
techniques such as T0, bus inversion, and mixed encoding
has been performed by Fronaciari et al [11]. Among the
different techniques that have been studied for reducing the
power dissipation of the address bus, Gray code address-
ing appears to be a very efficient scheme [18]. Encoding
techniques at the system-level have been reviewed by Stan
and Burleson [24]. Shin, Chac, and Choi have explored a
partial bus invert coding technique where they proposed a
heuristic to select only portions of the bus to invert for fur-
ther improving the effectiveness of the bus inversion coding
[20]. They have also proposed a combination of bus inver-
sion with transitional signaling for a typical signal process-
ing application [21].

Bus inversion is known to perform very well in the arena
of power reduction over the data bus [5]. In bus inversion, a
data item is sent as it is, or in a bit-inverted form, depending
on the state of the bus during the previous transaction. The
main idea is to reduce the dynamic power dissipation by re-
ducing the number bit swings (that is, to minimize the num-
ber of charging- discharging of the capacitive lines) of the
bus. A similar technique is the 1-to-2 encoding, which uses
the same principle as bus-inversion, but is static in nature
[24]. If ’n’ bits are required to represent all the data, 1-to-2
encoding uses ’n+1’ bits to encode them. In this encoding
scheme, each data ’x’ is represented either as its binary ’X’,
or as the bit inverted form of the binary equivalent ’�X’.
Therefore, there are two codes to choose from, namely, ’X’
or ’�X’, following the principle of minimizing the number
of bit switches in the consecutive bus transactions. Thus, the
number of bit transitions on the bus is reduced, thereby re-
ducing the power consumption. Our work is different from
these studies in the sense that rather than trying to minimize



the bit switching activity, it is more oriented towards reduc-
ing the width of the data to be sent over the bus; this also
reduces the bit switching activity. Also, as our experiments
demonstrate, the effectiveness of our strategy can be further
increased by combining it with 1-to-2 encoding strategy.

Techniques using look-up tables to compress data have
been explored by Bishop and Bahuman who have proposed
an adaptive bus coding to reduce bit transition activity by
exploiting the repetition of the data [3]. Childers and Nakra
have studied the effect of reordering the memory bus traf-
fic to reduce power dissipation [7]. Yang et al [27] have
proposed the use of a compression cache to compress the
data stored in the cache line to at least half their length so
that a single cache line can effectively store two cache-lines
of data. However, their main objective is to compress the
data in the on-chip cache and increase the cache hit rate.
Since their approach sends the data across the bus in a com-
pressed form, it also results in a reduction in bus activity.
Also, the compression strategies used in our work and in
[27] are entirely different. Farrens and Park [10] have pre-
sented a strategy that caches the higher order portions of ad-
dress references in a set of dynamically allocated base reg-
isters. Our bus energy optimization strategy is also similar
to the strategy proposed by Yang and Gupta [26]. However,
our value cache update strategy is different from theirs and
we evaluate the energy behavior system wide.

3. Power Protocol

In this section, we present the details of our power pro-
tocol that tries to reduce the power dissipation on off-chip
data buses.

3.1. Objective

Our objective is to reduce the power dissipation on off-
chip data bus. As mentioned earlier, this can be achieved in
at least two ways: (i) reducing the width of the data trans-
ferred over the bus, and (ii) reducing the switching activity
on the bus. Our approach tries to achieve the first option
by exploiting the locality of the data values communicated
over the off-chip data bus. However, once the width of the
data (that needs to be transmitted) has been reduced, we
can also expect a reduction (in general) on the average bit
switching activity per transfer. In addition, this switching
activity can be further reduced by using well-known bus en-
coding schemes in conjunction with our strategy (e.g., 1-to-
2 encoding). In the following, we first discuss our encoding
strategy, and then give an illustrative example.

3.2. Protocol Details

In the proposed protocol, we focus on the data values
transferred over the off-chip data bus, and use an adaptive,
application- independent technique to reduce the power dis-
sipation of the bus. This approach uses two small look-up
tables calledValue Caches(VCs): one at the memory side

On-Chip
Data Cache

Off-Chip
Memory

Value
Cache

Value
Cache

Off-Chip Data Bus

Figure 2. An abstract view of the power protocol archi-

tecture. We employ a value cache at each side of the
off-chip data bus. The value caches keep track of the

data values that have recently been transmitted over the

bus. When a data value needs to be transmitted over
the bus, we first check whether it is in the value cache

of the sender. If it is, we transmit only the index of the
data (i.e., its value cache address) instead of the actual

data value and, the other side (receiver) can determine

the data value by using this index and its value cache.
The objective here is to reduce the number of active bus

lines needed for data transfer.

of the data bus (off-chip) and one at the cache side (on-
chip). These VCs are used to store the value of the data that
is being sent over the bus (see Figure 2).

