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Abstract—Pairwise sequence alignment is a central problem in bioinformatics, which forms the basis of various other applications.

Two related sequences are expected to have a high alignment score, but relatedness is usually judged by statistical significance rather

than by alignment score. Recently, it was shown that pairwise statistical significance gives promising results as an alternative to

database statistical significance for getting individual significance estimates of pairwise alignment scores. The improvement was

mainly attributed to making the statistical significance estimation process more sequence-specific and database-independent. In this

paper, we use sequence-specific and position-specific substitution matrices to derive the estimates of pairwise statistical significance,

which is expected to use more sequence-specific information in estimating pairwise statistical significance. Experiments on a

benchmark database with sequence-specific substitution matrices at different levels of sequence-specific contribution were conducted,

and results confirm that using sequence-specific substitution matrices for estimating pairwise statistical significance is significantly

better than using a standard matrix like BLOSUM62, and than database statistical significance estimates reported by popular database

search programs like BLAST, PSI-BLAST (without pretrained PSSMs), and SSEARCH on a benchmark database, but with pretrained

PSSMs, PSI-BLAST results are significantly better. Further, using position-specific substitution matrices for estimating pairwise

statistical significance gives significantly better results even than PSI-BLAST using pretrained PSSMs.

Index Terms—Database statistical significance, homologs, pairwise statistical significance, position-specific scoring matrices

(PSSMs), sequence alignment, substitution matrices.

Ç

1 INTRODUCTION

SEQUENCE alignment is an underlying application in the
analysis and comparison of DNA and protein sequences

[1], [2], [3]. Although a computational problem, its primary
application in bioinformatics is homology detection, i.e.,
identifying sequences evolved from a common ancestor,
generally known as homologs or related sequences.
Homology detection further forms the key step of many
other bioinformatics applications making various high level
inferences about the DNA and protein sequences like
finding protein function, protein structure, deciphering
evolutionary relationships, etc. There exist several pro-
grams for sequence alignment that use popular algorithms
[4], [5], [6] , or their heuristic versions [7], [3], [8], [9], [10]. A
lot of enhancements in alignment program features are also
available [11], [12], [13] using difference blocks and multiple
scoring matrices, in an attempt to capture some more
biological features in the alignment algorithm.

1.1 Why Statistical Significance?

Sequence alignment programs invariably report alignment

scores for the alignments constructed, and related (homo-

logous) sequences will have higher alignment scores. But the

threshold score above which the score can be considered

high depends on the alignment score distribution, and
hence, estimating statistical significance of an alignment
score is very useful in sequence comparison. An alignment
score is considered statistically significant if it has a low
probability of occurring by chance. The alignment score
distribution depends on various factors like alignment
program, scoring scheme, sequence lengths, and sequence
compositions [14]. This implies that it is possible to have
two scores x and y with x < y, but x more statistically
significant than y. For instance, two sequences of length 50
may produce a highly statistically significant score of 75,
whereas another two sequences each of length 250 may
have an optimal alignment score of 100, which may not be
statistically significant. Therefore, instead of using the
alignment score alone as the metric for homology, it is a
common practice to estimate the statistical significance of an
alignment score to comment on the relatedness of the two
sequences being aligned. Of course, it is important to note
here that although statistical significance may be a good
preliminary indicator of biological significance, it does not
necessarily imply biological significance [14], [15].

The knowledge of accurate statistics for score distribu-
tion of ungapped alignments is available [16]. However,
there is no rigorous statistical theory for the gapped
alignment score distribution yet and for score distributions
from enhanced alignment programs using additional
features like difference blocks [12] or multiple parameter
sets [13]. Accurate estimation of statistical significance of
gapped sequence alignment has attracted a lot of attention
in the recent years [17], [18], [19], [20], [21], [22], [23], [24],
[25], [26], [27], [28], [29]. There exist a couple of good
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starting points for statistically describing gapped alignment
score distributions for simple scoring schemes [30], [31], but
a complete mathematical description of the optimal score
distribution remains far from reach [31]. There exist many
excellent reviews on statistical significance in sequence
comparison in the literature [32], [33], [14], [34].

1.2 Database Statistical Significance versus
Pairwise Statistical Significance

The hits reported by common database search programs
like BLAST, FASTA, SSEARCH, and PSI-BLAST are
evaluated by database statistical significance, which is in
general dependent on the size and composition of the
database being searched. In the last few years, there have
been considerable improvements to the BLAST and PSI-
BLAST programs [24], [35], [27], which have been shown to
improve retrieval accuracy of database searches by using
composition-based statistics and other enhancements.

