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Abstract

The prediction of protein function is a key task in bioin-

formatics and a variety of techniques and data sets have

been employed for that purpose. Using the popular key-

word recovery measure, which is based on standard keyword

annotations of the SwissProt database, this paper presents

a comparative study of the information provided for protein

function prediction by different types of data sets: phyloge-

netic profiles, protein interaction networks, and gene expres-

sion data. The technique employed is to evaluate the average

keyword recovery achieved when the top (most strongly con-

nected or similar) pairs of proteins are taken from each data

set. The results show that protein interaction data contains

the most information, then gene expression data, and finally,

phylogenetic profiles. In addition, the average keyword re-

covery is also computed for the top pairs derived from the

raw protein interaction data using a measure, h-confidence,

which comes from the data mining area of association analy-

sis. This approach gives improved results over raw protein

interaction data and even better results when applied to pro-

tein complexes that were computationally generated using

the raw protein complex data. The paper also briefly dis-

cusses the fact that the different data types appear to be

complementary.

1 Introduction.

Proteins are the most essential and versatile macromole-
cules of life, and the knowledge of their functions is a
crucial link in the development of new drugs, better
crops, and even the development of synthetic biochemi-
cals such as biofuels. Experimental procedures for pro-
tein function prediction are inherently low throughput
and are thus unable to annotate a non-trivial fraction
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of proteins that are becoming available due to rapid
advances in genome sequencing technology. This has
motivated the development of computational techniques
that utilize a variety of high-throughput experimental
data for protein function prediction, such as protein and
genome sequences, gene expression data, protein inter-
action networks and phylogenetic profiles. (See [7] for a
survey of several hundred articles on this topic.) This
paper contributes to efforts in the computational pre-
diction of protein function by presenting a comparative
study of the information provided for protein function
prediction by different types of data sets: phylogenetic
profiles, protein interaction networks, and gene expres-
sion data.

The technique employed here is to identify pairs of
proteins that are strongly connected or similar using the
information from a data set and then to evaluate the
ability of the top (most strongly connected or similar)
pairs of proteins from each data set to predict protein
function. Given the strength of various pairs of proteins,
the top pairs of proteins for a data set are evaluated
with respect to the popular keyword recovery measure,
which is based on standard keyword annotations of
the SwissProt database [11]. The higher the average
keyword recovery the more information relevant to
protein function prediction is present.

Using average keyword recovery metric [6], it is pos-
sible to compare the performance of the various data
sets and determine the relative levels of information.
Our results show that protein interaction data contains
the most information, then gene expression data, and
finally, in a result that is somewhat surprising, phylo-
genetic profiles. This result is surprising because pre-
viously published results have shown phylogenetic pro-
files to have more information than gene expression data
with respect to protein function prediction [6].

Besides the functional links that can be directly de-
rived, it is also possible to identify strongly interacting
pairs using a more indirect approach. Specifically, the
average keyword recovery was also computed for the top
pairs derived from the raw protein interaction data us-
ing a measure, h-confidence, which comes from the data



mining area of association analysis [8]. This approach
gives improved results over raw protein interaction data
and even better results when applied to protein com-
plexes that were computationally generated using the
raw protein complex data [3]. This result also empha-
sizes the importance of the processing of the data to
extracting the maximum amount of information.

We believe that our work has the following signifi-
cant contributions:

1. Owing to the importance of the knowledge of pro-
tein function, several approaches have been pro-
posed in the literature for predicting protein func-
tion from a variety of biological data types, such as
protein interaction networks, gene expression data
and phylogenetic profiles, as well as a combination
thereof [7]. Past studies have indicated that phy-
logenetic and expression profiles, which provide in-
formation at the level of individual proteins, gen-
erally have comparable power for predicting pro-
tein function, with the former slightly outperform-
ing the latter [6, 9]. On the other hand, interac-
tion networks provide information at a more global
level, so that the direct and indirect interactions
between proteins can be used to infer functional
knowledge about proteins more accurately [6, 5].
Thus, although these studies provide an implicit
understanding of the relative capabilities of the dif-
ferent data sets and their sources, there have not
been any studies that compare these capabilities
for function prediction explicitly. In this paper, we
attempt to fill this gap by explicitly comparing the
potential of a diverse variety of biological data sets,
namely microarray data, phylogenetic profiles, pro-
tein interaction networks and protein complexes for
the function prediction task.