We use a value-based caching strategy in our protocol in-
stead of the traditional address-based caching. More specif-
ically, when the processor requests a data item and it is not
found in the conventional on-chip cache, the address is sent
to the off-chip memory. There, the value of the data is found
from the memory using the address received from the pro-
cessor. This value ’v’ of the data ’x’ is used to search the
VC. If the value of the data to be sent is not found in the
VC (a VC miss), the verbatim data, which is ’W’ bits wide,
is sent over the bus to the receiver side (on-chip cache). At
the same time, the value of the data is cached in the sender’s
VC at some index location ’i’. The index ’i’ depends on the
placement and replacement policy implemented for the VC
on the sender side.

The receiver side runs the same placement and replace-
ment policy for the VC as the sender. Thus, the value of the
data sent over the bus is copied in the receiver’s VC at the
sameindex location, as in the sender’s VC. So, by construc-
tion, it is guaranteed that the VCs in both the sides have the
same values of data in the same positions at any point in
time. In other words, the same data item can be addressed
by both sender and receiver using the same index (to VCs).

On the other hand, if the value ’v’ of the data ’x’ to be
transferred is found at some location indexed ’j’ in the VC
of the sender (a VC hit), there is no need to transfer the en-
tire W-bit wide data. Instead, we only transfer the value of
index ’j’ over the bus, which is only ’w’-bits wide (w�W),
where w depends on the size of the VC used. At the re-
ceiver side, we use this index to retrieve the actual value of
data from the receiver’s VC. The protocol ensures that the
same value of data is present at the same index location of
the receiver’s VC. We use one extra control bit to indicate
whether the data being sent over the bus is the verbatim data



or an index to the VC. A memory-write activity is handled
in a similar fashion.

3.3. Example

As an illustrative example, we consider the sequence of
bus transactions given in Figure 3. We assume that initially
the values 100 and 200 are not present in the VC. During
Transaction #1, A is sent from the memory to the cache.
The requested data item, stored at some address (say ad-
dress X of the memory) has a value 100. The memory con-
troller searches the VC for the value 100 and detects a miss.
Therefore, the value 100 is sent over the off-chip data bus.
Also, following our power protocol, the value 100 is stored
at the same location (say 5) of the VCs of both the source
and the destination. For Transaction #2, the memory con-
troller searches for the value 200, cannot find the value in
the VC, and repeats the steps as described above. At this
point the value caches at the both ends contain data val-
ues 100 and 200. In Transaction #3, the memory controller
finds that a value 100 has to be sent to serve a read request
(of the same memory location as before, or of a different
memory location that has the same value). But, note that
the value 100 is already present in the VC of the sender in
location 5 as a result of Transaction #1. Therefore, instead
of sending the value 100, the memory controller just sends
the index value 5. The receiver, on the other hand, fetches
the value of the actual data (100 in this case) from location
5 of its VC. Finally, in Transaction #4, we want to send the
data item D having a value 200 to the memory (i.e., a write
request). But, the value 200 is already cached in both the
VCs as a result of Transaction #2 from memory to cache.
Consequently, the index to the cached copy (present in the
VC) of value 200 is used to complete Transaction #4 but
in the reverse direction. This last transaction shows that, in
power protocol, the data placed in the VCs during a trans-
action in one direction can be re-used (from the VC) during
a transaction in the reverse direction.

3.4. Discussion

Note that we add an additional layer of indirection be-
tween the two ends of the off-chip data bus. This might de-
grade performance by increasing the effective memory ac-
cess time. However, as compared to the memory access
latency (approaching several 100s of cycles), the latency
introduced by the power protocol should be comparatively
low. Moreover, when memory is accessed, the entire block
of data is moved across the data bus. In such a scenario,
the additional delay due to the VC protocol would affect
only the first transaction, and all the subsequent accesses
to the block would be found in the on-chip data cache (as
long as the block is in the data cache). So, we can expect
that power protocol would reduce the power consumption
of the off-chip data bus without significantly affecting the
performance of the system.

It should be stressed that while so far we have discussed
our power protocol assuming that the one end of the bus is
on-chip cache and the other end is off-chip main memory, it

Transaction Transaction Data Value Status Transmitted
Id Direction Entity

Memory Miss
#1 to A 100 in Full Data

Cache VC
Memory Miss

#2 to B 200 in Full Data
Cache VC

Memory Hit
#3 to C 100 in VC Index

Cache VC
Cache Hit

#4 to D 200 in VC Index
Memory VC

Figure 3. Example bus transactions using power proto-
col. Note that in the last two transactions, VC access

generates hits. We also note that since VC operates with

values and is placed at both ends of the bus, we achieve
a hit as long as the same value needs to be transferred

on the data bus. It does not matter whether the value

belongs to the same variable or not; or it is transmitted
from memory to cache or vice versa.

