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The growing application of data-driven analytics in materials science has led to
the emergence and popularity of the relatively new field of materials informatics.
Of the many types of available data in materials science, image data is quite
common and heterogeneous in itself, thanks to the advances in various materials
imaging techniques. Within the arena of data analytics techniques, deep learning
has recently led to groundbreaking advances in numerous fields such as computer
vision. In this chapter, we describe the basics of deep learning, its advantages,
challenges, and illustrative applications on materials images at different length
scales for the purpose of fast and accurate structure characterization. While it
is possible to build an accurate deep learning model from scratch when big data
is available, transfer learning is used for small datasets. Together, the advances
in materials imaging and deep learning provide unprecedented opportunities for
such materials image informatics to enable better and faster understanding of
the structure-property relationships in materials science and engineering.

1. Introduction

We are currently in the midst of the big data revolution, with humongous volumes

of a variety of data being generated at a staggering velocity. This has led to the

emergence of the fourth paradigm of science, which is data-driven science, and is

becoming increasingly popular in practically all fields of science, engineering, and

commerce. Figure 1 depicts the four paradigms of science.1 Building upon the

big data created by the first three paradigms of science – which are experiment,

theory, and simulation – the fourth paradigm utilizes scalable machine learning

and data mining techniques like predictive analytics, data clustering, relationship

mining, deep learning, etc. to extract actionable insights from such big data and

inform decision making at various levels. For example, in a scientific setting, it

can help determine what is the best experiment or simulation to do next; for a

healthcare application, it can estimate patient-specific outcomes and make recom-

mendations of the best course of treatment; for a business application, it can help

devise advertisement strategies to maximize profit and take proactive measures to
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prevent customer attrition, etc. Therefore, it is not surprisingly that scalable data-

driven techniques2–21 have found numerous applications in several diverse fields such

as business, marketing, and eCommerce,22–28 healthcare,29–40 climate science,41–47

bioinformatics,48–55 social media,56–64 materials science,65–79 and cosmology,80–86

amongst many others. In particular, over the last few years, deep learning87 has

become the data analytics technique of choice due to its groundbreaking success

in several traditional artificial intelligence applications like computer vision88 and

speech recognition.89

Fig. 1. (reproduced from reference1 under CC-BY license) The four paradigms of science. For

the most part of history, science was purely empirical or observational, which is known today as
the experimental branch of science. The advent of calculus in the 17th century made it possible to
express natural phenomena as mathematical laws, giving rise to the second paradigm of science,

which is model-based theoretical science. The invention of computers in the 20th century allowed
solving for much larger and complex theoretical models (system of equations), enabling simulations

of several real-world phenomena, which is the third paradigm of science. The 21st century has

seen an explosive growth of the data resulting from the first three paradigms, so much so that all
the available historical data in itself has become a valuable resource for learning and enhancing

our understanding of this world, heralding the arrival of the fourth paradigm of science, which is
(big) data-driven science.

The field of materials science and engineering relies on experiments and simula-

tions to better understand the so-called processing-structure-property-performance

(PSPP) relationships. It is well-known that almost everything in materials science

depends on the understanding of PSPP relationships, where the science relation-

ships of cause and effect go from left to right, and the engineering relationships of

goals and means go from right to left. The design of new materials with desired

properties requires understanding this complex system of interrelated mechanisms in

materials across numerous length and time scales. Figure 2 depicts these PSPP re-
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lationships of materials science and engineering. Materials informatics,1,72,90 which

is the realization of the fourth paradigm of science in materials science, can help

generate fast and accurate forward models for predicting materials properties that

can serve as cost-effective proxies to experiments and simulations. In turn, such fast

forward models can also help realize inverse models for materials discovery and de-

sign, which are typically formulated as optimization problems. The importance for

such data-driven informatics approaches in materials science has also been empha-

sized by the Materials Genome Initiative (MGI),91,92 which envisions the discovery,

development, manufacturing, and deployment of advanced materials twice as fast

and half the cost.

Fig. 2. (reproduced from reference1 under CC-BY license) The processing-structure-property-
performance relationships of materials science and engineering, where the deductive science rela-

tionships of cause and effect flow from left to right, and the inductive engineering relationships of

goals and means flow from right to left. Further, it is important to note that each relationship from
left to right is many-to-one. Materials informatics (data science) approaches can help decipher

these relationships via forward and inverse models.