An alternative method to estimate statistical significance
of a pairwise alignment is to estimate pairwise statistical
significance, which is database-independent and sequence-
specific. Recently, a study of pairwise statistical significance
and its comparison with database statistical significance
was conducted [28] wherein various approaches to estimate
pairwise statistical significance like ARIADNE [21], PRSS
[8], censored-maximum-likelihood fitting [36], and linear
regression fitting [13] were compared to find that maximum
likelihood fitting with censoring left of peak (described as
type-I censoring in [36]) is the most accurate method for
estimating pairwise statistical significance. Further, this
method was compared with database statistical significance
in a homology detection experiment to find that pairwise
statistical significance performs better than database statis-
tical significance using BLAST and PSI-BLAST (without
pretrained PSSMs) on a benchmark database and compar-
able to SSEARCH, but PSI-BLAST gives significantly better
results by using pretrained PSSMs (position-specific scoring
matrices). In another related work [29], a simple extension
of pairwise statistical significance was shown to be better
than ordinary pairwise statistical significance, where the
concept of nonconservative pairwise statistical significance
was introduced. Pairwise statistical significance using
multiple parameter sets [37] and sequence-pair-specific
distanced substitution matrices [38] has also been explored,
which, in some cases, give slightly better results than
original pairwise statistical significance, but not comparable
to the methods described in this paper. The brief back-
ground of the relevant details on pairwise statistical
significance is presented in the next section.

1.3 Relevance

It is a well-known fact that almost everything in bioinfor-
matics depends on the interrelationship between sequence,
structure, and function (all encapsulated in the term
“relatedness”), which is far from being well-understood.
With sequencing becoming more and more easy and
affordable, there is an increasing deluge of sequence data
in the public domain, for the analysis of which, computa-
tional sequence comparison techniques would have to play
a key role. In the progressive march toward this goal,
accurate statistical significance estimates for pairwise
alignments can be very useful to comment on the related-
ness of a pair of sequences independent of any database,

which, in turn, can be very useful in any application, which
employs sequence alignment for examining the relatedness
of sequence pairs. As pointed out earlier, rigorous statistical
theory for alignment score distribution is available only for
ungapped alignment, and not even for its simplest exten-
sion, i.e., alignment with gaps. Accurate statistics of the
alignment score distribution from more sophisticated
alignment programs, therefore, is not expected to be
straightforward. For comparing the performance of newer
alignment programs, which try to incorporate more
biological aspects of sequence alignment, accurate estimates
of pairwise statistical significance can be extremely useful.
With the all-pervasive use of sequence alignment methods
in bioinformatics making use of ever-increasing sequence
data, and with development of more and more sophisti-
cated alignment methods with unknown statistics, we
believe that computational and statistical approaches for
accurate estimation of statistical significance of pairwise
alignment scores would prove to be very useful for
computational biologists and bioinformatics community.

1.4 Contributions

Earlier work on pairwise statistical significance has shown it
to be a promising alternative to database statistical
significance when used with standard substitution matrices
owing to it being more specific to the sequence-pair being
aligned. In this paper, we attempt to make the sequence
comparison more sequence-specific by using sequence-
specific and position-specific substitution matrices (SSSMs
and PSSMs). To construct an SSSM for a given sequence, we
used a simple intuitive method aimed at constructing
substitution matrices with some sequence-specific contribu-
tion, since we could not find any such related program in the
public domain. To construct a PSSM for a given sequence,
we used the popularly used database search program PSI-
BLAST to search the given sequence against a large database
(nr protein database provided by BLAST), which naturally
constructs a PSSM for the query sequence. To effectively
separate the influence of pairwise statistical significance and
SSSMs/PSSMs, we also conducted homology detection
experiments with SSSMs/PSSMs using both pairwise
statistical significance and database statistical significance
as reported by popular database search programs BLAST,
PSI-BLAST, and SSEARCH. Results provide clear empirical
evidence that as sequence comparison is made more and
more sequence-specific by using SSSMs and PSSMs, pair-
wise statistical significance provides significantly better
estimates of statistical significance as compared to database
statistical significance for the biologically relevant and
practical application of homology detection, which can be
measured in terms of retrieval accuracy.

Although the comparison results in this paper show that
the proposed methods outperform the traditional database
search programs like BLAST, PSI-BLAST (pairwise statistical
significance with SSSMs performs better than PSI-BLAST
used directly on benchmark test database (a subset of CATH
database first used in [39]) with default parameters (e-value
threshold of 10 and maximum five rounds), but with
pretrained PSI-BLAST PSSMs (obtained from database
search on a larger database (nr)), PSI-BLAST performs
significantly better; pairwise statistical significance with
same PSSMs performs significantly better than PSI-BLAST
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with pretrained PSSMs), and SSEARCH, the proposed
methods, nevertheless, are currently much computationally
expensive to be directly used in a large database search, since
it involves generation of sequence-specific empirical score
distributions and subsequent curve-fitting. The intended
goal of this work was to make sequence comparison more
effective by making it more sequence-specific; and the central
question in sequence comparison is—“How closely the given
two sequences are evolutionary related?.” The proposed
method, as of now, can be used for any application requiring
an examination of relatedness of a few sequence pairs, like
small database searches, refining the results of database
searches, creating distance matrices for phylogenetic tree
construction, etc. Since the essential quality of a good
sequence comparison strategy in all such applications would
be its ability to order the sequence pairs according to
biological significance (relatedness), we chose to evaluate
the proposed method in terms of retrieval accuracy, which
targets biological significance and not just statistical preci-
sion. As far as statistical significance accuracy is concerned,
we here use the same method (censored maximum likelihood
fitting) to get statistical parameters from score distributions,
which was earlier found to be the best in terms of statistical
significance accuracy [28], and hence do not evaluate the
proposed method again in terms of statistical precision.