is possible to adapt our strategy to work with an off-chip L2
cache as well. In addition, power protocol can also be used
to reduce the switching activity between on-chip L1 cache
and on-chip L2 cache (although the results would not be as
good as those with the off-chip bus). In fact, our strategy
can be used between any two communicating devices in the
system (with the VC support). Further, we are not restricted
by point-to-point configurations. That is, our approach can
be made to work in an environment where multiple devices
are communicating over a shared (power-hungry) data bus.
Obviously, in this case, among other things, we would need
a coherence mechanism (the discussion of which is beyond
the scope of this paper). A drawback of our strategy is
the extra space needed by two value caches (one on-chip
and the other off-chip). In this paper, we do not present a
detailed study of the circuit space implications of our ap-
proach. As will be presented in the experimental results
section, even a small VC (128 entries) generates reason-
ably good energy behavior; so, we can expect that the space
overhead due to our optimization will not be excessive.

4. Experiments

4.1. Simulation Environment and Benchmarks

We enhanced the SimpleScalar/Arm architecture simu-
lator [2] for our experiments. The SimpleScalar simulator,
originally developed at the University of Wisconsin, models
a modern microprocessor with a five-stage pipeline: fetch,
decode, issue, write-back, and commit. We implemented
our power protocol technique within the framework of the
sim-outorder tool from the SimpleScalar suite, extended
with the ARM-ISA support at the University of Michigan
[1]. Specifically, we modeled a processor architecture sim-



ilar to that of Intel StrongARM SA-1100. StrongARM SA-
1100 is the second member of the StrongARM family. It
is a highly-integrated communications microcontroller that
provides power efficiency and low cost. The modeled archi-
tecture has a 16KB direct-mapped instruction cache and a
8KB direct-mapped data cache. Both the cache sizes are of
32 byte-length. Both instruction cache and data cache have
1 cycle latencies. Off-chip memory latency is assumed to be
100 cycles. We extended the simulator such that the stores
are made using a four-line write buffer (as in SA-1100). We
also model a 256-entry full associative TLB with a 30-cycle
miss latency. The off-chip bus is 32 bit-wide. To obtain the
power numbers, we used the Wattch simulator from Prince-
ton University (with parameters for 0.18 micron technol-
ogy) [5].

To test the effectiveness of our power protocol, we used
a benchmark suite that consists of 15 embedded applica-
tions. These binaries are built on a NetWinder Developer
ARM workstation from Rebel Systems (www.rebel.com)
using GNU GCC version 2.95.1 with optimization enabled
(-O), and compiled to use the Linux/ARM system calls.
Eleven of these applications are from the MediaBench
suite [15]. Two of the remaining applications (hier and
parallel-hier) are motion estimation codes [28] fre-
quently used in embedded video applications.zip is a data
compression code based on the Lempel-Ziv algorithm; it
uses entropy encoding. Finally,des is a cryptographycode.
It is a block cipher that transforms 64-bit data blocks under
a 56-bit secret key, by means of permutation and substitu-
tion. It is frequently employed in smart-card applications.
We believe that this benchmark set is representative for em-
bedded applications that can be found on the market. The
important characteristics of these applications are listed in
Figure 4. The third, fourth, and fifth columns in this table
give, respectively, the number of execution cycles, the num-
ber of off-chip data references, and the base energy con-
sumption. The base energy consumption includes the ener-
gies spent in on-chip components, off-chip buses and off-
chip memory, and obtained assuming a 1.5V/300 MHz em-
bedded (SA-1100 like) processor (0.18 micron technology)
with the configuration parameters mentioned in the previ-
ous paragraph. Later in the paper, we modify some of these
parameters to measure the robustness of our strategy.

4.2. Measures of Interest

There are several performance measures of interest in
evaluating the proposed strategy. These include the hit rate
of the VCs, the volume of data transferred over the bus
as compared to the volume of data transferred during nor-
mal bus transaction (i.e., without power protocol), the bus
switching activity, and the reductions obtained in power dis-
sipation of the off-chip data bus. It should be noted that
while increasing the size of VC is expected to increase its
hit rate, this may not always be the best choice as a larger
VC will result in wider indices to be sent over the data bus,
leading to more bus line activations and switching activity.
Also, since our VCs themselves consume some power and
their use might increase overall execution time, it is also

