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Abstract. A central question in pairwise sequence comparison is as-
sessing the statistical significance of the alignment. The alignment score
distribution is known to follow an extreme value distribution with ana-
lytically calculable parameters K and λ for ungapped alignments with
one substitution matrix. But no statistical theory is currently available
for the gapped case and for alignments using multiple scoring matri-
ces, although their score distribution is known to closely follow extreme
value distribution and the corresponding parameters can be estimated by
simulation. Ideal estimation would require simulation for each sequence
pair, which is impractical. In this paper, we present a simple clustering-
classification approach based on amino acid composition to estimate K
and λ for a given sequence pair and scoring scheme, including using mul-
tiple parameter sets. The resulting set of K and λ for different cluster
pairs has large variability even for the same scoring scheme, underscoring
the heavy dependence of K and λ on the amino acid composition. The
proposed approach in this paper is an attempt to separate the influence
of amino acid composition in estimation of statistical significance of pair-
wise protein alignments. Experiments and analysis of other approaches
to estimate statistical parameters also indicate that the methods used in
this work estimate the statistical significance with good accuracy.

Keywords: Clustering, Classification, Pairwise local alignment, Statis-
tical significance.

1 Introduction

Sequence alignment is extremely useful in the analysis of DNA and protein
sequences [1]. Sequence alignment forms the basic step of making various high
level inferences about the DNA and protein sequences - like homology, finding
protein function, protein structure, deciphering evolutionary relationships, etc.
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There are many programs that use some well known algorithms [2,3] or their
heuristic version [1,4,5]. Recently, some enhancements in alignment program
features have also become available [6,7] using difference blocks and multiple
scoring matrices. Quality of a pairwise sequence alignment is gauged by the
statistical significance rather than the alignment score alone, i.e., if an alignment
score has a low probability of occurring by chance, the alignment is considered
statistically significant.

For ungapped alignments, rigorous statistical theory for the alignment score
distribution is available [8], and it was shown that the statistical parameters K
and λ can be calculated analytically for a pair of sequences with given amino acid
composition and scoring scheme. However, no perfect theory currently exists for
gapped alignment score distribution, and for score distributions from alignment
programs using additional features like difference blocks [6], and which use mul-
tiple parameter sets [7]. The problem of accurately determining the statistical
significance of gapped sequence alignment has attracted a lot of attention in the
recent years [9,10,11,12,13,14,15]. There exist a couple of good starting points
for statistically describing gapped alignment score distributions [16,17], but a
complete mathematical description of the optimal scores distribution remains
far from reach [17]. Some excellent reviews on statistical significance in sequence
comparison are available in the literature [18,19,20].

The statistical significance of a pairwise alignment depends upon various fac-
tors sequence alignment method, scoring scheme, sequence length, and sequence
composition [19]. The straightforward way to estimate statistical significance of
scores from an alignment program for which the statistical theory is unavailable
is to generate a distribution of alignment scores using the program with ran-
domly shuffled versions of the pair of sequences, and compare the obtained score
with the generated score distribution, either directly or by fitting an extreme
value distribution (EVD) curve (explained in the next section) to the generated
distribution to get the EVD parameters K and λ, and using the EVD formula
with the estimated K and λ to calculate the statistical significance of the ob-
tained score. However, the parameters thus obtained are ideally valid only for
the specific sequence pair under consideration, and for any other sequence pair,
the parameters should be recomputed by generating another distribution, which
is very time-consuming and impractical.

Thus, BLAST2.0 [1] uses a lookup method wherein the parameters K and
λ are pre-computed for different scoring schemes assuming average amino acid
composition of both sequences. PRSS program in the FASTA package [4,5,9]
calculates the statistical significance of an alignment by aligning them, shuffling
the second sequence up to 1000 times, and estimating the statistical significance
from the distribution of shuffled alignment scores. It uses maximum likelihood
to fit an EVD to the shuffled score distribution. A similar approach is also used
in HMMER [21]. It also uses maximum likelihood fitting [22] and also allows
for censoring of data left of a given cutoff, for fitting only the right tail of the
histogram. A heuristic approximation of the gapped local alignment score dis-
tribution is also available [10], and based on these statistics, accurate formulae



64 A. Agrawal, A. Ghosh, and X. Huang

for statistical parameters K and λ for gapped alignments are derived and im-
plemented in a program called ARIADNE [11]. These methods can provide an
accurate estimation of statistical significance for gapped alignments, but cur-
rently do not incorporate the additional features of sequence alignment, like
using difference blocks and multiple parameter sets [6,7].