There are numerous kinds of materials data that record the equilibrium and tem-

poral evolution of composition, processing, structure, properties, and application-

specific performance metrics for a given material. Advances in materials imaging

technologies at different time and length scales such as various types of microscopy,

spectroscopy, and photography have made materials image data quite common,

which are typically used to infer the materials’ structure and subsequently under-

stand structure-property relationships. In that sense, materials structure charac-

terization can be considered as an inverse problem, since structure is the cause and

image is the effect, and the characterization problem is to deduce the structure that

produced the given image.

In this chapter, we shall take a look at some recent advances in materials image

informatics at different length scales using deep learning techniques, after a brief

introduction to deep learning and convolutional neural networks (CNNs), which are
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a class of deep learning networks specifically used on image datasets. In particular,

we will take the example of indexing electron backscatter diffraction (EBSD) im-

ages,93 crack detection in pavement images,94 and structural health monitoring on

infrastructure images taken from an unmanned aerial vehicle (UAV).95 The rest of

this chapter is organized as follows: Section 2 introduces the basic concepts in deep

learning, followed by illustrative materials image informatics in Section 3. Section

4 summarizes and concludes the chapter.

2. Deep Learning

Deep learning is a recent revolutionary breakthrough in machine learning (ML),

arisen from a rediscovery of deep neural networks, and fueled by the availability of

two key ingredients – big data and big compute – that are becoming increasingly

available and affordable over the past few years. It is considered a very powerful

method to exploit the information locked in big data. Deep learning has enabled

ground-breaking advances in various fields, such as computer vision,96,97 natural

language processing,98,99 and speech recognition.89,100 It is well-known in the field

of ML that the way data is represented for input to a ML algorithm has a huge

influence on the success of the model. Deep learning enables automated learning of

multiple levels of representation, discovering more abstract features at higher levels.

2.1. Artificial Neural Networks

An artificial neural network (ANN) is a computing system inspired by the biolog-

ical neural networks in animal brains. The fundamental unit of ANNs is called a

neuron, which can take in multiple inputs and output a non-linear function (called

the activation function) of the weighted sum of inputs. Commonly used activa-

tion functions are the sigmoid function, tanh function, and the rectified linear unit

(ReLU). An ANN consists of multiple layers of such neurons with interconnections

amongst them, such that the output of a neuron becomes one of the inputs to the

neurons in the next layer. The inputs to the network constituting the input layer

therefore go through a series of hidden layers before giving out the output(s) in

the output layer. The number and depth of hidden layers and the way the neurons

are connected to each other determines the architecture of the network. Figure 3

depicts a fully-connected ANN, also known as multilayer perceptron (MLP). For a

given ANN architecture, everything depends on the strength or weights of the in-

terconnections, which are adjusted or learned during the ANN training process by

minimizing the disagreement (technically called the loss function) between ANN-

predicted outputs and the ground truth values from a labeled training dataset. A

deep learning network is essentially an ANN with more than one hidden layer.
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2.2. Advantages

One of the primary advantages of deep learning is that it is feature engineering free,

i.e., instead of providing the model with appropriate features (which are usually

domain dependent and often require manual effort and intuition), deep learning

is capable of automatically extracting relevant features from the data in the first

hidden layer, and features-of-features in the second hidden layer, and so on, thereby

resulting in an automated hierarchical representation of features. This is exactly

why we often need “deep” networks, i.e., consisting of multiple hidden layers. More

number of hidden layers means more learning capability at the expense of higher

computational cost for training the model.

As one can imagine, more data is always helpful to build a more accurate ML

model, and that is indeed the general trend with all supervised ML algorithms. This

is where the other advantage of deep learning models comes in. While the accuracy

performance of most traditional ML algorithms saturate at a certain point with

increasing data sizes, deep learning models, although less accurate than traditional

ML algorithms for small data, do not saturate that early and continue to become

more and more accurate with increasing data. Therefore, there is usually a cross-

over point in terms of data size at which the performance of deep learning models

overtakes that of traditional ML algorithms, which can be different for different

problems. In other words, deep learning is more powerful and suitable to build

highly accurate models on big data. The question is, whether or not enough data

is available for a given problem to build more accurate deep learning models.