Benchmark Code Brief Description Number of Number of Energy
Cycles Off-Chip Refs Consumption

adpcm Adaptive audio coding 14.72 1.18 31.65
epic Experimental image compression 73.91 8.82 45.18
g.721 CCITT voice compression 377.14 57.02 55.27
ghostscript Postscript interpreter 57.46 21.71 29.79
gsm European standard for speech coding 298.04 19.88 42.83
jpeg Lossy compression for still images 31.61 2.80 31.81
mesa Public OpenGL clone 51.80 3.34 41.80
mpeg Lossy compression for video 1,321.27 145.36 82.11
pegwit Elliptical public-key encryption 162.92 20.18 87.54
pgp IDEA/RSA public-key encryption 318.73 21.24 60.05
rasta Speech recognition 177.33 13.61 90.28
hier Motion estimation algorithm 1,418.70 220.04 115.11
parallel-hier Motion estimation algorithm 1,387.68 150.63 108.97
zip Lempel-Ziv data compression 1,698.54 252.73 126.58
des DES crypto algorithm 1,587.82 236.42 119.07

Figure 4. Benchmarks used in our experiments. The

third, fourth, and fifth columns in this table give, respec-
tively, the number of execution cycles (in millions), the

number of off-chip data references (in millions), and the

base energy consumption (in millijoules). The base en-
ergy consumption includes the energies spent in on-chip

components, off-chip buses and off-chip memory. The
first eleven applications are from MediaBench; the rest

are frequently-used embedded applications.

important to evaluate the overall (system-wide) energy con-
sumption (rather than just the off-chip data bus power dis-
sipation). In the following subsections, we evaluate these
measures in detail. In all the results presented in this sec-
tion, the extra (control) bit needed by power protocol has
been accounted for.

4.3. VC Hit Rates

The hit rate of the VC is given by the fraction of times
the value of the data to be sent across the off-chip bus is
found to be present in the VC over the total number of off-
chip data bus transactions. The hit rate clearly depends on
the size of VC (denoted usingjVCj). We use different sizes
of VCs (from 8 words to 2K words) to measure the impact
of VC size on the effectiveness of our power protocol. Since
both power dissipation and performance are the parameters
important for us, we cannot use a very large VC. In fact, a
very large VC would most probably lead to excessive power
dissipation, thereby offsetting the potential improvements
achieved due to the protocol. The hit rate also depends on
the replacement policy used. In general, an implementation
can have two alternatives for that. Either we need to run
a deterministic replacement policy on both the sender and
the receiver sides, or send the index along with the actual
verbatim data whenever there is a miss. This is necessary
because, as mentioned earlier, at any point in time, we want
to have the same data value in the same location of the VCs
of both the sender and the receiver. However, sending more
data is not desirable since we want to reduce the volume of
data transfer (and save power). Therefore, in this work, we
chose to experiment with deterministic policies only. The
replacement policies used in this paper are the Least Re-
cently Used (LRU) and the Least Frequently Used (LFU).

Figure 5 gives the hit rates for VCs of different capacities



Figure 5. VC hit rates. These results indicate that as
the VC capacity is increased the hit rate also increases.

However, beyond a certain point, further increase in the

VC capacity does not pay off much. We also see that LRU
management generates better results than LFU manage-

ment. These hit rates also indicate that there exists some

degree of locality among the data values transmitted over
the bus.

averaged over all fifteen benchmarks in our experimental
suite. These results indicate that as we increase the size of
the VC, the hit rate also increases. Note that the hit rate of
the VC characterizes the fraction of times a particular data
value is found in the VC during the off-chip data transfer.
Also, VC is only searched for those data items that are not
found in the on-chip data cache. Further, VC tries to capture
data values and not addresses. Given these, we believe that
the VC hit rates observed in Figure 5 are reasonably good.
In fact, these hit rates indicate that there exists some degree
of locality among the data values transferred over the off-
chip bus. On an average, the hit rate increases as the size
of the VCs increases, reaches a peak, and then saturates.
This leads to a trade-off between the size of the VCs and
the gain that we can have due to reduction in the volume of
data transferred over the bus as a result of power protocol.
Clearly, larger VCs themselves will consume more power
and will be slower. Therefore, additional diminishing gains
must be considered against the overhead of larger VCs. In
fact, none of our benchmarks showed any significant im-
provement in hit rate when we increase the VC size beyond
512 words (the detailed results are not presented here). To
conclude, it is encouraging to observe that even a VC less
than 512 words is able to capture the value locality in off-
chip data transfers to a large extent.

4.4. Traffic through the Data Bus

Traffic through the data bus is measured by the number
of bits that are actually sent over the bus as a result of the
off-chip bus transactions. This traffic is largely dependent
on the hit rate of the VC. When there is a hit, we send the
index (the position of the data value in the VC) instead of
the actual data. Clearly, higher the VC hit rate, smaller is

Figure 6. Traffic over the data bus due to power protocol
(jVCj=128). These results show that there is approxi-

mately a 41.1% (resp. 38.2%) reduction in the volume

of traffic through the data bus when LRU (resp. LFU) is
used.

the number of times the W-bit (full-width) data needs to
be sent over the bus. Therefore, on the average, we send
fewer number of bits and this can significantly save power
by allowing us to switch off the unused portions of the bus.
Most commercially available buses have the capability of
powering off individual bytes [25]. In other words, a data
bus that is 32 bits wide, can actually transfer 8, 16, 24, or
32 bits of data. Thus, the available technology could enable
us to implement a 256-entry VC (indexed by 8 bits) without
any significant additional hardware for bus-control.