The rest of the paper is organized as follows: In Section 2,
an introduction to the extreme value distribution in the
context of estimating statistical significance for gapped and
ungapped alignments is presented, along with a brief
description of relevant details on pairwise statistical
significance. Section 3 presents the methods used to create
sequence-specific substitution matrices and estimating
pairwise statistical significance using sequence-specific
and position-specific substitution matrices. Experiments
and results are reported in Section 4, and finally, the
conclusion and future work are presented in Section 5.

2 BACKGROUND

2.1 The Extreme Value Distribution for Ungapped
and Gapped Alignments

It is a well-known fact that the distribution of the sum of a
large number of independent identically distributed (i.i.d)
random variables tends to a normal distribution (central
limit theorem). Similarly, the distribution of the maximum
of a large number of i.i.d. random variables tends to an
extreme value distribution (EVD) [40]. The distribution of
Smith-Waterman local alignment score between random,
unrelated sequences is known to follow a Gumbel-type
EVD [16]. In the limit of sufficiently large sequence lengths
m and n, the statistics of HSP (High-scoring Segment Pairs,
which correspond to ungapped local alignment) scores is
characterized by two parameters, K and �. The probability
that the optimal local alignment score S exceeds x is given
by the P-value, which is defined as:

PrðS � xÞ � 1� e�E;

where E is the E-value and is given by

E ¼ Kmne��x:

For E-values less than 0.01, both E-value and P-values are
very close to each other. The above formulas are valid for
ungapped alignments [16], and the parameters K and � can
be computed analytically from the substitution scores and
sequence compositions. For the gapped alignment, no
rigorous statistical theory has yet been developed, although
there exist some good starting points for the problem as
mentioned before [30], [31]. Recently, researchers have also
looked closely at the low probability tail distribution, and
the work in [41] applied a rare-event sampling technique
earlier used in [42] and suggested a Gaussian correction to
the Gumbel distribution to better describe the rare-event
tail, resulting in a considerable change in the reported
significance values. However, for most practical purposes,
the original Gumbel distribution has been widely used to
describe gapped alignment score distribution [17], [18], [19],
[21], [43], [44], [13], [28], [29].

2.2 Pairwise Statistical Significance

The pairwise statistical significance described in [28] can be
understood to be obtainable by the following function:
PairwiseStatSigðSeq1; Seq2; SC;NÞ, where Seq1 is the first
sequence, Seq2 is the second sequence, SC is the scoring
scheme (substitution matrix, gap opening penalty, and gap
extension penalty), and N is the number of shuffles. The
function PairwiseStatSig, therefore, generates a score
distribution by aligning Seq1 with N shuffled versions of
Seq2, fits the distribution to an extreme value distribution
using censored maximum likelihood fitting to obtain the
statistical parameters K and �, and returns the pairwise
statistical significance estimate of the pairwise alignment
score between Seq1 and Seq2 using the parameters K and �.
A simple extension of the PairwiseStatSig function was
presented in [29], wherein the function was used two times
with different ordering of sequence inputs, and nonconser-
vative pairwise statistical significance was introduced. Let

S1 ¼ PairwiseStatSigðSeq1; Seq2; SC;NÞ;
S2 ¼ PairwiseStatSigðSeq2; Seq1; SC;NÞ:

Then, nonconservative pairwise statistical significance is
defined as minfS1; S2g.

3 METHODS

3.1 Creating Sequence-Specific Substitution Matrix
for a Given Sequence

In this section, we outline a simple method for constructing
a sequence-specific substitution matrix for a given se-
quence. The entries of a typical substitution matrix like
BLOSUM62 are essentially log-odds scores. The score sða; bÞ
for aligning two residues a and b is:

sða; bÞ ¼ c� log2

pða; bÞ
�ðaÞ�ðbÞ ;

where pða; bÞ denotes the probability that the residues a and
b are correlated because they are homologous, �ðaÞ is the
equilibrium probability of residue a, and c is the scaling
factor. Therefore, pða; bÞ is the target frequency: the
probability of observing residues a and b aligned in
homologous sequence alignments, and �ðaÞ�ðbÞ is the
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probability that the two residues are uncorrelated and
unrelated, occurring independently. The resulting substitu-
tion matrix is said to be in 1=c bit units. An excellent
introduction to fundamental concepts of substitution
matrices is provided in [45].

Further, the probabilities pða; bÞ and �ðaÞ can be easily
estimated from a count matrix C, where the entry Cða; bÞ
gives the count of the number of times residue a was seen
aligned to b in a set of alignments (both pairwise or multiple
sequence alignments) of homologous sequences. Usually,
the count matrix is added to its transpose to ensure
symmetry, and hence, Cða; bÞ ¼ Cðb; aÞ. Then,

pða; bÞ ¼ Cða; bÞ
P

c

P
d Cðc; dÞ

;

�ðaÞ ¼
P

b Cða; bÞP
c

P
d Cðc; dÞ

:

Therefore, the task of generating sequence-specific sub-
stitution matrices reduces to obtaining sequence-specific
count matrices. For a given sequence S, a sequence-specific
count matrix can be obtained using the simple procedure as
follows: Run BLAST program with S as the query sequence
against a large database (nr database used in our experi-
ments) with a relatively high e-value threshold (1,000 used in
our experiments) so that enough alignments can be obtained
to fill up the count matrix. The entries of the sequence-
specific count matrix CS can be obtained by counting the
number of times residue a is aligned with b. Subsequently,CS
is added to its transpose to ensure symmetry.