The problem of estimating the statistical significance of the database searches
has been addressed in much detail over the past two decades as discussed earlier.
However, accurate estimation of the statistical significance of specific pairwise
alignments needs directed research efforts. It is an important problem critical in
comparison of various alignment programs, and especially with new alignment
programs coming up with additional features to suit the features of the real bio-
logical sequences, this problem of estimating statistical significance for pairwise
sequence alignments becomes particularly important. It has also been shown re-
cently [23] that pairwise statistical significance is a better indicator of homology
than database statistical significance. The method used in [23], although was
shown to be accurate, but is also very time-consuming, as it involves generat-
ing a score distribution of tens of thousands of alignments. The need for faster
methods for estimating pairwise statistical significance was also stressed in [23].

In this paper, we propose and implement a simple clustering-classification
approach that clusters the universe of protein sequences based on amino acid
composition, and estimates the parameters K and λ for all cluster pairs for
different scoring schemes and alignment methods. In this way, we attempt to
separate the dependence of the statistical parameters K and λ on amino-acid
composition from other factors like alignment method and scoring schemes. The
task of estimating statistical significance thus reduces to classifying the sequences
to appropriate clusters, and using the corresponding K and λ values of the
classified cluster pair. This approach is similar to the lookup method used in
BLAST2.0 [1] but takes into account the features of the specific sequence pair
being aligned. For simple alignment methods, the results are also presented using
other approaches (PRSS [4,5,9] and ARIADNE [11]), and for advanced alignment
methods [6,7] currently no other quick methods are available to estimate pairwise
statistical significance except the method described in this paper.

2 The Extreme Value Distribution for Ungapped and
Gapped Alignments

Just as the distribution of the sum of a large number of independent identically
distributed (i.i.d) random variables tends to a normal distribution (central limit
theorem), the distribution of the maximum of a large number of i.i.d. random
variables tends to an extreme value distribution (EVD). This is an important
fact, because it allows us to fit an EVD to the score distribution from any local
alignment program, and use it for estimating statistical significance of scores
from that program. The distribution of Smith-Waterman local alignment score
between random, unrelated sequences is approximately a Gumbel-type EVD [8].
In the limit of sufficiently large sequence lengths m and n, the statistics of HSP
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(High-scoring Segment Pairs which correspond to the ungapped local alignment)
scores are characterized by two parameters, K and λ. The probability that the
optimal local alignment score S exceeds x is given by

Pr(S > x) ∼ 1 − exp[−Kmne−λx]

This is valid for ungapped alignments [8], and the parameters K and λ can be
computed analytically from the substitution scores and sequence compositions.
An important point here is that this scheme allows for the use of only one
substitution matrix. For the gapped alignment, no perfect statistical theory has
yet been developed, although there is ample evidence that it also closely follows
an extreme value distribution [9,11,24,7].

3 Clustering-Classification Approach

This paper presents a simple clustering-classification approach based on amino
acid composition for estimating statistical significance of pairwise protein local
alignments, which is essentially an enhanced lookup method, where K and λ
values are pre-computed for each cluster pair by simulation. Subsequently, for a
given sequence pair, the sequences are individually classified to the corresponding
clusters based on their amino acid composition, and the K and λ parameters for
the cluster pair are used for statistical significance calculation of alignments of
the sequence pair.

3.1 Clustering

There are many algorithms available for clustering like hierarchical clustering,
k-means clustering, etc. [25]. Here we are dealing with clustering the universe of
protein sequences whose number is in hundreds of thousands. Therefore, we use
k-means clustering as hierarchical methods typically involve the computation of
a distance matrix of quadratic complexity with respect to the input size. In this
work, we have used the k-means implementation in R package [26]. Each of the k
clusters of sequences is represented by a single representative sequence (central
sequence), and subsequently the parameters K and λ are computed for each pair
of the k representative sequences. Given below a pseudo code for the clustering
module:

alphabet = "ACDEFGHIKLMNPQRSTVWY" #protein alphabet (amino acids)

sequences4R = set of sequences to be clustered

nSeq = number of sequences

for (i in 1:nSeq) {

seqArray = sequences4R[i]

lenSeq=length(seqArray)

for (j in 1:lenAlphabet-1) {

AACounts[i,j] = number of occurrences of amino acid alphabet[j] in seqArray

}

AAComposition[i,]=AACounts[i,]/lenSeq

}
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k = number of clusters

seqClusters = clustered sequences based on AAComposition

for (i in 1:k) {

clust_reprSeq[i] = representative sequence of cluster[i]