Figure 6 shows, for LRU and LFU VC replacement poli-
cies, the number of bits actually transferred over the data
bus (with power protocol) as a fraction of the bits trans-
ferred without the use of VC (i.e., without power protocol).
The VC capacity used is 128 entries (i.e.,jVCj=128). We
observe from these results that, on an average, there is ap-
proximately a 41.1% (resp. 38.2%) reduction in the volume
of traffic through the data bus when LRU (resp. LFU) is
used. To see how this data bus traffic gets affected when
the VC capacity is changed, we performed another set of
experiments. The results given in Figure 7 are the average
values (i.e., the number of bits normalized with respect to
the case without any optimization) across all fifteen bench-
mark codes in our suite. We observe that the bus traffic
decreases with an increase in the VC size up to a certain
point, beyond which it starts increasing. Thus, there is an-
other trade-off at this level. As we increase the size of the
VC, the number of bits required to address the VC also in-
creases. Even though the number of VC hits increases, a
larger size of the VC results in transferring a larger number
of index bits. This in many cases offsets the advantage of
the higher VC hit rate. For example, we see from Figure 7
that the total bus traffic withjVCj=2048 is higher than that
with jVCj=256.



Figure 7. Sensitivity of the bus traffic to the VC size (av-
eraged over all benchmarks). It can be observed that

increasing the VC capacity arbitrarily may not be a good

idea. A larger size of the VC yields better hit rate but it
also results in transferring a larger number of index bits

over the bus.

4.5. Switching Activity on the Data Bus

Switching activity (SA) on the off-chip data bus gives the
number of times the bus lines are discharged and recharged
between ”0” and ”1”, and is directly responsible for the dy-
namic power dissipation on the bus. It is well-known that
a smaller value of SA implies reduction in dynamic power
consumption. The first bar (denoted PP) for each bench-
mark in Figure 8 gives the amount of bit switching activity
when using power protocol as a fraction of the switching
activity for the original case (i.e., without power protocol).
We consider only the LRU policy as it always outperforms
the LFU policy. We observe that, on the average, the bit
switching activity is reduced by around 55%.

To see how previously-proposed bus encoding schemes
compare to ours, we give in the second and the third bars
for each application in Figure 8 the bit switching activities
due to 1-to-2 encoding and Gray encoding, respectively. As
before, these are the values normalized with respect to the
switching activity of the original scheme (without any en-
coding). We see that the normalized bit switchings for 1-
to-2 encoding and Gray encoding are 76.4 and 78.8, respec-
tively. These values are much higher than the corresponding
(normalized) value with our power protocol (45.1), indicat-
ing that our strategy outperforms these low-power encoding
schemes. The fourth bar in Figure 8 shows (for each bench-
mark) the bit switching activity when the encoding strategy
proposed by Citron and Rudolph (denoted CR in the fig-
ure) [9] is employed. For a fair comparison, both power
protocol and CR use the same-sized cache structures (VCs
and LUTs). In selecting the best cache configuration for
the CR strategy, we experimented with different associativ-
ities and found that a four-way set-associative cache (LUT)
generates the best results. The results in Figure 8 indicate
that our power protocol strategy outperforms the remain-
ing three strategies. The reason that it performs better than

Figure 8. Bit switching activity (SA) on the data bus
(jVCj=128). Average saving on the bit switching activ-

ity for power protocol is around 55%. We see that power

protocol outperforms three previously-proposed bus en-
coding strategies. These results clearly show that power

protocol outperforms three previously-proposed encod-

ing strategies. Combining 1-to-2 encoding with our strat-
egy brings an additional 12.9% saving on the average.

Note that these savings in bit SA directly translates to
power savings on the off-chip data bus.

1-to-2 encoding and Gray encoding is that these two strate-
gies try to reduce only the switching activity and do not
attempt to reduce the number of active bus lines. Our ex-
perience shows that reducing the number of active bus lines
is, in general, more effective than reducing the bit activity.
Our approach also results in a better power consumption
behavior than CR. One reason for this is the poor hit rate
of the cache (look-up table, LUT) used in CR. The mecha-
nism used in [9] indexes the cache (LUT) using some parts
of the high-order bits of the data value. We found out that
such an addressing/caching strategy does not result in very
good locality as far as data values are concerned. In partic-
ular, with the small cache size, the hit rate for the look-up
table was around 28-30% on the average (across all bench-
marks). Also, the portion of the data that is sent over the
bus un-encoded in the CR method effectively increases the
amount of bit switching activity on the data bus. In con-
trast, in power protocol, we store the entire data value in the
(value) cache and encode all of it.

