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Abstract
We utilize deep neural networks to develop prediction models for patient survival and conditional survival 
of colon cancer. Our models are trained and validated on data obtained from the Surveillance, Epidemiology, 
and End Results Program. We provide an online outcome calculator for 1, 2, and 5 years survival periods. 
We experimented with multiple neural network structures and found that a network with five hidden layers 
produces the best results for these data. Moreover, the online outcome calculator provides conditional 
survival of 1, 2, and 5 years after surviving the mentioned survival periods. In this article, we report an 
approximate 0.87 area under the receiver operating characteristic curve measurements, higher than the 0.85 
reported by Stojadinovic et al.
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Introduction

Colon and rectum cancers rank among the top cancer types worldwide. The chances of survival 
increase with early diagnosis, and treatment can greatly increase the chances of eliminating the 
disease.1 Colon cancer is common among men than women. The Surveillance, Epidemiology, and 
End Results (SEER) Program is a good source of domestic statistics of cancer. SEER approxi-
mately covers 30 percent of the US population representing different races and across several geo-
graphic regions. The data are publicly available through the SEER website upon submission and 
approval of a SEER limited-use data agreement form.

In this article, we analyze data obtained from the SEER program, in particular, the colon cancer 
data. Our goal is to develop accurate survival and conditional survival prediction models for colon 
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cancer and making these models publicly available via an outcome calculator. The data analyzed 
in our study are from SEER’s colon and rectum cancer incidence between 1973 and 2010. The 
follow-up cutoff date of the data set is 31 December 2010.2 These incidences are collected from 
four different regions in the United States.

Neural networks are considered deep when they have more than two hidden layers.3 Deep neu-
ral networks (DNNs) have been successfully used to solve image,4–6 speech recognition,7 and text 
classification8 problems. In this work, we used DNNs to predict survival of colon cancer patients, 
at the end of 1, 2, and 5 years of diagnosis. We also predict conditional survival given survival of 
1, 2, and 5 years. We built models to predict outcomes of colon cancer based on a set of patient 
attributes. We experimented with multiple neural network structures and found that a network with 
five hidden layers produces the best results for these data. Moreover, we developed a front end to 
effectively provide a tool to facilitate user interaction with the developed models. This tool can be 
used to provide insight from the historical data that SEER provides.

Background

The increase in availability of electronic medical records leads to interest in mining medical data. 
Data mining research has been published on private hospital data9,10 and publicly available data 
such as American College of Surgeons National Surgical Quality Improvement Program (ACS 
NSIQP)11,12 and United Network for Organ Sharing (UNOS).13,14 Since SEER data are publicly 
available, there have been many studies conducted on its data. SEER provides a tool, SEER*Stat, 
to assist in generating statistics about their data. Data mining applications have been developed on 
various types of cancer. Zhou and Jiang15 explored decision trees and artificial neural networks for 
survivability analysis of breast cancer. Also, using the breast cancer data, Delen et al.16 studied 
neural networks, decision trees, and logistic regression for survivability prediction. Survival of 
lung cancer on SEER data has been studied by Chen et al.17 Agrawal et al.18,19 analyzed SEER lung 
cancer patients and provided an outcome calculator for survival and conditional survival using 
ensemble voting techniques.

Data mining applications and studies of colorectal cancer are not covered as much as breast or 
lung cancers. Fathy20 studied colorectal cancer survival prediction rates versus the number of hidden 
nodes in the artificial neural networks (ANNs). Stojadinovic et al.21 developed a clinical decision 
support model using Bayesian belief network (ml-BBN). Wang et al.22 analyzed colorectal cancer 
survival based on different parameters such as stage, age, gender, and race.

The continuous success of deep learning in the fields of computer vision and speech recognition 
and the increase in availability of electronic health records (EHRs) helped the surge of research of 
different types of neural networks on EHR. Cheng et al.23 proposed a convolutional neural network 
(CNN) to extract phenotypes and perform prediction of chronic diseases on patient EHR. Lipton et 
al.24 used intensive care unit (ICU) data and evaluated the ability of recurrent neural networks 
(RNNs) using long short-term memory (LSTM) units to classify 128 diagnoses given in 13 clinical 
measurements.