}

for (i in 1:k) {

for (j in 1:i) {

Compute the value of K and lambda by empirical simulation

K_clusters[i,j] = K_clusters[j,i] = estimated K

lambda_clusters[i,j] = lambda_clusters[j,i] = estimated lambda

}

}

3.2 Classification

Given two protein sequences for estimation of statistical parameters, they are
classified individually to the appropriate clusters. Each of the k clusters ob-
tained in the clustering step have their center, which corresponds to the central
amino acid composition for that cluster. A sequence is classified to the cluster
that minimizes the sum of squares of differences between the amino acid com-
position of the sequence and the central amino acid composition of the cluster.
Subsequently, the pre-computed K and λ values for the classified cluster pair
are used for the statistical significance estimation of alignments of the two input
sequences. Given below a pseudo code for the classification module:

alphabet = "ACDEFGHIKLMNPQRSTVWY"

sequences4R = set of two sequences for which K and lambda is to be estimated

nSeq = 2

for (i in 1:nSeq) {

seqArray = sequences4R[i]

lenSeq=length(seqArray)

for (j in 1:lenAlphabet-1) {

AACounts[i,j] = number of occurrences of amino acid alphabet[j] in seqArray

}

AAComposition[i,]=AACounts[i,]/lenSeq

}

k = number of clusters

for (j in 1:nSeq) {

classifiedCluster[j] = classified cluster based on AAComposition

}

estimatedK = K_clusters[classifiedCluster[1],classifiedCluster[2]]

estimatedLambda=lambda_clusters[classifiedCluster[1],classifiedCluster[2]]

4 Tools and Programs Used

We worked with the alignment programs SIM [27], which is an ordinary align-
ment program (similar to SSEARCH), and GAP4 [7], which allows dynamically
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finding similarity blocks and difference blocks [6], as well as using multiple pa-
rameter sets (scoring matrices, gap penalties, difference block penalties) to gen-
erate a single pairwise alignment. For estimating the statistical parameters K
and λ, we used several programs. First is PRSS from the FASTA package [4,5,9],
which takes two protein sequences and one set of parameters (scoring matrix,
gap penalty), generates the optimal alignment, and estimates the K and λ pa-
rameters by aligning up to 1000 shuffled versions of the second sequence, and
fitting an EVD using Maximum Likelihood. In addition to uniform shuffling, it
also allows for windowed shuffling. We also used ARIADNE [11], that uses an
approximate formula to estimate gapped K and λ from ungapped K and λ,
which are calculable analytically as described before. Both these methods are
currently applicable only for alignment methods using one parameter set. We
also used the Linear Regression fitting program used in [7] to estimate K and
λ from an empirical distribution of alignment scores. Finally, we also used the
Maximum likelihood method [22] and corresponding routines in the HMMER
package [21] to fit an EVD to the empirical distribution. Here type-I censoring
is defined as the one in which we fit only the data right of the peak of the his-
togram [22], and type-II censoring is defined as one where the cutoff is set to
the score that corresponds to a normalized E-value of 0.01. We used all these
methods to estimate K and λ values for a pair of representative sequences for a
given alignment scheme.

5 Experiments and Results

We downloaded all the available 261513 Swissprot protein sequences from http://
www.ebi.ac.uk/FTP/. The statistics of the lengths of the sequences are given in
Table 1, and the histogram of sequence lengths less than 1000 is shown in Fig. 1.
Clearly, the variation in sequence length is very extreme, although the length of
most of the sequences is in the range of 150 to 450. To minimize the influence of
variation in length, we only select the sequences with length between the 1st and
3rd quartile for clustering. The number of sequences between 1st and 3rd quartile
is 131486. The amino acid composition of all these sequences is calculated, and an
implementation of the k-means clustering algorithm in R package [26] is used to
cluster the sequences into k=5 clusters, based on their amino acid composition.
The k-means implementation in R returns for each of the k clusters its center,
its within-sum-of-squares, its size, and of course, the classification of the input
data points in one of the k clusters.