2. Traditional methods for the inference of function
from protein interaction networks involve the rep-
resentation of the network as a graph consisting
of proteins represented as nodes and interactions
as edges, and the subsequent application of one or
more of neighborhood-, global optimization- and
clustering-based techniques [7]. However, a new
successful category of approaches involves the rep-
resentation of the set of interactions and complexes
as a binary matrix and applications of techniques
from the field of association analysis to extract
dominant groups of proteins, which are hypothe-
sized to represent functional modules [12, 4]. In
particular, the concept of the hyperclique pattern
[13] has been shown to produce very pure functional
modules with respect to the Gene Ontology [12].
In this study, we show that the simple application

of just pairwise hypercliques leads to significantly
more accurate inference of protein function as com-
pared to those obtained using some simple graph-
based approaches. Thus, we illustrate the potential
of hypercliques in particular, and association analy-
sis in general, for the analysis of biological data.

2 Data Sources.

We use the following genomic data for the task of
protein function prediction on a global scale.

Protein-protein interaction data
High-throughput protein-protein interaction data of
yeast Saccharomyces cerevisiae is taken from [3]. This
comprises of 6228 unique interactions among 2372
proteins.

Protein complex data
The protein complex data is taken from [3]. These pro-
tein complexes are computationally obtained from raw
protein interaction data using the TAP-MS (tandem
affinity purification with mass spectrometry) approach.
Even though individual protein complexes may not pro-
vide explicit information about physical interactions,
they provide information about functional relationships.

Microarray gene expression data
We considered two gene expression data sets for this
study. [10] has time series of 4 experimental conditions
for all the genes in budding yeast, making it effectively
a matrix of (6178×74). We call this data GE:Spellman.
Another expression data that we have used in this study
is constructed by the combination of several well-known
data sets available for yeast. This microarray data set,
called GE:Barkai in this study, consists of a total of
1011 experimental conditions for 6206 genes [1].

Phylogenetic profile data
The phylogenetic profile of a protein is essentially a
bit vector that encodes for the presence or absence of
that protein in various organisms. For this study, we
used the phylogenetic profile data for all the proteins
of yeast constructed using the genomes of 59 different
organisms [2].

SwissProt keywords
For evaluation purposes, we used keyword annotations
of all the proteins from the SwissProt database [11]. In
all, there are 368 keywords assigned to yeast proteins.
We omitted one of the keywords ’Complete Proteome’
as this was present in all the proteins.



3 Methods.

Our general approach involves constructing weighted
graphs in which nodes represent proteins and the weight
between any two proteins in the constructed graph is
the value of the similarity (according to the measure
used) between the corresponding two proteins. We then
generate several subgraphs from this weighted graph
by preserving only those links whose weight is more
than specified similarity threshold. Generally speaking,
for a higher threshold, the constructed subgraph has
stronger links and fewer proteins and vice-versa. If the
threshold were fully relaxed, the constructed subgraph
would be same as the original weighted graph. Below
we discuss how we constructed weighted graphs for the
different data sets we used in this study.

Gene Expression Data
To build a graph using all possible co-expressed protein
pairs based on gene expression data, we used the Pear-
son correlation coefficient to measure the association of
each possible protein pair.

Phylogenetic Profiles
To build a graph using all possible protein pairs that
co-evolved together based on the phylogenetic profiles,
we used the mutual information measure, as suggested
by [2].

Weighted Protein-Protein Interaction Data
We build a graph using the known interaction weights
between each pair of proteins [3].

Derived Graphs Using Protein Interaction
and Protein Complex Data
We derive two more graphs from protein interaction
data and protein complex data using an indirect
measures of the strength of the association of a pair of
proteins, namely, h-confidence [13]. This measure was
used for finding functional modules in protein complex
data [12], where functional modules are groups of
proteins that are likely to have similar functions. Full
details of h-confidence and its associated hyperclique
pattern are provided in [12] and [13]. However, we
provide a brief explanation here.