2.3. Challenges

If deep learning has all these advantages, why is it not commonplace yet? Well, it is

increasingly being used in many different fields, but there are still some challenges

that need to be addressed and are important open research problems. One of the

Fig. 3. The basic architecture of a fully-connected deep artificial neural network with four hidden
layers.
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biggest obstacle is the (non-)availability of enough data in many cases. While there

exists big, curated, and labeled datasets to build deep learning networks for several

problems like image classification and speech recognition, it is far less common for

most of the scientific and engineering problems. But with a concerted effort to

standardize the data collection and sharing protocols in many fields of science and

engineering, this challenge is expected to be addressed in time. There is also a

recent surge in the use of transfer learning in cases where big data is not available

(more on that later).

Another big challenge in deep learning is the huge computational cost for training

these deep neural networks. Even shallow neural networks are relatively slow to

train compared to traditional ML techniques, but with deeper networks and big

data, the training time can become too large for some problems, even on the latest

computing hardware. An active field of research is parallelization of neural network

training algorithms, and while some works in that direction have recently sprung

up,101,102 it is an actively pursued research problem in the field of high performance

computing.

The third challenge relates to the fact that there are significantly more param-

eters in a deep learning model compared to traditional ML algorithms, beginning

with the architecture of the network (number of layers, number of neurons in every

layer, and structure of the interconnections), and of course the weights of the in-

terconnections which are learned during training. Therefore, the space of possible

network architectures is practically infinite, and there is no systematic procedure

to determine the best architecture for a given problem, although there are general

guidelines based on prior architectures that have worked. Designing such a system-

atic methodology for optimal network architecture identification is very much an

open research problem.

2.4. Convolutional Neural Networks

Convolutional neural network (CNN) is one of the popular deep learning archi-

tectures used for image data. As we know, an image is a 2D matrix of pixels

representing intensity or color. Each pixel can thus potentially be treated as a fea-

ture, making the number of input features per image tremendously large. If a fully

connected ANN were to be used for this, the network would grow too large and its

training prohibitively expensive. Moreover, such an approach would also ignore the

ordering of the pixels, thereby in-effect ignoring the spatial correlation information

in the images, which is undesirable.

CNNs are specifically designed to capture locally correlated features present in

images using convolution layers, which consist of multiple kernels or filters consist-

ing of a small set of parameters. Each filter is applied to the input image as a

sliding window to get more abstract features (called as feature maps) for next layer

computation. In this way, the number of weights/parameters needed is significantly

less compared to a fully connected ANN. Further in order for the feature maps to
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not grow too large, pooling layers are used after one or several convolution layers to

reduce the dimensionality of the feature maps, in-effect also reducing the required

number of parameters. Finally, the outputs of stacks of convolution layers and pool-

ing layers are flattened to a long one-dimensional vector, which is fed into one or

more fully connected layers to produce the final prediction. Depending on whether

it is a classification or regression problem, the last layer generates a probability

distribution or a single numerical value, controlled by the number of neurons in the

last layer and the activation function (softmax and linear respectively for classifi-

cation and regression problems). Figure 4 depicts a CNN with the three types of

layers.

Fig. 4. An example architecture of a convolutional neural network (CNN). It takes a 32x32 grey

scale image (i.e., one channel only, in contrast with a RGB image with three channels) as input. It

then has two convolution layers with 2 and 3 filters respectively, thereby producing feature maps
with 2 and 3 channels respectively. Two of the three filters in the second convolution layer are

represented by orange and green (in this case, each of size 3x3x2, i.e. 18 weights), and each filter

produces one channel each for input to the next layer, as depicted by the color of the channel. The
two convolution layers are followed by a 2x2 pooling layer, which reduces the dimensionality of the

feature maps by applying a non-linear function (such as max, min, avg) to every 2x2 pixel matrix

in the source layer and producing a single value for the destination layer, thereby reducing the
dimensionality of the feature maps from 28x28 to 14x14. This is followed by another convolution

layer of 5 filters (each of size 3x3x3, i.e. 27 weights) producing a feature map of 5 channels (one of
the five filters and corresponding channel produced depicted in red), and another pooling layer to

reduce feature map dimension from 12x12 to 6x6. Subsequently, these feature maps are flattened to

produce a one-dimensional vector of 6x6x5=180 values, which is fed into two fully connected layers
of 90 neurons and 1 neuron, which finally produces the output value. Note that each convolution

layer produces a feature map with the size reduced by 2 pixels each in length and width compared

to the source feature map, since all filters are of size is 3x3 and chosen not to operate on boundary
rows and columns. Appropriate zero padding can be used around the input image and feature

maps before applying convolution if the size of resulting feature maps is intended to increase or

remain the same.