Just as a count matrix can be used to get the substitution
matrix, one can also back-calculate the count matrix for a
given substitution matrix and equilibrium frequencies.
Calculating the probabilities pða; bÞ from scores sða; bÞ and
equilibrium frequencies �ðaÞ involves solving for a
nonzero � in

P
ab �ðaÞ�ðbÞe�sða;bÞ ¼ 1, and a C implementa-

tion of this procedure is available in the supplementary
notes of [45]. Subsequently, these probabilities can be
multiplied by a suitably large integer to get a representative
count matrix C. Let the count matrix thus obtained for the
BLOSUM62 matrix be CBL62.

This can be used to derive sequence-specific substitution
matrices with different levels of sequence-specific contribu-
tion. We define � 2 ½0; 1� as the sequence-specific contribu-
tion. Both CS and CBL62 are individually normalized to have
a constant matrix sum (1,000,000 used in our experiments),
so that they are compatible for addition. Then, for a given
sequence S, sequence-specific count matrix with sequence-
specific contribution � can be obtained as follows:

CS;� ¼ �CS þ ð1� �ÞCBL62;

which can be subsequently used to obtain a sequence-
specific substitution matrix for sequence S at sequence-
specific contribution � using the procedure described
earlier in this section.

The simple method described above is one of the many
possible approaches to get a sequence-specific substitution
matrix. Although simple, it currently has several short-
comings, some of which are as follows: A general criticism of
the method is that this approach assumes that the pða; bÞ are
the probabilities of amino acids a and b being aligned within

correct alignments of homologous sequences. Even though
we use a large database (nr) for the BLAST search to fill up
the count matrix, we are not guaranteed to always have
correct homologous alignments, not only because BLAST is
not optimal search method, but also because of the high e-
value threshold (1,000), which may return a large number of
false positives. We would still like to use a relatively high e-
value threshold to collect sufficient alignments to fill up the
count matrix (we got as low as 5 hits for a query (1dp5B0)
even with an e-value threshold of 1,000 in our experiments).
At the same time, we would not like to raise the e-value
cutoff too much, since it would add to the BLAST search
time. Hence, with the proposed method, we can expect
BLAST to return of the order of 1,000 false positives,
although it would rarely happen, since we collect only top
1,000 alignments from the BLAST search to fill up the count
matrix (details presented in the Results section). Of course,
to the extent that the assumed statistical model of [16] is
applicable to gapped alignments, the resulting pða; bÞ from
the false positives will converge on the pða; bÞ implicit in the
substitution matrix used, i.e., BLOSUM62; so this simply
adds additional weight to the default matrix. Nevertheless,
the procedure clearly gives much greater weight to the
default matrix for queries with fewer homologs in the
database than to sequences with more homologs. Another
aspect of the uneven distribution of hits returned by BLAST
in this method is that for some “popular” query sequences,
most hits would be its close homologs, which would
overwhelm the amino-acid pair counts. Again, the provision
of having contributions from both sequence-specific count
matrix CS and the default count matrix CBL62 allows for
controlled sequence-specific contribution, but the issue of
over-representation from very similar sequences can possi-
bly be addressed using several techniques as will be
discussed later in Section 5. These issues are not addressed
here since the goal here was not to design a very effective
method for constructing SSSMs, but to construct substitution
matrices with some sequence-specific contribution for
experimentation with pairwise statistical significance to
investigate for any performance enhancement in the absence
of an easily available program in the public domain to do so.
Experiments were conducted using the resulting SSSMs
with both pairwise statistical significance and database
statistical significance, and our strategy for constructing
SSSMs, even though not free from defects, is expected to
influence both methods of estimating statistical significance
in a similar way. The comparison results presented in the
next section demonstrate the potential of the approach.
However, addressing the potential problems discussed
above can possibly result in an improved performance,
both for pairwise statistical significance and for database
statistical significance.

3.2 Pairwise Statistical Significance Using
Sequence-Specific and Position-Specific
Substitution Matrices

As described in the earlier section, pairwise statistical
significance can be understood to be obtainable by the
following function: PairwiseStatSigðSeq1; Seq2; SC;NÞ,
where Seq1 is the first sequence, Seq2 is the second
sequence, SC is the scoring scheme (substitution matrix,
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gap opening penalty, gap extension penalty), and N is the
number of shuffles. Since only Seq2 is shuffled during
the significance estimation procedure, it is possible to easily
use a scoring scheme specific to Seq1 to estimate pairwise
statistical significance. Therefore, pairwise statistical sig-
nificance of a pairwise alignment using sequence-specific/
position-specific substitution matrix for one of the two
sequences (let that be Seq1) can be estimated by using it in
SC. Let the sequence-specific/position-specific scoring
scheme specific to Seq1 be thus denoted by SC1. Then,
PairwiseStatSigðSeq1; Seq2; SC1; NÞ would denote the
pairwise statistical significance estimate using sequence-
specific/position-specific substitution matrix, depending on
whether SC1 is sequence-specific or position-specific.