Consider a set of protein complexes, which can
be regarded as sets of proteins. This data can be
represented as a binary matrix, where the rows rep-
resent complexes and the columns represent proteins.
Specifically, each row contains a 1 in precisely those
columns representing the proteins that belong to the
complex corresponding to that row. For a pair of items,
the h-confidence of a pair of proteins is just the number
of times they appear together divided by the maximum

number of times that one of the proteins occurs by
itself. The h-confidence of a set of items is between 0
and 1. It is close to 1 if proteins mostly occur together
and close to 0 if they often occur without one another.
Although the starting binary matrix can be a set of
protein complexes, we can also use the raw protein
interaction graph as well. In both cases, we build
subgraphs using all pairs with an h-confidence above
a certain level. Different subgraphs are generated by
using different h-confidence levels.

Evaluation
The subgraph generated by each data set was evaluated
using keyword recovery, based on standard keyword
annotations of the SwissProt database [11]. More
specifically, the widely used keyword recovery metric
was applied. This metric was introduced by [6] and is
defined by the following equation:

KeywordRecovery =
1
A

A∑
i=1

x∑
j=1

nj

N

where A is the total number annotated protein, x is
the number of keywords associated with the ith protein,
N is the total number of keywords associated with the
neighbors of the ith protein, and nj is the number
of keywords from neighboring proteins match the jth
keyword of the ith protein.

Informally, the keyword recovery of a specified pro-
tein is just the fraction of the keywords of its neighbors
(not eliminating duplicates) that are also keywords of
the specified protein, and the overall keyword recovery
is just the average of the individual keyword recoveries.
The maximum possible value is 1, and the minimum is
0. Use of this measure for evaluation requires eliminat-
ing proteins without any SwissProt keyword.

The motivation for the keyword recovery metric is
the following: If protein function for an unlabeled pro-
tein is predicted as a set of the keywords of its neigh-
bors, then keyword recovery serves as a measure of the
quality of that approach. Of course, more sophisticated
approaches are possible, but the keyword recovery mea-
sure is simple and provides an easily understood metric
of the amount of information related to function predic-
tion that can be found in a data set or a portion of a
data set.

The keyword recovery measure is applied to the
weighted graphs defined above. The weights on the
edges of these graphs are not used in the computation
of the keyword recovery, but can be used to select a
subgraph, e.g., by eliminating edges with low weights.
Indeed, as is shown below, those graphs with higher edge
weight typically yield higher keyword recovery scores.



Figure 1: Performance of different biological data sets for yeast protein function prediction

4 Results and Discussion.

Figure 1 shows the performance of the different data sets
for the prediction of protein function evaluated using
the SwissProt keyword recovery methodology described
earlier. This figure plots the average keyword recovery
against the corresponding number of proteins for which
predictions can be made at that value of recovery, for
each of the graphs generated from the original data
sets. However, before we discuss these results in more
detail, it is important to note that graphs for the protein
interaction and protein complex data sets are limited
by the number of proteins (2372 in protein interaction
data and 2450 proteins in protein complex data), while
gene expression and phylogenetic profiles are available
for nearly all the yeast proteins.

It is easy to see that it is better to have a plot closer
to the top-right corner in Figure 1, because this indi-
cates that a large number of proteins can be annotated
at any level of keyword recovery. More specifically, fol-
lowing important conclusions can be made from these
plots:

1. Phylogenetic profiles seem to perform the worst
among all data sets in terms of keyword recovery.

In particular, both the gene expression data sets
outperform the phylogenetic profile data set. Even
though this result does not match those reported
by earlier studies [6, 9], it should be noted that the
expression data sets we used are richer than those
used earlier. Also, using all SwissProt keywords, we
were able to reproduce almost exactly the results
of [6] for phylogenetic profiles, which indicate that
these profiles do not contain abnormally spurious
information.