Data

We had earlier analyzed colon cancer data from SEER,25 since then new submission has been made 
by SEER.26 The new data enabled us to experiment with a newer set of features and get better pre-
dictive accuracy using deep learning methods, as presented in this article. The cutoff date for the 
new SEER data was 31 December 2010. The cutoff date is to determine the status of the patient at 
the time of data release by SEER. If a patient had survived past the cutoff date, but passed away 



Al-Bahrani et al.	 3

afterward, their status at the cutoff date is the one reported, that is, the patient is reported alive. If 
a patient was diagnosed after the cutoff date, their record is excluded from the data release. We 
analyze different periods in our study; as a result, each period has a different end date. For example, 
if we are to build a model for 1-year survival, we consider patients diagnosed up to the year of 
2009. This is to guarantee that all patients had a full year before the cutoff date of 2010. The same 
logic applies to patients analyzed for 3 years of survival; we consider patients diagnosed up to the 
year of 2007 (see Table 1) for class distributions.

The majority of features in the data set are categorical features such as sex, birthplace, and 
stage. A few features are numerical such as tumor size and number of nodes. To overcome this, 
categorical features were transformed using a one-hot scheme. Each categorical feature was trans-
formed to integers and mapped to sparse matrices where each column corresponds to a category of 
a feature (see Table 2).

Numerical features were normalized to improve performance of estimators. Standard normaliza-
tion was applied to numerical features to make such features look more like normal distributions

	 z
x

=
− µ
σ

	 (1)

The rest of the article is organized as follows: section “Background” summarizes related work, 
followed by a description of the data used in this study in section “Data.” A description of the 
methods used in this work is described in section “Methodology.” Results are presented in section 
“Results.” In section “Outcome calculator,” a brief description of the outcome calculator is pro-
vided, and a conclusion and future work in section “Conclusion and future work.”

Methodology

The SEER data contain attributes that have been collected for specific periods and attributes that 
contain patient vital status. First, any attributes that contain vital status indication are removed. We 

Table 1.  There is clear imbalance in the two classes of colon survival across most of the years we 
studied.

Survival Survived Did not survive

1 year 138,382 40,114
2 years 115,689 55,242
5 years 75,134 72,510
1 year given 1-year survival 115,689 16,833
2 years given 1-year survival 99,120 27,230
5 years given 1-year survival 65,714 42,091
1 year given 2-year survival 99,120 11,161
2 years given 2-year survival 86,066 18,800
5 years given 2-year survival 57,259 31,001
1 year given 5-year survival 65,714 42,091
2 years given 5-year survival 57,259 74,427
5 years given 5-year survival 37,004 16,452

The shorter periods have higher imbalance than others. Models for 8- and 9-year survival are not built since they are 
not needed to calculate any conditional survival periods.
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combine some attributes such as tumor size. Collaborative Stage (CS) tumor size was collected for 
years 2004 onward and for years 1988 to 2003 the tumor size was collected under the Extent of 
Disease (EOD) 10-size feature. A new feature is engineered to cover both periods. After the data 
are cleaned, they are split into training, validation, and testing (50/30/20). Feature selection is done 
only from the training set, and the best features are selected from the validation and testing sets 
based on how their rank was in the training set. DNN models are built using the training and valida-
tion sets and then checked against the testing set. Figure 1 gives an overview of the architecture. 
The following sections describe the components of the system.

Feature selection

The SEER data set have 143 features. In order to build a user-friendly outcome calculator, we 
need to have a smaller set of features that represents the whole set of features. Any feature that 
directly indicates the vital status of the patient is manually removed before running feature selec-
tion. Using scikit-learn, we select the best performing features on the training set. We use a meta-
transformer with a base algorithm of extra-trees. Extra-trees are a set of randomized decision trees 
on multiple sub-samples of the training data set. The use of randomization and multiple subsets 
improves accuracy and avoids overfitting. After running the feature selection algorithm, we select 
features having importance value greater than 0.01. Also, after removing any redundant features, 
we obtain the features in Table 3.

Table 2.  Categorical feature transformation.

X X_1 X_2 X_3

1 1 0 0
2 → 0 1 0
3 0 0 1
1 0 0 0

Figure 1.  An overview of the steps in our experiment. After the removal of vital status indicators and 
data cleanup, the data are split into training, validation, and testing sets. Feature selection is performed 
on the training set and the same features are then selected from the validation and testing sets. Neural 
network models are built using the training and validation sets and results are reported after running the 
testing set against the learned models.
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Neural network building blocks

Rectified linear unit is an activation function that is strictly non-negative and its output has a lower 
bound of 0 with no upper bound (see equation (2) and Figure 2)

	 f x x( ) = ( )max ,0 	 (2)

Softmax function is used to transform the outputs of the network into probabilities. It takes an input 
vector z of length K and outputs a probability vector of the same length that sums to 127

Table 3.  Features used in building prediction models.