If, however, sequence-specific/position-specific substitu-
tion matrices are available for both the sequences being
compared, we can use the concept of nonconservative
pairwise statistical significance to make the estimation
process more specific to the sequences being aligned

S1 ¼ PairwiseStatSigðSeq1; Seq2; SC1; NÞ;
S2 ¼ PairwiseStatSigðSeq2; Seq1; SC2; NÞ:

SC1 and SC2 represents a scoring scheme specific to Seq1
and Seq2, respectively, which can be sequence-specific or
position-specific depending on the substitution matrix.
Nonconservative pairwise statistical significance using
sequence-specific/position-specific substitution matrix is
thus given by minfS1; S2g.

4 EXPERIMENTS AND RESULTS

To evaluate the proposed approach, we used the same
experiment setup as used in [39], and later in [28], [29]. A
nonredundant subset of the CATH 2.3 database (Class,
Architecture, Topology, and Hierarchy, [46]) available at
ftp://ftp.ebi.ac.uk/pub/software/unix/fasta/prot_sci_04/
was selected in [39] to evaluate seven structure comparison
programs and two sequence comparison programs. This
data set consists of 2,771 domain sequences and includes
86 query sequences, and is considered as a valid benchmark
for testing protein comparison algorithms [47].

Following [39], [28], [29], Error per Query (EPQ) versus
Coverage plots were used to visualize and compare the
results. To create these plots, the list of pairwise compar-
isons was sorted, based on decreasing statistical significance
(increasing P-values). While traversing the sorted list from
top to bottom, the coverage count is increased by one if the
two sequences of the pair are homologs, else the error count
is increased by one. At any given point in the list, EPQ is the
total number of errors incurred so far, divided by the
number of queries; and coverage is the fraction of total
homolog pairs so far detected. The ideal curve would go
from 0 to 100 percent coverage, without incurring any errors,
which would correspond to a straight line on the x-axis.
Therefore, a better curve is one which is more to the right.

4.1 Pairwise Statistical Significance Using SSSMs

Sequence-specific substitution matrices were obtained for
each of the 2,771 sequences in the database using the method
described in the previous section. We used the BLAST

program (version 2.2.17) to query the 2,771 sequences
against the nonredundant protein database (nr) provided
with BLAST programs with a relatively high e-value
threshold of 1,000 (�e 1000) so that we can collect enough
alignments for filling the count matrix. Further, to view
1,000 best alignments in the output, the “�b 1000” option
was used. The BLAST alignments were used to generate the
count matrix, and subsequently the substitution matrix for
different values of sequence-specific contribution �. The
scaling factor c was chosen to be 3, and hence, all
substitution matrices were generated in 1/3-bit scale. The
number of shuffles to generate the empirical distribution
was set to 1,000. The gap opening and gap extension
penalties were set to 10 and 2, respectively, which are the
default in FASTA and SSEARCH programs, that also use
substitution matrices in 1/3-bit scale.

4.1.1 Using SSSMs at Different Levels

of Sequence-Specific Contribution

We experimented with sequence-specific substitution ma-
trices at different levels of sequence-specific contribution.
Here, we used nonconservative pairwise statistical signifi-
cance, which has been shown to be more effective compared
to other variants of pairwise statistical significance [29],
since SSSMs for all the sequences were available.

The EPQ versus Coverage curves for different levels of
sequence-specific contribution � are presented in Fig. 1. The
left-most curve is for � ¼ 0, i.e., 0 percent sequence-specific
contribution, which corresponds to using a general substitu-
tion matrix (BLOSUM62). For all values of � > 0, the
coverage performance is significantly better than the
performance with � ¼ 0, suggesting that using sequence-
specific substitution matrices for estimating pairwise statis-
tical significance is significantly better than using general
substitution matrices. The curves are quite close to each
other, and it is difficult to determine the best value of � for
this data set from this graph. Therefore, we further use
Coverage versus Sequence-specific contribution plots at
different error levels to determine the optimal value of �
for this data set, as presented in Fig. 2. It shows the coverage
values at three different error levels for different values of �.
There is a clear improvement in coverage performance as �
increases from 0. But for values of � close to 1.0, the coverage
performance decreases slightly, which is expected since
some sequences in the database may not get sufficient hits in
the BLAST search, which would leave the count matrix very
sparse, and without sufficiently filled count matrix, the
corresponding substitution matrix would not be of good
quality, which would affect the coverage performance. For
example, in our experiments, we got as low as 5 hits for a
query (1dp5B0) even with an e-value threshold of 1,000.
Thus, some contribution of amino-acid pair counts from the
default count matrix is helpful. From Fig. 2, we can determine
a range of � values, which gives the best performance.
Clearly, for this data set, it can be safely considered to be
½0:5; 0:8�. Further, within this range, � ¼ 0:65 is visually
identified to be the best value for this data set. It is important
to note here that these results are obtained on the subset of
CATH 2.3 database, which is a benchmark database for
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Fig. 1. EPQ versus coverage plot for different levels of sequence-specific contribution �. The leftmost curve is for � ¼ 0, i.e., 0 percent sequence-

specific contribution, which corresponds to using a general substitution matrix (BLOSUM62). For all values of � > 0, the coverage performance is

significantly better than the performance with � ¼ 0, suggesting that using sequence-specific substitution matrices for estimating pairwise statistical

significance is significantly better than using general substitution matrices.