Fig. 2 is an attempt to visualize the clusters by representing the 20 dimen-
sional amino-acid-composition vector as a point in x−y plane using the first two
amino-acid-compositions. Although it does not give a full picture of the clusters
and their separation, it nonetheless gives some idea of how the clusters are lo-
cated. One representative sequence for each of the k clusters is then selected
by choosing the one whose amino-acid-composition vector is the closest to the
center of the cluster (i.e., which gave the minimum sum of square of differences).
Then, for each pair of the representative sequences, the parameters K and λ are
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estimated using the methods described earlier. This work presents the prelimi-
nary analysis taking k as 5 to study the effectiveness of this method. However, no
detailed study on the number of clusters has been presented in this work. For k

Table 1. Statistics of lengths of sequences

Minimum 1st Quartile Median Mean 3rd Quartile Maximum

2 165 296 365.7 460 34350

Fig. 1. Histogram of length of sequences with length ≤ 1000

= 5, there exist 15 (=5 C2 + 5) different pairwise cluster combinations. Table 2
gives the K and λ estimates for one of the 15 pairwise clusters (〈3, 2〉). Here, we
used several options for the alignment parameters. For substitution matrices, we
used all possible combinations of BLOSUM45, BLOSUM62, and BLOSUM100
matrices. The alignment program GAP4 [7] is capable of using multiple substitu-
tion matrices to produce a single optimal alignment of two sequences. It requires
all substitution matrices to be in the same scale, and thus all matrices were
used in 1/3 bit scale. Other parameters like gap penalties, etc. were the same
as the default values used in GAP4 [7] for matrices in 1/3 bit scale. We used
the various programs for statistical parameter estimation as described earlier.
Rows in first half of Table 2 show the K and λ estimates from ARIADNE [11]
and PRSS [4,5,9], and the second half of the table show the estimates from ML
and LR. As pointed out earlier, ARIADNE and PRSS currently can work only
with one parameter set, and cannot estimate the pairwise statistical significance
parameters for alignment programs that use multiple parameter sets, and hence,
the corresponding entries in Table 2 are not available.
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Fig. 2. k-means clusters (k=5). Sequences in each cluster are represented by different
colors. This visualization represents the 20-dimensional amino-acid-composition vector
by a 2-dimensional vector (corresponding to the first two entries of the 20-dimensional
amino-acid-composition vector), and hence is not complete, but gives an overall idea
of how the clusters are located.

Table 2. K and λ estimates for the cluster pair 〈3, 2〉

Substitution Gap Gap ARIADNE PRSS(1000 shuffles)
Matrix Open Ext K λ uniform -w 10 -w 20

K λ K λ K λ
BLOSUM45 12 2 0.01795 0.184148 0.0329 0.1869 0.03736 0.1941 0.0381 0.1974
BLOSUM62 14 3 0.06445 0.200311 0.0956 0.2104 0.1108 0.2154 0.1212 0.2181
BLOSUM100 16 4 0.15101 0.210326 0.1888 0.224 0.2624 0.2328 0.1564 0.2198
BL45,62,100 12,14,16 2,3,4 NA NA NA NA NA NA NA NA
BL45,BL62 12,14 2,3 NA NA NA NA NA NA NA NA
BL45,BL100 12,16 2,4 NA NA NA NA NA NA NA NA
BL62,BL100 14,16 3,4 NA NA NA NA NA NA NA NA

Substitution Gap Gap Maximum Likelihood (100000 shuffles) LinearRegr.
Matrix Open Ext Full Censored-I Censored-II (100000 shfls)

K λ K λ K λ K λ
BLOSUM45 12 2 0.03387 0.189248 0.0316 0.1876 0.089487 0.204045 0.1083 0.2063
BLOSUM62 14 3 0.08757 0.205953 0.0875 0.2058 0.045709 0.196304 0.2389 0.2195
BLOSUM100 16 4 0.18503 0.2191 0.1761 0.2179 0.358664 0.228915 0.4009 0.2304
BL45,62,100 12,14,16 2,3,4 0.10576 0.194163 0.0967 0.1923 0.096223 0.192396 0.2358 0.2044
BL45,BL62 12,14 2,3 0.06773 0.194176 0.0919 0.1982 0.123769 0.202883 0.1551 0.2057
BL45,BL100 12,16 2,4 0.09969 0.195183 0.0911 0.1932 0.147417 0.200051 0.3205 0.2102
BL62,BL100 14,16 3,4 0.15685 0.207436 0.1570 0.2074 0.243203 0.21407 0.2807 0.2157