Feature name

Marital status at diagnoses
Race/ethnicity
Year of birth
Birthplace
Grade
Diagnostic confirmation
EOD 10—extension
EOD 10—lymph node involvement
Regional nodes examined
RX Summ—Surg Prim Site
Reason for no surgery
Tumor size
Regional nodes positive
Age at diagnosis

EOD: Extent of Disease.

Figure 2.  The rectified linear unit activation function is strictly non-negative and its output has a lower 
bound of 0, but no upper bound. It yields neurons with exactly 0 activation, that is, inputs to the activation 
function that are below 0 will always output an activation of 0.
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DNN

Neural networks are inspired by biological neural networks. They are used to estimate functions 
based on inputs and weight adjustments for hidden layer nodes “neurons.” These adjustments 
enable these networks to learn.28 Each node “neuron” has an activation function that defines the 
nodes output given an input (see Figure 3 for a full connected neural network structure example). 
All activation functions in the experiments were rectified linear units. A neural network is consid-
ered deep if it has more than two hidden layers.3

The neural network is trained by performing a forward pass. Then, the error is calculated by 
comparing the actual class and predicted class. Based on the error, a backward pass is done (back-
propagation) to adjust the weights of the network. The neural network is trained on mini-batches 
randomly sampled inputs from the training set.

Baseline models

We compare the performance of our neural networks approach against two baseline classifiers: 
random forests and logistic regression:

Figure 3.  An example of a neural network structure with two hidden layers.
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1.	 Random forest. The random forest29 classifier consists of multiple decision trees. The final 
class of an instance in a random forest is assigned by outputting the class that is the mode 
of the outputs of individual trees, which can produce robust and accurate classification and 
ability to handle a very large number of input variables.

2.	 Logistic regression. Logistic regression30 is used for prediction of the probability of occur-
rence of an event by fitting data to a sigmoidal S-shaped logistic curve. Logistic regression 
is often used with ridge estimators to improve the parameter estimates and to reduce the 
error made by further predictions.

Conditional survival

Conditional survival is the probability of a patient surviving an additional y number of years after 
surviving x number of years. We create different data sets to build conditional survival models. 
For example, to calculate conditional survival of 5 years given that the patient already survived 
2 years, we first select patients that have survived 2 years. Then, we mark a patient to be alive if 
they satisfy surviving a total of 7 years; otherwise, they are marked no alive. The Colon Cancer 
Outcome Calculator presented here calculates patient-specific survival and conditional survival 
probabilities.

Artificial neural network structure

Developments packages.  The DNNs used in our experiments were developed using TensorFlow31 
an open-source software library for numerical computation and, Keras32 a minimalist, neural net-
works library, written in Python. Keras was used to enable fast experimentation with different 
network structures.

Selecting the network structure.  In our experiments, we trained fully connected neural networks. We 
started by training a single-layer network and captured the performance measures of the network 
on a test data set. By iteratively adding layers to expand the network, we collected performance 
measures of networks of depths ranging from a single layer to eight layers. We trained models with 
depths between one and eight hidden layers. We selected the network consisting of five hidden 
layers, and our selection was based on the five measures we used to evaluate our models. As shown 
in Figure 4, the collective set of measures performs best for the neural network with five hidden 
layers. The DNN structure that we used was selected based on training on 1-year survival data. The 
same network structure was used on the remaining periods.

Final structure.  A description of our network is presented in Table 4. Our proposed neural network 
consists of an input layer, five hidden layers, and a softmax output layer. All of the layers are fully 
connected dense layers with rectified linear units.

Neural network regularization

Two of the useful techniques to regularize the network during training are examining the validation 
set error after each epoch and dropout implementation.

Early termination.  It prevents overfitting of the network by looking at the performance on the vali-
dation set and stopping the training of the neural network as soon as the loss stops improving, that 
is, decreasing in value. Early termination prevents over optimizing on the training set and takes in 



8	 Health Informatics Journal 00(0)

consideration the validation set. In our experiments, we monitor the validation loss and stop the 
training when the loss does not decrease over two consecutive epochs.