2. Even for the same type of data, results may vary
widely for different data sets. This can be ob-
served in our results for gene expression data, where
the ’GE:Barkai’ data set clearly outperforms the
’GE:Spellman’ data set in function prediction. This
difference may explain why different studies on
gene expression are targeted towards understand-
ing proteins that belong to different sets of func-
tional classes. In such a case, the protein func-
tion prediction accuracy over all functional classes
may not provide a meaningful conclusion. This fac-
tor may have led to the above difference in perfor-
mance since the ’GE:Spellman’ data set is not rep-



resentative of all the functional classes of yeast. On
the other hand, these results show merit of using
a comprehensive gene expression data set, such as
’GE:Barkai’ for predicting protein function.

3. Weighted protein interaction graphs substantially
outperform both gene expression data and phylo-
genetic profiles in recovering a larger number of
proteins at a substantially high keyword recovery.
For instance, at a reasonable recovery threshold of
0.5, predictions could be made only for 428 pro-
teins using the ’GE:Barkai’ data set, while the cor-
responding number for interaction data was 1102,
which is significantly higher. This result confirms
the greater power of interaction data for protein
function prediction.

4. Interestingly enough, keyword recovery perfor-
mance on the graph derived from protein inter-
action data using h-confidence measure is much
higher than that obtained from the raw weighted
interaction graph. Moreover, the sets of protein
pairs identified using the simple protein interaction
network and the h-confidence measure are signif-
icantly complementary (more than 75%) to each
other.

5. Finally as shown by the plot, functionally linked
protein pairs derived from protein complex data
using the h-confidence measure have the best per-
formance for a keyword recovery threshold of about
50% or more. This may be attributed to the rich
functional information in the protein complex data,
which is missing in the raw protein interaction net-
work. Assuming that all the proteins in a com-
plex are functionally linked to each other, protein
complexes have a keyword recovery of only 0.20 is
obtained from all the complexes. This result in-
dicates that although protein complexes by them-
selves are sufficiently stable, it is important to iden-
tify functionally coherent groups of proteins within
complexes. Moreover, the set of functional links
obtained from these two approaches are also sub-
stantially complementary to each other.

Finally, it is also important to check that the protein
pairs that we have identified are not found to be func-
tionally coherent just by random chance. For this, we
performed a random trial with weighted protein-protein
interaction data. We randomize the interactions while
maintaining the total number of proteins and interac-
tions among them in the protein-protein interaction ma-
trix. Using the same keyword recovery analysis, we ob-
tain a recovery of 0.11, which is much lower than the
performance of all other data sets. This indicates the

potential of the protein pairs that we have identified
either by using the weights on the interaction edge or
by using the hyperclique patterns in inferring protein
function.

5 Conclusion and Future Work.

In this study, we systematically compared the perfor-
mance of various biological data sets, namely protein
complexes, protein-protein interaction, gene expression,
and phylogenetic profiles, with respect to the task of
predicting functions of yeast (Saccharomyces cerevisiae)
proteins. Using a keyword recovery approach based
on SwissProt keyword annotations of yeast proteins,
our results suggest that the hypercliques derived from
the protein complex data set consistently outperforms
other data sets in protein function prediction. The rel-
atively poor performance of phylogenetic profiles, espe-
cially with respect to expression profiles, was somewhat
unexpected, but to our knowledge other such compar-
isons have not utilized such a comprehensive expression
data set.

Moreover, results on protein-protein interaction and
protein complex data suggest that pairwise hyperclique
patterns not only provide complementary information
to the raw physical protein interactions but also im-
prove the accuracy by which a protein function can be
inferred. It is noteworthy that the best results are ob-
tained with pairwise hyperclique patterns derived from
protein complexes, which were in turn derived from the
raw protein interactions.

There are several important tasks for future work.
One task is to extend our analyses to more data sets.
In particular, the two gene expression data sets used
show markedly different performance, and we plan to
investigate different types of expression data. Also,
it is important to investigate the effect of different
similarity measures on the results. There may be
different measures (and in some cases preprocessing
schemes) that will yield even better results. The use
of evaluation measures other than keyword recovery
may also impact results and we propose to extensively
evaluate this issue. Furthermore, there are a number of
different ways to combine the results of different data
sets and we plan to investigate various strategies for that
task. Finally, we will investigate whether the approach
based on defining the similarity of pairs of proteins
in terms of h-confidence (or some other association
measure) will also give improved results for phylogenetic
and expression data.
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