
 Machine Learning Models to Predict Performance of Computer System Design

Alternatives

Berkin Ozisikyilmaz, Gokhan Memik, Alok Choudhary

Department of Electrical Engineering and Computer Science
Northwestern University, Evanston, IL 60208

{boz283, memik, choudhar}@eecs.northwestern.edu

Abstract

Computer manufacturers spend a huge amount of time,
resources, and money in designing new systems and newer
configurations, and their ability to reduce costs, charge competitive
prices, and gain market share depends on how good these systems
perform. In this work, we concentrate on both the system design and
the architectural design processes for parallel computers and develop
methods to expedite them. Our methodology relies on extracting the
performance levels of a small fraction of the machines in the design
space and using this information to develop linear regression and
neural network models to predict the performance of any machine in
the whole design space. In terms of architectural design, we show that
by using only 1% of the design space (i.e., cycle-accurate
simulations), we can predict the performance of the whole design
space within 3.4% error rate. In the system design area, we utilize the
previously published Standard Performance Evaluation Corporation
(SPEC) benchmark numbers to predict the performance of future
systems. We concentrate on multiprocessor systems and show that our
models can predict the performance of future systems within 2.2%
error rate on average. We believe that these tools can accelerate the
design space exploration significantly and aid in reducing the
corresponding research/development cost and time-to-market.

1. Introduction

Computer manufacturers spend considerable amount of time,

resources, and money to design new desktop/server/laptop

systems each year to gain advantage in a market that is worth

hundreds of billions of dollars. When a new computer system is

designed, there are many different types of components (such as

CPU type, CPU frequency, motherboard, memory type, memory

size, memory speed, busses, hard disk, etc.) that need to be

configured. It is also hard to understand the different tradeoffs and

interactions among these components. Designers cannot also use

simulation or other modeling techniques, because at this high

level, the existing models tend to have high inaccuracies resulting

in possibly reducing the efficiency of end systems. As a result,

systems designers need to rely on the existing systems’

performance and their intuitions during the design of new

systems. In this work, we aim to fill this important gap and

provide tools to guide the systems design process.

The design of any computer component is complicated. For

example, during the design of microprocessors, several parts of

the processor need to be configured (e.g., cache size and

configuration, number of ALUs, etc. need to be selected).

Currently, the most common methodology architects use is to

simulate possible configurations using cycle-accurate simulators

and make decisions based on these outcomes of these simulations.

During the design of a CPU, there are various parameters that

need to be set. For example, in Section 4.1 we have selected 24

different parameters that can be varied for a CPU. If a designer

wants to simulate 4 different values for each parameter, then there

are 4
24

 combinations, i.e., the design space consists of 4
24

elements. Finding the best configuration that meets the designers’

constraints among these is called the design space exploration.

Each element in the design space can take hours to days to

simulate, therefore it is not possible to simulate all the

configurations on a cycle-accurate simulator. This limits the

number of configurations architects can consider. Currently, most

designers rely on heuristics to guide them during this design

process. For example, simulated annealing [1] has been used to

find the set of configurations they will evaluate. However, our

work differs from such approaches in two important ways. First,

we use the same modeling techniques on the systems data

published on the SPEC webpage to create accurate models.

Second, even for the simulation data, we show that our models

provide higher accuracy levels than the existing methods.

In summary, in this work we develop predictive models that

will aid the developers. Specifically, we

a) develop predictive models using neural networks and

linear regression to estimate the performance of a system by just

using the information about its components,

b) show that the performance of a system can be accurately

predicted by using information from past systems, and

c) show that the performance of a processor can be accurately

predicted by using a small fraction of the overall set of possible

simulations.

The rest of this paper is organized as follows. In Section 2,

we give an overview of design space exploration and how our

models can be used by system manufacturers. In Section 3, we

present our predictive models. Section 4 presents the results.

Sections 5 and 6 present the related work and conclusions,

respectively.

2. Overview of Predictive Modeling

In this work, we develop two types of models. These models

correspond to how the designers can utilize the predictive models.

Both approaches are depicted in Figure 1. The first one (Figure

1(a)) is called sampled design space exploration. It chooses a

random subset of the configurations and using the performance of

these configurations predicts the performance of the rest of the

design space. This can be achieved by developing the selected

configurations and evaluating their performance or by simulating

the system on a simulator and using the performance numbers

obtained from the simulator for the selected configurations. Then

this data is used to generate a predictive model. As we will

37th International Conference on Parallel Processing

0190-3918/08 $25.00 © 2008 IEEE

DOI 10.1109/ICPP.2008.36

495

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

describe in Section 3, we have developed several models based on

linear regression and neural networks. Using the error estimation

provided by modeling and validation process, we select the model

(neural network or linear regression) that provides the highest

accuracy. This model is then used during the design space

exploration to estimate the performance of the target systems. In

addition to this mode of operation, we can also generate models

by using the results of the previous systems in the market. This

mode of operation is called chronological predictive models,

which uses historical performance announcements to predict the

performance of future systems. In this modeling task, the selection

of the input data set is determined by the already published results.