Dropout.  Different layers of the network are connected using activation functions. Dropout is ran-
domly setting a percentage of the activations to 0 during the training of the network (see Figure 5). 
Dropping out activations enables the network to not rely on specific activations to be present forc-
ing the network to learn redundant representations. These redundant representations make the net-
work robust and avoid overfitting.33 Moreover, the network acts as an ensemble of networks. In our 
experiments, we tried training without dropout and dropout out of 25 and 50 percent and found that 
dropping out 50 percent of the activations gave the best results.

Performance measures

We use the following performance measures in our experiments to evaluate the DNNs:

Area under ROC curve is a calculation of the area under a curve after plotting the true-positive rate 
versus the false-positive rate. Since this metric is independent of the classification probability cutoff 
and truly measures the discriminative power of the model in distinguishing cases from non-cases, it 
is considered a more reliable evaluation metric than other cutoff-based metrics as described below.

Figure 4.  Comparison of all performance measures at different network depths was made to select the 
best network structure. A network with five hidden layers was selected and used for all survival periods.

Table 4.  A description of the structure of the deep neural network used to build the final predictive 
models.

Layer Type Notes

Input layer 812 inputs and 50% dropout  
Hidden layer #1 Dense layer with ReLU and 50% dropout 812 neurons
Hidden layer #2 Dense layer with ReLU and 50% dropout 812 neurons
Hidden layer #3 Dense layer with ReLU and 50% dropout 812 neurons
Hidden layer #4 Dense layer with ReLU and 50% dropout 812 neurons
Hidden layer #5 Dense layer with ReLU and 50% dropout 812 neurons
Output layer Softmax 2 classes
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Positive predictive value also known as precision is the ratio of true positives to both true posi-
tives and false positives combined and is calculated as follows

	 PPV or ecision
TP

TP FP
Pr =

+
	 (4)

Negative predictive value is the ratio of true negative to both true negative and false negative 
combined and is calculated as follows

	 NPV
TN

TN FN
=

+
	 (5)

Sensitivity is the portion of positive labeled examples in the data set that are classified as 
positive

	 Sensitivity
TP

TP FN
=

+
	 (6)

Specificity is the portion of negative labeled examples in the data set that are classified as 
negative

Figure 5.  Randomly dropping out activations enables the network to learn redundant representations. 
This helps building robust networks and less overfitting.
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	 Specificity
TN

TN FP
=

+
	 (7)

Results

We trained multiple models on subset of the SEER data set. The data set of colon cancer patients 
consists of 188,336 records between the years of 1988 and 2009. All these models were of the same 
structure presented in Table 4. We compare our results against the results from Stojadinovic et al.21 
We also show results for conditional survival models in Table 5 and compare the results against the 
two baseline models we described earlier (random forests and logistic regression).

Stojadinovic et al. present their results for mortality, whereas our study is for survival. The 
results are organized accordingly to compare the metrics (see Table 5). Sensitivity measures the 
proportion of correctly identified positive instances. Our models yield better area under ROC num-
bers and positive predictive values. Moreover, our models have better specificity percentages for 
predicting survival for 1, 2, and 3 years. The sensitivity percentages are low due to the imbalance 
in the two classes (see Table 1 for class distributions). The conditional survival patient distribution 
is imbalanced and smaller compared to 1, 2, and 5 years data sets, which explains the lower values, 
specifically area under ROC (Table 6).

Outcome calculator

The purpose of developing an outcome calculator for colon cancer is survival estimation. We used 
attribute selection techniques to reduce the attribute set. The goal was to have only a few of the 
attributes to be used in the outcome calculator yet retain comparable production power to the origi-
nal attribute set. We used 15 attributes in our calculator. Figure 6 shows a screenshot of the out-
come calculator.

The outcome calculator was built using several tools: Python,34 Flask,35 Tornado,36 and Apache 
web server:

Python is a general-purpose programming language. Its strong aspects are code readability and 
ease of use. It enables concept expression in fewer lines of code than would be possible lower 
level languages.

Flask is a micro web framework for Python. Applications that use Flask include Pinterest, 
LinkedIn, and the Flask page.

Tornado is a scalable, non-blocking web server and web application framework written in 
Python.

Table 5.  Result comparison between Bayesian belief network (ml-BBN) model reported by Stojadinovic 
et al.21 and the neural networks (NNs) we developed.