Fig. 2. Coverage versus sequence-specific contribution (�) plot for three different error levels. The coverage performs increases as � increases,

reaches a maximum, and decreases a little for high values of �. � ¼ 0:65 is identified to be the best value for the benchmark data set used.



protein comparison, but the results and best value of � may
not be generalized to all databases.

4.1.2 Comparison with Database Statistical Significance

We compare the results of using pairwise statistical
significance with that of using database statistical signifi-
cance (as reported by popular database search programs
like BLAST, PSI-BLAST, and SSEARCH), both with and
without using SSSMs. Here, the PSI-BLAST results are
obtained by directly running it on the test database with
default parameters without using pretrained PSSMs, and
are presented just to make the analysis more “complete.”
This, of course, is not the best use of PSI-BLAST, and a more
proper use of PSI-BLAST using pretrained PSSMs is
presented in the next section to compare it with pairwise
statistical significance using PSSMs.

For estimating pairwise statistical significance using
SSSMs, SSSMs can be used for either or both of the sequences
being compared, and here we report the experimental results
for all three cases: 1) using SSSMs for query sequences only;
2) using SSSMs for database sequences only; and 3) using
SSSMs for both query and database sequences (using
nonconservative pairwise statistical significance). Further,
to effectively isolate the influence of pairwise statistical
significance and the use of SSSMs, we also report the results of
pairwise statistical significance using standard substitution
matrix (BLOSUM 62). For the same reason, we also conducted
experiments with BLAST, PSI-BLAST, and FASTA with the

SSSMs that were used for experiments with pairwise
statistical significance. BLAST/PSI-BLAST use a 1/2-bit
scaling of substitution matrices instead of 1/3-bit scaling,
and hence, the SSSMs were appropriately rescaled for use
with BLAST/PSI-BLAST.

Since the EPQ versus Coverage curves on the complete
data set can be distorted due to poor performance by one or
two queries (if those queries produce many errors at low
coverage levels) [39], for comparing the performance across
different comparison methods, we examine the perfor-
mance of the methods with individual queries, following
the work in [39]. The coverage of each of the 86 queries
at the 1st, 3rd, 10th, 30th, and 100th error was recorded, and
the median coverage at each error level was compared
across different sequence-comparison methods. A compar-
ison of pairwise statistical significance using sequence-
specific substitution matrices (PairwiseStatSig_SSSM) and
database statistical significance reported by BLAST, PSI-
BLAST (used directly on test database without pretrained
PSSMs) and SSEARCH is presented in Fig. 3. Fig. 3 shows
the median coverage level at the 1st, 3rd, 10th, 30th, and
100th false positive for homologs (i.e., 43 of the queries have
worse coverage, and 43 have better coverage).

The curves present several interesting experimental
findings. First, the overall trend of increasing performance
is - BLAST < PSI-BLAST (without pretrained PSSMs) <
SSEARCH � PairwiseStatSig_BL62 < PairwiseStat-
Sig_SSSM, which is not very surprising. Second, using

200 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 8, NO. 1, JANUARY/FEBRUARY 2011

Fig. 3. Pairwise statistical significance versus database statistical significance using both standard and sequence-specific substitution matrices. PSI-
BLAST� and PSI-BLAST_SSSM� denote that these results were obtained by using PSI-BLAST directly on the test database with default BLOSUM62
matrix and SSSMs for the queries, respectively, as starting points and not pretrained PSSMs. The last three curves are corresponding to using
pairwise statistical significance using SSSMs only for query sequences; only for database sequences; and both for query and database sequences
(using nonconservative pairwise statistical significance). Using SSSMs for estimating pairwise statistical significance is significantly better than
database statistical significance using BLAST, PSI-BLAST, and SSEARCH on the benchmark database.



SSSMs with BLAST, PSI-BLAST, and SSEARCH does not
significantly affect their performance. Although little sur-
prising, it may be justified on grounds that our SSSMs may
not be good enough, which is also reflected in the fact that
when SSSMs are used only for the queries, even pairwise
statistical significance shows only marginal improvement
over using standard substitution matrices. However, the
most surprising observation is that using SSSMs only for
database sequences gives very similar performance to
nonconservative pairwise statistical significance, which
uses SSSMs for both query and database sequences.
Although this does not provide a definitive proof of the
superiority of using SSSMs, but gives some empirical
evidence of the fact that using more sequence-specific
information improves the performance of sequence compar-
ison. A further implication of these results is that if this
method were to be used for a database search application,
we would only need SSSMs for the database sequences,
which can be precomputed, and save the search time by not
constructing SSSMs for the query sequences. On the other
hand, the obvious drawback is that it would require much
precomputation. A final important point about the use of
SSSMs with BLAST, PSI-BLAST, and SSEARCH is that these
methods do not currently support the use of SSSMs for the
database sequences and, hence, in their experiments,
only the SSSMs for queries were used. Specifically, for
BLAST/PSI-BLAST, using SSSMs for different database
sequences is not possible because it treats the entire
database as one big sequence and scores the hits using a
single substitution matrix. Although SSEARCH compares
the query sequence with each database sequence indepen-
dently, it still does not support using different substitution
matrices for each database sequence, since it creates an
empirical distribution from the scores obtained by compar-
ing the query sequence with the database sequences, and if
different substitution matrices are used for comparison with
different database sequences, the Karlin-Altschul statistics
[16] would not be applicable to estimate the statistical
significance of the hits.