2.5. Transfer Learning

As we saw earlier, deep learning only works well with big data. It has however

been shown that it is possible to circumvent that problem in many cases by using a

transfer learning approach.103 As the name suggests, for solving a given problem,

it tries to reuse the knowledge from a previous model that was developed for a
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different but related problem, thereby transferring the knowledge from the previous

model to the new model. In the context of deep learning, the way it is typically

used is that the previous model (neural network) is for a problem for which big data

is available, and therefore that network is used as a starting point for developing

the new model for the given problem with small data. This can be done either by

using the weights of the previous model as initial weights for the new model, or

using the previous model to derive feature representations of the small data which

in turn are used as features for any traditional ML or deep learning algorithms.

One of the popular class of pre-trained deep learning network is called VGG,

developed by the Visual Geometry Group at the University of Oxford. A specific

VGG model architecture called VGG16 consists of 5 convolution blocks consisting

of 2, 2, 3, 3, and 3 convolution layers respectively with a small filter size (3x3),

and 5 maxpooling layers of size 2x2 for spatial pooling (one pooling layer after

each convolution block). The output of the last pooling layer is flattened and

connected to 3 fully-connected layers, with the final layer as the soft-max layer

to do classification. Therefore, it has 16 weight layers (13 convolution layers and

3 fully-connected layers), hence the name VGG16. Rectified Linear Unit (ReLU)

activation is applied to all hidden layers. The model also uses dropout regularization

in the fully-connected layers. In total, VGG16 has about 144 million parameters.

There are several popular CNN architectures104 such as VGG, AlexNet, GoogLeNet,

ResNet,97 and pre-training these on large-scale annotated natural image datasets

(such as ImageNet) have been shown to be very useful for solving cross domain image

classification problems through the concept of transfer learning and fine-tuning.105

3. Illustrative Materials Image Informatics

In this section, we shall see examples of deep learning networks (CNNs) on materials

images. The first example is an illustration of training a CNN from scratch, and

the other two are examples of using the transfer learning approach.

3.1. Indexing EBSD Patterns

Electron backscatter diffraction (EBSD) is one of the materials imaging techniques

to study the microstructure characteristics, specifically crystal orientation. A high

energy electron beam is fired towards a specimen, and the electrons get reflected

by the surface at different depths and crystal orientations. The diffraction pattern

is recorded at a phosphor screen detector, which are usually in the form of bright

parallel and intersecting grey scale bands. As the specimen is tilted or moved,

the pattern of bands changes since the orientation of crystal lattice changes. Each

EBSD image is produced by a specific crystal orientation, which can be represented

by the Euler angles triplet < φ1,Φ, φ2 >. The inverse problem of determining the

orientation angles that must have produced a given image is called EBSD indexing,

which is the key to performing quantitative microstructure analysis for polycrystals
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such as commercial metals, alloys and ceramic, etc.

The most common approach for EBSD indexing is the Hough transform based

method, which works by computing the angles between linear features extracted

from the diffraction pattern using Hough transform. The main problem with this

method is that its performance quickly deteriorates with noise. A more recent

method called dictionary based indexing adopts a nearest neighbor search (1-NN)

approach106 where the output angles correspond to the orientation angles of the

closest EBSD pattern present in the dictionary. The distance function between

two EBSD patterns is simply the dot product of the corresponding one-dimensional

pixel vectors. It has been found to be very robust to noise and outperforms the

line feature based Hough transform approach. However, it is computationally very

expensive, since one needs to compare the given EBSD pattern against every EBSD

pattern present in the dictionary.

Liu et al.93 presented the first deep learning solution for EBSD indexing prob-

lem, with the aim of providing an end-to-end solution that does not require any

domain-specific knowledge or much image processing steps. The developed model

takes raw EBSD patterns and produces three numerical angles as output through

multiple convolution layers that are intended to automatically learn the spatial de-

pendencies among the pixels and extract relevant features, pooling layers to reduce

dimensionality of the intermediate feature maps, and fully connected layers at the

end for multi-layer regression. The architecture of the CNN proposed in that work

is depicted in Fig. 5.