It was reported in [23] that that Maximum likelihood fitting with type-I cen-
soring gives the most accurate estimates of K and λ for estimation of pairwise
statistical significance. Therefore, we report the corresponding the K and λ es-
timates for all cluster-pairs in Table 3, presenting the final result of this work.
There are 7 sub-tables in Table 3, each showing the K and λ estimates for all
cluster pairs for a unique scoring scheme (7 scoring schemes are presented here).
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Table 3. Pairwise cluster statistical significance parameters for a variety of scoring
schemes

Param- Substitution Matrix: BLOSUM45; Gap Open Penalty: 12; Gap Extension Penalty: 2
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1358571 0.036457
2 0.212847 0.1642628 0.055198 0.022692
3 0.2076972 0.187666 0.1501918 0.052404 0.031631 0.020645
4 0.2439074 0.1868858 0.2037552 0.1584317 0.070919 0.031597 0.040751 0.018778
5 0.1948708 0.1909384 0.190503 0.1971262 0.1733189 0.041417 0.033241 0.032547 0.034713 0.024396

Param- Substitution Matrix: BLOSUM62; Gap Open Penalty: 14; Gap Extension Penalty: 3
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.155231 0.053164
2 0.2214101 0.1904642 0.108926 0.076897
3 0.2173865 0.2058921 0.1772875 0.11316 0.087505 0.059218
4 0.2461108 0.209065 0.2199229 0.1976537 0.12987 0.091884 0.104014 0.085541
5 0.2085433 0.2057725 0.2063069 0.2142532 0.193569 0.09491 0.087126 0.089158 0.095499 0.069993

Param- Substitution Matrix: BLOSUM100; Gap Open Penalty: 16; Gap Extension Penalty: 4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1866353 0.154048
2 0.228544 0.2064503 0.200226 0.193781
3 0.2242455 0.2179898 0.2045788 0.192326 0.17616 0.167797
4 0.2456977 0.2182969 0.2276359 0.2107703 0.209087 0.173654 0.183061 0.167819
5 0.221009 0.2162649 0.2202855 0.2244157 0.2126472 0.188667 0.164509 0.173582 0.179575 0.164874

Param- Substitution Matrix: BL45, BL62,BL100; Gap Open Penalty: 12,14,16; Gap Extension Penalty: 2,3,4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1368407 0.049183
2 0.213582 0.1701292 0.159863 0.063276
3 0.2079975 0.192342 0.154174 0.14941 0.096799 0.040994
4 0.2373249 0.1928895 0.207206 0.1650268 0.198173 0.095714 0.123883 0.043014
5 0.1994941 0.1937772 0.1957841 0.2015482 0.1787635 0.12346 0.099895 0.104908 0.10812 0.066458

Param- Substitution Matrix: BL45, BL62; Gap Open Penalty: 12,14; Gap Extension Penalty: 2,3
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1402432 0.05231
2 0.2145139 0.1712422 0.100205 0.045569
3 0.2093419 0.1982169 0.1540202 0.101861 0.091968 0.031788
4 0.2411866 0.1931565 0.2063857 0.1642365 0.125784 0.063434 0.075368 0.030885
5 0.1987875 0.1941648 0.1946307 0.2020014 0.1783505 0.079681 0.064921 0.066602 0.072043 0.046346

Param- Substitution Matrix: BL45, BL100; Gap Open Penalty: 12,16; Gap Extension Penalty: 2,4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1382574 0.05416
2 0.2141082 0.1717717 0.14858 0.065682
3 0.2092158 0.1932967 0.1537908 0.141856 0.091108 0.036667
4 0.2404284 0.1954375 0.2076836 0.1648767 0.208871 0.104467 0.113331 0.041522
5 0.2003162 0.1949345 0.1968851 0.2041312 0.1789941 0.11604 0.094415 0.096769 0.109758 0.059355

Param- Substitution Matrix: BL62, BL100; Gap Open Penalty: 14,16; Gap Extension Penalty: 3,4
eters λ K

Cluster 1 2 3 4 5 1 2 3 4 5
1 0.1612023 0.088929
2 0.2201957 0.1928412 0.185743 0.137453
3 0.2210159 0.2074159 0.1823947 0.251905 0.157085 0.103554
4 0.2406616 0.210198 0.2198564 0.1994292 0.212245 0.164609 0.180414 0.144506
5 0.2090656 0.2068202 0.2068121 0.2145398 0.1982235 0.159461 0.152743 0.142889 0.161868 0.12984