There is a potential to reduce the switching activity on
the bus further if we can encode the data and the indexes in
such a way that the number of bits changing between two
consecutive bus transactions is minimized. Consequently,
we also combined 1-to-2 encoding strategy with our power
protocol. As mentioned earlier, 1-to-2 encoding uses the
same principle as bus inversion [24]. For each transaction,
this new combined strategy uses an additional bit to rep-
resent the encoded data, as compared to the normal power
protocol described earlier. Therefore, one more bit is trans-
ferred for each bus transaction as compared to our base
power protocol technique. But, the advantage of this com-
bined technique is that it can reduce the overall bit switching



activity. The last bar for each application in Figure 8 (de-
noted PP+1-to-2) shows the bit activity of the VC scheme
(under LRU) which incorporates 1-to-2 encoding. We ob-
serve from this figure that, using 1-to-2 encoding, the off-
chip data bus bit activity is reduced to 32.2% (of the origi-
nal bit activity without the power protocol) on an average,
which is an additional 12.9% improvement over power pro-
tocol. When we combined power protocol with Gray en-
coding, we obtained very similar results; so, they are not
presented here.

We also studied the sensitivity of these savings in the
bit switching activity to the VC capacity. The first bar (de-
noted PP) in Figure 9 shows the bit switching activity due to
power protocol normalized to that of the original case (i.e.,
without power protocol). On an average, power protocol
leads to significant reductions in the bit switching activity
across all VC sizes. We see that the bit switching activity is
initially reduced with an increase in the VC size. But, there
is an optimal VC size beyond which the SA starts increas-
ing. The point where the SA starts increasing is the same as
the point where the increase in the size of the VC does not
improve the VC hit rate too much. But, at the same time,
there is an increase in the number of index bits (which is
dependent on the size of the VC) that have to be sent over
the bus for each hit, and as a result, there is an increase in
the overall bit switching activity. As we can see from Fig-
ure 9, in general, a VC size of 256 words yields a very good
bit switching activity. On an average (across all VC capaci-
ties), the power protocol reduces the SA on the off-chip data
bus by 69.8% as compared to the normal data transfer over
the bus. Therefore, since the bit switching has a direct im-
pact on power consumption of data buses, we can conclude
that our power protocol reduces the off-chip bus power con-
sumption significantly. The second bar in Figure 9 (denoted
CR) for each VC size gives the average bit switching activ-
ity (across all benchmarks) when the strategy in [9] is em-
ployed. We see that our strategy outperforms the one in [9]
for all VC sizes due to the reasons explained above. Finally,
the last bar (for each VC size) in Figure 9 shows the average
switching activity when our strategy is combined with 1-to-
2 encoding. It can be observed that, with large VC sizes, the
original switching activity is reduced by nearly 80% when
the combined strategy is employed.

4.6. Overall Energy Savings

In the previous subsection, we found that our power pro-
tocol reduces the bit switching activity of the off-chip data
bus to a great extent. In fact, with large VC sizes, the power
protocol augmented by 1-to-2 encoding reduced the switch-
ing activity of the data bus to 20% of the original bus activ-
ity. The power consumption of the bus varies linearly with
the amount of switching activity on the bus. Consequently,
we can conclude that the dynamic power consumption on
the off-chip data bus is reduced by up to 80% when power
protocol is used with large VCs. However, as noted ear-
lier, the VCs themselves add to the power consumption of
the system. Therefore, we need to evaluate the effect of our
VC-based strategy on the overall energy consumption of the

Figure 9. Sensitivity of the bit switching activity (SA) to
the VC size (averaged over all benchmarks). As before,

there is a tradeoff between addition savings due to a large

VC and energy loss due to the larger number of bits to
be transferred.

system. Also, as mentioned earlier, the proposed protocol
has an impact on execution time (due to VC look-ups); this
may lead to extra power consumption in other system com-
ponents. Consequently, in this subsection, we consider the
energy consumption of the entire system. First, we give
power models used for off-chip data bus and VCs in detail.
After that, we present energy numbers.

4.6.1 Bus Power Model

We use a model similar to the one discussed by Catthoor et
al [6]. In general, estimating energy consumed by off-chip
interconnects is difficult. We can approximate the capaci-
tance for the bus (Cbus) using:

Cbus = Cmetal * Number of Bus Lines

In this expression,Cmetal is the capacitance of the metal
interconnect for each bus line. Using the numbers in [6], it
is estimated to be 20pF. 6pF of this is due to memory I/O
pin, and 5pF is due to bus driver. The remaining compo-
nents are off-chip interconnect, I/O pin, on-chip intercon-
nect, and have capacitive loads of 3pF, 5pF, and 1 pF (for
0.18 micron technology), respectively.Cbus gives the ef-
fective capacitive load to be driven during a bus transaction,
and we use the equation above to compute the energy con-
sumption of the bus while running the benchmark codes in
our experimental suite.