4.2 Pairwise Statistical Significance Using PSSMs

In the experiments with PSI-BLAST described in the
previous section, only the benchmark database was used
to construct the PSSMs over a maximum of five iterations.
Since PSI-BLAST allows the use of preconstructed PSSMs
for the query sequence, we derived PSSMs for all the 86 test
queries against the nonredundant protein database (pro-
vided along with the BLAST package) over a maximum of
five iterations and with other default parameters. Subse-
quently, these pretrained PSSMs were used as starting
PSSMs for PSI-BLAST searches against the benchmark
database, further refined for a maximum of five iterations.
Using better quality pretrained PSSMs, in this way, is
expected to give superior performance for PSI-BLAST. For a
fair comparison of pairwise statistical significance with PSI-
BLAST using pretrained PSSMs, we also conducted experi-
ments with pairwise statistical significance using the same
pretrained PSSMs used as starting PSSMs for PSI-BLAST
searches on the benchmark database. For this purpose, the
popular Gotoh-Smith-Waterman algorithm [4], [5] was
trivially modified to calculate the optimal local alignment

using a position-specific substitution matrix instead of a
general substitution matrix. The time and space complexity
of the algorithm is quadratic w.r.t. sequence lengths, but
space complexity can be reduced to linear using a divide-
and-conquer strategy developed by Hirschberg [48] after
identifying the starting and ending indices of the optimal
local alignment. The actual alignment can be calculated by
following a trace-back procedure as described in [49]. The
implementation of the GAP3 program [12] was suitably
modified to get the optimal alignment score of a pairwise
alignment using a PSSM. Again, the number of shuffles was
set to 1,000. Gap opening and gap extension penalties were
set to 11 and 1, respectively, since these were the default
values, using which, the PSI-BLAST PSSMs were con-
structed. A comparison of pairwise statistical significance,
using position-specific scoring matrices and PSI-BLAST, is
presented in Fig. 4. There are two comparisons: one using
the PSSMs derived against the benchmark database (a
subset of CATH), and the other using pretrained PSSMs
derived against the nonredundant protein database (NRP)
provided with the BLAST package. As is clear from these
figures, using position-specific substitution matrices for
estimating pairwise statistical significance is significantly
better than database statistical significance using PSI-
BLAST, for both kinds of PSSMs.

4.3 Overall Picture

Finally, in Fig. 5, we present all relevant distinct
comparison results together from Figs. 3 and 4. There
are three observations that can be made from Fig. 5: First,
for all relevant comparisons, pairwise statistical signifi-
cance performs at least comparable or significantly better
than database statistical significance. Second, in general,
position-specific sequence comparison is superior to
sequence-specific analysis, which is better than sequence-
independent analysis (using general substitution matrix),
which is expected. Third, depending on the quality of
sequence-specific and position-specific substitution ma-
trices, there are some exceptions to the second observa-
tion. For example, using PSI-BLAST on the benchmark
database gives inferior performance than using sequence-
specific substitution matrices with pairwise statistical
significance, although PSI-BLAST uses position-specific
substitution matrices. Also, pairwise statistical significance
using sequence-specific substitution matrices (derived
from BLAST searches against nonredundant protein
database) performs comparable to pairwise statistical
significance using position-specific substitution matrices
(derived from PSI-BLAST searches against the benchmark
database). These are visually summarized in Fig. 6.

In all our experiments with BLAST, PSI-BLAST, and
SSEARCH, we used the default parameters, unless other-
wise stated. In particular, experiments with PSI-BLAST
runs for getting PSSMs on nr database and for retrieval
accuracy comparison experiments on the test database were
conducted with the default parameters of an e-value
threshold (expected chance similarities) of 10.0, gap open-
ing/extension penalty of 11/1, e-value threshold for
inclusion in next round of search as 0.002 for a maximum
of five iterations, using composition-based statistics as
described in [24].
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For average length protein sequences (200-250), the
estimation of pairwise statistical significance takes about
two seconds on an Intel 2.8 GHz processor. Since the
computation time for finding an optimal local sequence
alignment is more or less the same for the cases of using a
standard substitution matrix, sequence-specific substitution
matrix, and position-specific substitution matrix, it is highly
recommended to use sequence-specific and position-specific
substitution matrices for estimating pairwise statistical
significance, if they are available. Further, since the sig-
nificant improvement of results using the proposed methods
is mainly due to the use of sequence-specific and position
specific substitution matrices, this research is also expected
to motivate researchers to develop better quality sequence-
specific and position-specific substitution matrices.