Fig. 5. CNN architecture for EBSD indexing. It has four convolution layers (resulting feature

maps shown in brown), two pooling layers (resulting feature maps shown in green), and three fully
connected layers including the last (output) layer. A 9x9 filter was used for the convolution layers
with different thickness of zero padding around the input image or feature maps, therefore the
dimensions of the resulting feature maps change by +8 or -8 accordingly.

The CNN model developed by Liu et al.93 was trained using EBSD patterns

(simulation data) of polycrystalline Nickel, with 333,227 simulated patterns, where

each pattern is a 60x60 gray scale image. This data was randomly split into train-

ing and testing datasets, with 300,000 images used for training and rest for testing.

Since the target output are the angles which are numbers, this is a regression prob-

lem. Usually, the loss function used for regression is the mean square error between
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the predicted value and actual value. However, in this case, the numbers to be

predicted are angles, which are periodic, i.e., 1◦ is very close to 359◦. Therefore, a

special loss function was designed to take into account this periodicity:

L(φ, φ̂) = arccos(cos(||φ− φ̂||))

where φ is the actual angle and φ̂ is the predicted angle.

Table 1 shows the accuracy and timing comparison of the deep learning (CNN)

model93 and dictionary-based approach.106 For all the three Euler angles, deep

learning gives significantly more accurate predictions (lower mean absolute error).

The deep learning model takes a week to train, whereas the dictionary or 1-nearest

neighbor approach requires no training, as the dictionary itself is the model. How-

ever, it takes longer for testing since each test EBSD pattern needs to compared

against all the patterns in the dictionary to find the most similar pattern. The

deep learning model runs about an order of magnitude faster than the dictionary-

based approach to make predictions of the three Euler angles. On average the deep

learning model gave 56% more accurate and 86% faster predictions compared to

state-of-the art dictionary-based approach.

Table 1. Accuracy and timing comparison of deep learning model and dictionary
approach for EBSD indexing

Predictor Mean Absolute Error Training Time Testing Time
(degrees)

Dictionary (1-NN) 5.7, 5.7, 7.7 0 375s

Deep Learning (CNN) 2.5, 1.8, 4.8 7 days 50s

3.2. Pavement Crack Detection

Roads or pavements are complex material composites designed to sustain repeated

vehicular traffic. They typically comprise a surface layer, a base and/or subbase

layer and a subgrade layer. The surface layer of a pavement structure is typically

a Portland Cement Concrete (PCC) composite or Bituminous/Asphalt Concrete

(AC), a particular pitch-matrix composite. This leads to two broad pavement cat-

egories: AC-surfaced and PCC-surfaced pavement composite with sizes of material

constituents ranging from nano to micro. The base/subbase layer, which provides

mechanical stability in addition to drainage, is typically comprised of crushed granu-

lar aggregates. The subgrade layer is generally the roadbed or natural soil. Figure 6

shows an example of PCC and AC surfaced pavement images. Apart from repeated

traffic loading, diurnal temperature changes, seasonal variations, and other climatic

factors combine forces to gradually weaken the pavement structural load-carrying

capacity. This typically manifests in the form of surface distresses like cracking, rut-

ting, potholes, etc. Early detection of these distresses by transportation agencies
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can help prioritize maintenance and repair activities resulting in significant cost sav-

ings when one considers the life-cycle maintenance costs. Over the years, significant

progress has been made towards automated pavement distress evaluation.107

Fig. 6. Sample digital pavement images used in automated pavement distress detection: AC-
surfaced pavement image (left); PCC-surfaced pavement image (right) (Source: FHWA/LTPP

public database)

Since cracks are the most common distresses appearing on pavement surfaces

and are relatively easier to detect and quantify using 2-D pavement images, a num-

ber of studies over the past three decades have focused on developing automated

vision-based pavement crack detection algorithms and methods with an attempt to

detect, classify (longitudinal/transverse/alligator), and characterize (length, width,

and severity) the cracks. These methods could broadly be classified as: intensity-

thresholding,108 edge detection,109 wavelet transforms,110 texture-analysis, and

computer vision techniques.111 This topic continues to be actively researched by

both pavement engineers and computer vision researchers owing to the complex

challenges associated with digital pavement image analysis such as inhomogeneity

of cracks, diversity of surface texture (eg., tining), background complexity, presence

of non-crack features such as joints, lane markings, patches, etc.