4.6.2 VC Power Model

Our VC is basically a small content addressable memory
(CAM), and we use the Wattch power model (built on top
of the model proposed by Palacharla et al [19]) of a CAM to
evaluate the power consumed by the VC. Wattch models the
taglines and matchlines, and computes the capacitive load
for a CAM like structure as:
CCAMtagline = Cgate(CompareEnable)*NumberTags



Figure 10. Energy consumption for different system com-
ponents and overall energy savings. It can be seen that

increasing the VC capacity reduces the energy consump-

tion on the off-chip data bus; but, it also increases the
energy spent in VCs. Therefore, arbitrarily increasing the

VC capacity does not perform very well.

+Cdiff (CompareDriver)+Cmetal*TLLength
CCAMmatchline = 2*Cdiff (CompareEnable)*TagSize

+Cdiff (MatchPreCharge)+Cdiff(MatchOR)
+Cmetal*MLLength

Modeling the matchlines and taglines take into account
the diffusion capacitance, the capacitance due to the driver,
and the metal wire capacitance. For the matchline, we have
the additional capacitance arising due to the huge OR struc-
ture that is present to detect the match. This model takes
into account the number of tags (columns), the number of
bits per tag-match, and the number of ports on the CAM
(one in our case). The number of entries in the CAM is
equal to the number of VC words. The CAM is associa-
tively searched with the value of the data item. If there is a
match and the valid bit is set, a read enable word line corre-
sponding to the CAM entry is activated. An encoder (ROM)
is used to encode the read enable word lines. TheCgate,
Cmetal, andCdiff parameters in the equations above are
set for 0.18 micron technology. To reduce the per access
energy consumption in VCs, we can also adopt the opti-
mization proposed by Juan et al [14]. This strategy modifies
the CAM cell by adding another transistor in the discharge
path. As discussed in [14], this is motivated by the fact that,
with the original CAM cell, to precharge the matchline, it is
necessary to place 0 to all bit lines. Instead, in the modified
cell, the control line is used to precharge the matchline.

4.6.3 Results

We compute the distribution of the energy consumption of
the various components of the system with different sized
VCs. VCs are modeled as the CAMs, and, as mentioned
earlier, they themselves consume some amount of energy.
The size of the VC directly affects the reduction in the vol-
ume of data being transferred and also reduction in the bit
switching activity. Figure 10 gives the energy consump-

tions of different system components when VCs of differ-
ent sizes are employed assuming 1 cycle extra latency in
off-chip memory data accesses due to VC. The energy con-
sumptions given here are the values averaged over all fif-
teen benchmarks in our experimental suite. The ’On-Chip’
part includes the energy consumption in the processor dat-
apath, instruction issue logic, caches, TLB, register file,
and clock. ’Total’ represents the sum of the energies con-
sumed in ’On-Chip’, ’Off-Chip Memory’, ’Off-Chip Data
Bus’, and ’VCs’. Next to each point in ’Total’, we give the
normalized (percentage) energy value (with respect to the
case with no VC). We see from these results that increas-
ing the VC capacity reduces the energy consumption on the
off-chip data bus; but, it also increases the energy spent in
VCs. We observe from ’Total’ that the best energy value
is obtained when VC has 256 entries (an average energy
saving of 7.14%). Using a larger VC leads to a higher en-
ergy consumption due to VC overhead. Since our strategy
incurs 1 cycle extra latency during off-chip data accesses,
we also observe slight energy variations (increases) in the
’On-Chip’ and ’Off-Chip Memory’ parts. Overall, we can
conclude that employing power protocol brings energy ben-
efits even if one includes its energy impact on other system
components.

To see how these results are affected when the data cache
size is modified, we performed another set of experiments.
Figure 11 gives the normalized energy consumptions for
different data cache sizes (from 2KB to 128KB on the x-
axis) and VC capacities, averaged over all our benchmarks.
Recall that our default data cache size was 8KB. All cache
configurations experimented here have a line size of 32
bytes and are direct-mapped. We see that data cache ca-
pacity affects the effectiveness of our strategy to some ex-
tent. In particular, when the data cache size is very large, we
do not have to much traffic on the off-chip data bus. Con-
sequently, the impact of our power protocol on the overall
system energy is reduced. We also note that a data cache
size of 4KB generates the best savings from power proto-
col. In fact, with this data cache capacity, whenjVCj is 256,
we achieve the best result, and save 11.9% overall system
energy.