Survival 
(months)

AUC PPV NPV Sensitivity Specificity

BBN NN BBN (%) NN (%) BBN (%) NN (%) BBN (%) NN (%) BBN (%) NN (%)

12 0.85 0.8616 85.1 95.09 74.4 48.29 94.0 86.38 51.4 74.04
24 0.85 0.8675 79.7 90.02 79.9 62.91 90.3 83.56 62.7 75.06
60 0.85 0.8652 64.8 81.91 84.2 72.76 55.5 75.70 88.7 79.51

We report approximately 0.87 area under the curve (AUC) across all periods and better positive predictive value (PPV).
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Conclusion and future work

In this article, we utilize DNNs to make survival predictions on the SEER program colon cancer 
data. We look at different depths of neural networks and compare the performance metrics to 
come up with the best network depth for this problem. We compared our results with a previous 
study and outperformed in some of the predictive measures. Our models yield better area under 
ROC numbers and positive predictive values. Our area under ROC numbers for 1, 2, and 5 years 
of survival were 0.87 compared to 0.85 in the other study. Moreover, our models have better 
specificity percentages for predicting survival for 1, 2, and 5 years. We compare our models 
against two baseline machine learning methods: random forests and logistic regression. Although 
our models have good sensitivity percentages, these could be improved by training on more 
patient records. Finally, we present our models as a web application for Colon Cancer Outcome 
Calculator.

For future work, we would like to focus on further improving the neural network architecture, 
the time it takes to train it, and performance. We could also represent the data with less sparsity and 
examine whether that helps to improve results. Also, we would like to improve accuracy by 

Table 6.  Results for the conditional survival models.

Conditional survival AUC PPV (%) NPV (%) Sensitivity (%) Specificity (%)

(DNN) 1 year given 1-year survival 0.8090 78.39 66.29 94.11 30.87
(LR) 1 year given 1-year survival 0.8072 97.68 20.94 89.46 56.76
(RF) 1 year given 1-year survival 0.7592 97.43 18.8 89.18 51.55
(DNN) 2 years given 1-year survival 0.8176 74.00 72.77 90.82 43.47
(LR) 2 years given 1-year survival 0.8136 96.21 32.13 83.77 69.97
(RF) 2 years given 1-year survival 0.7799 94.24 33.93 83.85 61.83
(DNN) 5 years given 1-year survival 0.8220 83.30 61.02 76.94 70.06
(LR) 5 years given 1-year survival 0.816 83.73 58.8 76.04 69.83
(RF) 5 years given 1-year survival 0.7872 80.18 58.81 75.24 65.52
(DNN) 1 year given 2-year survival 0.7669 92.06 34.27 92.56 32.69
(LR) 1 year given 2-year survival 0.767 99.15 7.12 90.46 48.62
(RF) 1 year given 2-year survival 0.7074 98.97 6.45 90.38 41.38
(DNN) 2 years given 2-year survival 0.7099 71.23 69.89 91.55 34.67
(LR) 2 years given 2-year survival 0.774 97.68 15.19 84.06 58.81
(RF) 2 years given 2-year survival 0.7363 96.09 16.97 84.12 48.67
(DNN) 5 years given 2-year survival 0.7882 58.60 83.81 86.99 52.29
(LR) 5 years given 2-year survival 0.7806 84.44 49.9 75.69 63.45
(RF) 5 years given 2-year survival 0.7549 82.54 48.44 74.73 60.04
(DNN) 1 year given 5-year survival 0.8629 76.31 49.24 94.93 14.31
(LR) 1 year given 5-year survival 0.7291 99.89 0.09 92.56 6.25
(RF) 1 year given 5-year survival 0.6518 99.67 0.95 92.61 18.52
(DNN) 2 years given 5-year survival 0.7423 69.81 64.92 92.34 26.19
(LR) 2 years given 5-year survival 0.7362 99.44 3.02 86.14 47.11
(RF) 2 years given 5-year survival 0.6831 98.11 5.77 86.32 33.44
(DNN) 5 years given 5-year survival 0.7820 72.22 69.28 84.09 52.58
(LR) 5 years given 5-year survival 0.7744 87.39 42.75 77.44 60.13
(RF) 5 years given 5-year survival 0.7435 85.83 41.72 76.81 56.69

We also report approximately 0.87 area under the curve (AUC) across all periods. The results include baseline models 
random forests denoted as RF and logistic regression denoted as LR.
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training the neural networks on larger data sets. The data set size would be increased by obtaining 
more data or grouping patients’ records from multiple types of cancer.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publi-
cation of this article. 

Figure 6.  Colon Cancer Outcome Calculator (http://info.eecs.northwestern.edu:5001/).

http://info.eecs.northwestern.edu:5001/
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