With the growing popularity of deep learning, several recent works have em-

ployed Convolutional Neural Networks (CNNs) for automated pavement distress

detection. In what appears to be one of the first works on the direct application of

CNNs to road crack detection, reference112 classified square image patches with or

without cracks based on 500 pavement images of size 3264 x 2448 collected using a

low-cost smart phone. CrackNet113 presents an efficient CNN for pixel-perfect crack

detection on 3-D asphalt pavement surfaces. Most recently, reference114 employed

an end-to-end DL-based state-of-the-art object detection method for detecting and

distinguishing objects in road images, acquired using a smartphone installed in

a moving car under realistic weather and lighting conditions, into eight different

output categories.

Inspired by the success of transfer learning applications in medical image anal-

ysis, Gopalakrishnan et al.94 proposed the use of a pre-trained CNN model with

transfer learning for automated pavement crack detection. A subset of the pavement

distress images dataset from the Federal Highway Administration’s (FHWA) Long-
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Term Pavement Performance (LTPP) program was used, which contains research

quality pavement performance information for over 2,500 test sections on in-service

highway pavements located throughout the United States and Canada.115 The se-

lected images were manually labeled to fall into two separate categories: “crack”

or “no crack”. Both AC- and PCC-surfaced images were combined to introduce

higher order complexity. Among the 1,056 pavement images, 337 images had low,

medium, or high-severity cracks and 719 images had no cracks. Both longitudi-

nal and transverse cracks were considered although transverse cracks were more

common.

The Keras deep learning framework116 was used by Gopalakrishnan et al.,94 that

includes pre-trained deep learning models. Specifically, the Keras implementation of

the VGG16 model with weights pre-trained on ImageNet database was used. Upon

removing the last block of fully-connected layers from the VGG16 network, it was

used as a deep feature generator for producing semantic image vectors for pavement

images. These vectors were then used with several classifiers like Neural Networks

(NN), Support Vector Machine (SVM), Random Forest (RF), etc. for predicting

the labels. Figure 7 illustrates the workflow of the transfer learning approach used

by Gopalakrishnan et al.94

Fig. 7. Overall framework of the deep transfer learning approach for automated pavement crack

detection

A comparison of pavement crack detection results on test set images (20%)

using various deep transfer learning models is presented in Table 2. Since the

image features for all the models were generated using truncated VGG16 model,

the final classifier specifies the different models. F1-score is the harmonic mean of

precision and recall. AUC is the area under the ROC curve. Among the different

classifiers tested, a single-layer neural network classifier (with ‘adam’ optimizer)

trained on ImageNet pre-trained VGG16 CNN features yielded the best performance

(90% accuracy, precision, recall, F1-score, and 0.87 AUC). Thus, deep transfer

learning can be a cost-effective and efficient approach for rapid and automated

image classification tasks, especially when the available data is small.
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Table 2. Comparison of pavement crack detection results using various deep transfer learn-
ing models

Transfer Learning Final Classifier Accuracy F1-score AUC

Truncated VGG16 Single-layer Neural Network (NN) 0.90 0.90 0.87
Truncated VGG16 Random Forest (RF) 0.86 0.85 0.78

Truncated VGG16 Extremely Randomized Trees (ERT) 0.87 0.86 0.78

Truncated VGG16 Support Vector Machine (SVM) 0.87 0.87 0.80
Truncated VGG16 Logistic Regression (LR) 0.88 0.87 0.79

3.3. Structural Health Monitoring

In recent years, Unmanned Aerial Vehicles (UAVs) or Unmanned Aerial Systems

(UAS), commonly referred to as drones, are fast emerging as easy-to-deploy remote

sensing and monitoring systems with a variety of applications ranging from disaster

management and construction surveying to civil infrastructure inspection.117 Owing

to their ability to accommodate a range of payloads with varying sizes and weights,

including high-definition (HD) camera, multi-spectral cameras, laser scanners, sen-

sors, etc., they are already widely used for search-and-rescue operations, emergency

operations, remote sensing, photogrammetry, precision agriculture, surveillance,

marketing, real estate, meteorology, etc.