To study how much additional overall energy benefits
will come when power protocol is combined with 1-to-2
encoding, we also measured the energy savings when the
two techniques are applied together. The results are given
in Figure 12. As in Figure 10, the values attached to ’Total’
indicate the normalized (percentage) energy values (with re-
spect to the case with no VC). We see from these results that
the maximum energy saving occurs when VC size is 512,
and in this case, we reduce the overall energy consumption
by 10.07%. This means an additional 2.93% energy savings
over the pure power protocol.

4.7. Impact on Performance

As mentioned earlier, our power protocol can also cause
an increase in the number of execution cycles. This is be-
cause in off-chip accesses we may spend extra execution
cycles during VC access. Figure 13 presents execution cy-



Figure 11. Normalized overall energy consumptions for
different data cache sizes (x-axis) and VC capacities (av-

eraged over all benchmarks). The bars in each data

cache size are normalized with respect to the first bar
(i.e., ’No VC’). Beyond a certain cache size it does not

make sense to use power protocol as the inherent data

bus activity becomes negligible.

cles normalized to the original execution cycles assuming
an off-chip memory latency of 100 cycles (our default off-
chip latency value). For each VC capacity, we present three
different results corresponding to the cases where an off-
chip memory access through VC costs extra 1 cycle, 5 cy-
cles, and 10 cycles. Figure 14 gives similar results when
the off-chip memory latency is 50 cycles. We see that when
we assume 1 cycle overhead, the impact on performance
was less than 1% (resp. 2%) with a 100 cycle (resp. 50
cycle) off-chip access latency. Therefore, we can conclude
that power protocol improves energy consumption without
much impact on performance.

While the values (extra cycle overheads) such as 5 cy-
cles or 10 cycles may not seem to be very realistic, there
is an interesting optimization that one might want to con-
sider. There are some new TLB architectures (e.g., [8])
where the main TLB is partitioned into two or more sub-
TLBs. The idea behind this is to reduce the dynamic energy
consumption per TLB access. However, such strategies can
lead to performance loss when these sub-TLBs are checked
sequentially. Therefore, there exists a tradeoff between the
energy gain due to access to a smaller TLB and the poten-
tial performance loss. Such partitioning techniques can be
applied to our VC as well. If such a partitioned VC is uti-
lized in conjunction with our power protocol, we can expect
that the memory accesses through VC can take more than 1
cycle. The results in Figure 13 indicate that even when we
incur 5 cycle average extra penalty (which is too high even
for a partitioned VC), the performance overhead is less than
3% for all VC sizes (assuming a default off-chip latency of
100 cycles). Obviously, when off-chip memory latency is
smaller (as in some embedded systems), we can expect a
larger negative impact on performance. However, the ad-
vantage of employing such a partitioned VC is that the av-
erage per access energy consumption is reduced. A study of

Figure 12. Energy consumption for different system com-
ponents and overall energy savings when power protocol

is combined with 1-to-2 encoding. The maximum energy

saving occurs with a VC capacity of 512, and in this case,
we reduce the overall energy by 10.07%.

this tradeoff is in our future agenda.

5. Conclusions

In this paper, we started out with a goal to reduce the
volume of data transfer and bit switching activity on the
off-chip data bus in order to reduce dynamic power con-
sumption of the buses, which are big consumers of power
in modern embedded systems due to their high capacitive
loads. We proposed a technique, called power protocol,
which caches the data transferred on the off-chip bus on
both sides of the bus in such a way that both caches (VCs)
have identical entries. Thus, whenever a data value is found
on the sender side of the VC, instead of sending the data,
the corresponding index in its VC (which is much smaller
than the actual data bit-width) is sent.

Simulation results using fifteen embedded benchmark
programs showed that on an average the base VC scheme
resulted in a 41.1% reduction in the volume of data trans-
fer over the bus (when VC uses LRU). We also showed that
base VC reduced the number of bit-transitions on the data
bus by approximately 55%. Further enhancements to VC
using 1-to-2 encoding showed that an additional 12.9% re-
duction in bit switching activity is possible. Since VC itself
is a cache and therefore would consume power, it is impor-
tant to keep its size and complexity low. Also, its energy and
performance impact on the entire system should be quanti-
fied. Our experimental results revealed that using a VC of
256 bytes leads to a 7.14% reduction in overall energy con-
sumption. Combining power protocol with 1-to-2 encoding
took the overall energy saving up to 10%. The magnitude
of savings depend on both the VC size and the data cache
size. We also found that the impact of power protocol in
execution time is small.



Figure 13. Percentage increase in execution cycles as-
suming an off-chip latency of 100 cycles. For each VC ca-

pacity, we present three different results corresponding

to the cases where an off-chip memory access through
VC costs extra 1 cycle, 5 cycles, and 10 cycles.
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