The K and λ estimates in table 3 are for 1/3-bit scaled substitution matrices.
For each scoring scheme, there is a wide variation in the estimated K and λ
values. For instance, in the first sub-table, λ values range from 0.1358571 to
0.2439074, and K values range from 0.018778 to 0.070919, although all the pair-
wise alignments of random sequences for getting the K and λ estimates in the
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first sub-table were done using the SIM program with BLOSUM45 substitution
matrix, gap open penalty 12, and gap extension penalty 2, i.e. using the same
scoring scheme. Since the only contributing factor for the difference between
K and λ values for different cluster pairs is the amino acid composition, we
can observe that the statistical parameters heavily depend on the amino acid
composition. Clustering the protein sequences into groups of similar amino acid
composition has therefore to some degree separated the dependence of the sta-
tistical significance parameters on the amino acid composition, which is very
helpful for quick and accurate estimates of statistical significance for specific
pairwise alignments. Once parameter estimation for the cluster-pairs is done for
a given scoring scheme, subsequent statistical significance estimation for any se-
quence pair using the same soring scheme is very quick, since it only involves
classification of the sequences to corresponding clusters, and using the statistical
parameters for the corresponding cluster-pair.

6 Conclusion and Future Work

The implementation of a clustering-classification based approach for estimating
the statistical parameters K and λ for estimating the statistical significance of
pairwise alignments is done and is experimented with. The clusters are based on
the amino-acid composition and the estimates of the statistical parameters K
and λ for each cluster-pair are calculated by simulation. Given two sequences, the
estimate of K and λ for that pair is given by the K and λ values corresponding to
the cluster-pair to which the given sequences are classified based on the amino-
acid-composition.

The estimated values of K and λ for different clusters show a considerable
variability, even for the same alignment scoring scheme, which suggests that
the influence of amino acid composition on statistical parameters K and λ is
very strong, and it is imperative to use different K and λ values for different
sequences. The clustering technique used in this work has therefore separated the
influence of amino acid composition on statistical parameters, which is the main
contribution of this paper. Another major significance of this work is that this
method can be applied to any new alignment program with any scoring scheme
without the knowledge of the statistics of the alignment procedure (which is in
general difficult to determine). Once the influence of amino acid composition on
statistical significance parameters is separated from other factors, all that needs
to be done is the accurate estimation of the statistical parameters for all cluster
pairs using the new alignment program, and subsequently use those values for
any pair of sequences with individually similar amino acid composition as that of
the clusters to which the pair of sequences are individually classified. Especially
with a number of new alignment methods being developed, this technique is
expected to be very useful in comparing them.

Although the simple idea is very promising, it is unclear how well it works
for an application where statistical significance is used, like homology detection.
This approach is just a beginning of the efforts to separate the influence of amino
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acid composition, and clustering is just one of the many methods which can do
so. It may be possible that it is not the exact composition clusters that two
protein sequences under comparison fall into that matters, but instead, simply
the difference between the composition distributions of the two proteins, which
needs further exploration. Another shortcoming of this work is that by clustering
hundreds of thousands of sequences in to just five clusters, we lose a lot of in-
formation about the amino acid composition distribution across the real protein
sequences. An analytical study of the amino acid composition distribution may
be required to get the optimal number of clusters. Hence, this method can be
further looked into in detail to evaluate the performance of clustering. Another
improvement can be to use a small scale simulation along with the proposed
approach to increase the accuracy of the statistical significance estimates.
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13. Schäffer, A.A., Aravind, L., Madden, T.L., Shavirin, S., Spouge, J.L., Wolf, Y.I.,
Koonin, E.V., Altschul, S.F.: Improving the Accuracy of PSI-BLAST Protein
Database Searches with Composition-based Statistics and Other Refinements. Nu-
cleic Acids Research 29(14), 2994–3005 (2001)

14. Bundschuh, R.: Rapid Significance Estimation in Local Sequence Alignment with
Gaps. In: RECOMB 2001: Proceedings of the fifth annual International Conference
on Computational biology, pp. 77–85. ACM, New York (2001)



Estimating Pairwise Statistical Significance of Protein Local Alignments 73

15. Poleksic, A., Danzer, J.F., Hambly, K., Debe, D.A.: Convergent Island Statistics:
A Fast Method for Determining Local Alignment Score Significance. Bioinformat-
ics 21(12), 2827–2831 (2005)
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