An attractive feature of using UAVs for infrastructure inspection is that they

provide the accessibility and flexibility to navigate around complex structures and

locations that are hard to reach otherwise and collect data with equal or higher qual-

ity compared to manual data collection by inspectors. This makes it significantly

easier, safer, and cost-effective compared to traditional inspection methods in the

context of structural health monitoring (SHM) of civil infrastructure systems such

as bridges, buildings, roads, power lines, pipelines, wind turbines, etc. Also, UAV-

based visual inspection methods can be used for monitoring both the microscale

and macroscale defects of infrastructures resulting in detailed inventory, survey, full

field mapping, and condition assessment of civil and transportation infrastructure

systems.118

The valuable data such as HD images obtained using UAVs can be used to train

machine learning and deep learning algorithms to make the process of identify-

ing defects on the infrastructure from images efficient. Although machine learning

based techniques have been successfully applied to object detection in UAV images

in the context of SHM, the use of DL for prognostics and damage assessment of

civil infrastructure systems is still an emerging area of research, mainly due to the

difficulties in generating good quality labeled training image datasets.119 A com-

prehensive review on the reported uses and applications of DL for UAVs, including

the major challenges for the application of DL for UAV-based solutions by Carrio

et al.120 found that the most successful applications of CNNs to UAVs were with

respect to visual data (images) owing to the low-cost, lightweight, and low power

consumption of image sensors.
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Gopalakrishnan et al.95 recently developed a simplified crack detection model

from UAV images of civil infrastructure through the application of deep transfer

learning approach using a similar approach that was used for automated pavement

crack detection.94 A Hexacopter UAV (see Figure 8) was used to collect close-up

images of few common civil infrastructure systems (like storage silos, local road-

ways, etc.). More specifically, the HD visual inspection was carried out using the

Hexacopter-I UAV with a 30 MP high definition Canon EOS 5D Mk IV DSLR

camera mounted on a 3-axis rotatable gimbal with live video transmission, which

allows the inspector to change the direction of the camera and focus to get better

pictures of the defects on the structure. Some sample HD images of civil infras-

tructure components with and without cracks captured by Hexacopter are shown

in Figure 9.

Fig. 8. A snapshot of Hexacopter-I UAV used for civil infrastructure inspection (Source: In-

fraDrone LLC)

Fig. 9. Sample UAV images of civil infrastructure systems: with cracks (left) and without cracks

(right) (Source: InfraDrone LLC)

For conducting DL experiments, the Keras DL framework was used and the

Keras implementation of the VGG-16 model with weights pre-trained on ImageNet
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database was used in this study. The dataset consisted of 130 UAV images, of

which 80 were labeled as “crack” and 50 as “no crack”. 80% data was used for

training and the rest 20% for testing. Among the 80% of the images dataset used

for training and validation, 10% was used for validation alone. The early stopping

criteria was used with the final model being the one with low validation loss. The

transfer learning workflow employed for this problem was similar to the previous

example, hence the details are not repeated here. A comparison of crack detection

results on UAV images of civil infrastructure components using various deep transfer

learning models is presented in Table 3. The results show that the proposed UAV

vision-based deep transfer learning crack detection method can achieve about 90%

accuracy in finding cracks in realistic situations without any augmentation and

preprocessing. Most importantly, it shows that the transfer learning approach can

work well even with very small datasets in some cases.

Table 3. Crack detection performance on UAV test set images of civil infrastructure using
various deep transfer learning models

Transfer Learning Final Classifier Accuracy F1-score AUC

Truncated VGG16 Single-layer Neural Network (NN) 0.89 0.89 0.90

Truncated VGG16 Random Forest (RF) 0.86 0.85 0.77
Truncated VGG16 Extremely Randomized Trees (ERT) 0.82 0.82 0.83

Truncated VGG16 Support Vector Machine (SVM) 0.75 0.74 0.83
Truncated VGG16 Logistic Regression (LR) 0.89 0.89 0.90

4. Summary

Materials informatics is an emerging field at the intersection of materials science

and computer science. In particular, data-driven techniques in computer science are

increasing being applied on a variety of materials data with great success, and in

this chapter we discussed a few recent advances in the application of deep learning

techniques on materials image data at different length scales (materials image in-

formatics). The fundamental concepts of deep learning, its advantages, challenges,

and some ways to address those challenges were also discussed. The increasingly

availability of materials databases (both images and other data types) along with

groundbreaking advances in data science approaches (in particular deep learning

based techniques) offer a lot of promise to successfully realize the goals of the Ma-

terials Genome Initiative, and aid in the discovery, design, and deployment of next-

generation materials.
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