An implementation of the proposed method and related
programs in C is available for free academic use at
www.cs.iastate.edu/~ankitag/PairwiseStatSig_SSSM.html
and www.cs.iastate.edu/~ankitag/PairwiseStatSig_PSSM.
html.

5 CONCLUSION AND FUTURE WORK

This paper extends the work on pairwise statistical
significance by exploring the use of sequence-specific and
position-specific substitution matrices for estimating pair-
wise statistical significance, and compares them with
database statistical significance in a homology detection
experiment. The results provide clear empirical evidence

that sequence-comparison performance improves as the
sequence-comparison process is made more and more
sequence-specific. Using sequence-specific substitution ma-
trices performs significantly better than using general
substitution matrices with pairwise statistical significance,
and also significantly better than database statistical
significance (using BLAST, PSI-BLAST, and SSEARCH),
but the accuracy of PSI-BLAST can be improved using
pretrained position-specific scoring matrices (PSSMs). Pair-
wise statistical significance using position-specific substitu-
tion matrices is significantly better than PSI-BLAST using
pretrained PSSMs.

Although the comparison results in this paper show that
the proposed methods outperform the traditional database
search programs like BLAST, PSI-BLAST (pairwise statis-
tical significance with SSSMs performs better than PSI-
BLAST used directly on benchmark test database, but with
pretrained PSSMs, PSI-BLAST performs significantly better;
pairwise statistical significance with same PSSMs performs
significantly better than PSI-BLAST with pretrained PSSMs),
and SSEARCH, the proposed methods, nevertheless, are
currently much computationally expensive to be directly
used in a large database search since it involves generation
of sequence-specific empirical score distributions and
subsequent curve-fitting. However, its demonstrated ability
to provide biologically more relevant estimates of “related-
ness” of sequence pairs, as evaluated in terms of retrieval
accuracy makes it a useful tool for many bioinformatics
applications relying on sequence-comparison to estimate
relatedness of a few sequence-pairs like small database
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Fig. 4. Pairwise statistical significance versus database statistical significance using position-specific substitution matrices. PSI-BLAST� denotes
that these results were obtained by using PSI-BLAST directly on the test database without using pretrained PSSMs. PSI-BLAST_NRP denotes the
results obtained by PSI-BLAST on the test database using the pretrained PSSMs derived against nonredundant protein (nr) database. The results
for pairwise statistical significance using both kinds of PSSMs are also shown. Using position-specific substitution matrices for estimating pairwise
statistical significance is significantly better than database statistical significance using PSI-BLAST, for both types of PSSMs.



searches, progressive multiple sequence alignment, creating
distance matrices for phylogenetic tree construction, etc.

The current work provides for a lot of scope for future
work. Significant improvement in retrieval accuracy with
pairwise statistical significance using sequence-specific and
position-specific substitution matrices underscores the
influence of substitution matrices in sequence comparison.
Hence, better quality sequence-specific and position-specific
substitution matrices can be extremely useful. Further
enhancement in the performance of using pairwise statistical

significance with SSSMs may be possible by addressing
some of the weaknesses of the SSSM construction approach
used in this work, as outlined earlier. In particular, to
address the issue of over-representation from very similar
sequences in the BLAST search to collect homologous
alignments to fill up the count matrix, several approaches
are possible. All hits with similarity, more than a cutoff (e.g.,
62 percent), may be represented by a single sequence while
filling the count matrix, which is similar to the approach of
creating BLOSUM matrices. Another possibility is to give
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Fig. 6. Summary of the results using pairwise statistical significance and database statistical significance with standard, sequence-specific, and
position-specific substitution matrices. The titles in each of the six blocks are the same as the EPQ versus Coverage curve representations in
previous figures. PSI-BLAST� is placed both in database statistical significance using standard and position-specific substitution matrices because it
begins with a standard matrix and constructs PSSMs during the search against the test database. Arrows are pointing toward the combination which
performed better in terms of retrieval accuracy in our experiments. Block arrows show the general trend, and thin arrows indicate the exceptions.

Fig. 5. Comparison of using sequence-specific and position-specific substitution matrices for estimating pairwise statistical significance with
database statistical significance. PSI-BLAST� denotes that these results were obtained by using PSI-BLAST directly on the test database without
using pretrained PSSMs. PSI-BLAST_NRP denotes the results obtained by PSI-BLAST on the test database using the pretrained PSSMs derived
against nonredundant protein (nr) database. For all relevant comparisons, pairwise statistical significance performs significantly better than database
statistical significance using BLAST, PSI-BLAST and SSEARCH.



weights to each hit while constructing the count matrices,
which is something like what PSI-BLAST uses to construct
PSSMs. Combining information from known sequence
families may also be helpful in constructing better quality
SSSMs/PSSMs.

In this work, we have used PSSMs for only one sequence

(query sequences) to estimate pairwise statistical signifi-

cance. Using PSSMs for database sequences also is expected

to further improve retrieval accuracy, as found in the case of

SSSMs. Another very important aspect of future work is to

develop faster methods to estimate pairwise statistical

significance without sacrificing much on the front of

retrieval accuracy.
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