Let’s assume without losing any generality that we are trying to

estimate the performance of the systems that will be built in 2007.

We can then utilize the results announced in 2006 to develop a

model, i.e. use as our training data. We estimate the error of the

developed models using 2006 data set and then use the best model

to predict the performances of future systems as shown in Figure

1(b). We must note that there may be other means of utilizing the

predictive models during the design space exploration. However,

we restrict ourselves to sampled design space exploration and

chronological predictions, because they exhibit the most beneficial

use for the design space exploration.

 (a) (b)

Figure 1. Overview of design space exploration using predictive

modeling: (a) sampled design space exploration and

(b) chronological predictive models.

An important aspect of our work is the use of real data. In

this work, we do not only show that our models can be effectively

used to model simulation data, but more importantly we show that

the real system performance can be accurately predicted.

Specifically, we show that our models have high accuracy on

performance numbers created via simulation and then show that

these methods also achieve high accuracy when data from real

systems are used. We train and evaluate our models using

previously announced SPEC results [4] (Section 4.3). For

example, to develop our models for the chronological estimations,

we utilize the SPEC announcements made in 2005 to train our

models and then predict the performance of the systems

announced in 2006. Hence, we can precisely report how

accurately we can estimate the real system performance. We must

highlight that SPEC rating is the most common means of

comparing the performance of different systems and hence they

are of tremendous importance to system manufacturers. SPEC

ratings are commonly used for marketing and also used for setting

the prices of the systems. Consequently, system manufacturers put

great effort in optimizing their systems for these ratings.

As we elaborate further in Section 4, the complexity and

dimensionality of the data is high: the records based on the

simulations include 24 dimensions (i.e., parameters); for SPEC

announcements, each record provides information on 32

parameters (representing the dimensionality of the data) in the

system. Each SPEC announcement also provides the execution

times of SPEC applications as well as the SPEC ratings (output

measures). Similarly, the simulations also provide the execution

time in terms of cycles (output measure). Despite the diversity of

the data sets, our predictive models are very accurate in estimating

the system performance for both sampled design space exploration

and chronological estimations. Specifically, for sampled design

space exploration, we obtain 3.5% error rate on average when

only 1% of the design space is used for training. For chronological

predictions, on the other hand, the estimation error is 2.2% on

average. Considering the tremendous cost advantages of using

predictive models and such highly accurate predictions, the use of

machine learning tools during system design space exploration,

therefore, could be significant competitive advantage.

3. Predictive Models

In this paper, we use predictive modeling techniques from

machine learning [5, 6] to obtain estimates of performance of

systems by using information about their components as the input.

We use a total of nine models. The four linear regression models

are described in the next section. Section 3.2 discusses the five

neural network based models developed in this work.

3.1. Linear Regression (LR) Models

Regression analysis is a statistical technique for investigating

and modeling the relationship between variables. In this model,

we have n observations y=y1,…,yn called the response variables

and xi=xi,1,…,xi,p for i=1..n that are predictor or regressor

variables. The simplest linear regression is of the form

y=β0+β1x+ε. In this formula β represents the coefficients used in

describing the response as a linear function of predictors plus a

random error ε. In our input data set we have multiple predictor

variables, causing the response y to be related to p

regressor/predictor variables. The model then becomes y=

β0+β1x+β2x+…+βpx+ε, where y and x are vectors of n numbers

(observations). The fitting of a regression model to the

observations is done by solving the p+1 β coefficients. The

method of least squares error (LSE) is used. In this model, it is

assumed that the error term ε has E(ε)=0, Var(ε)=σ
2
 , and that they

are uncorrelated. The least-square equation is of the form [7]

S(β0, β1,…, βp) = ∑
=

n

i

i

1

2ε =

2

1 1

∑ ∑
= =

−−

n

i

p

j

ijjoi xy ββ

S(β) may be minimized by solving a system of p+1 partial

derivatives of S with respect to βij Є [0,p]. The solutions to these

equations are the estimates for the coefficients β.

We used the linear regression model inside the SPSS

Clementine [8] tool. In Clementine there are 4 available methods

for creating the linear regression models: Enter (LR-E), Stepwise

(LR-S), Forwards (LR-F), and Backwards (LR-B). In our

experiments, for sampled design space we have seen that the

Model

Generation
NN/LR

Model

Sample

Selection

Error

Estimation

System

Configurations

System

Selection

Model

Generation
NN/LR

Model

Sample

Selection

Error

Estimation

System

Configurations

System

Selection

Model

Generation
NN/LR

Model

Error

Estimation

System

Configurations

System

Selection

Past

Configurations

Model

Generation
NN/LR

Model

Error

Estimation

System

Configurations

System

Selection

Past

Configurations

496

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

Backwards (LR-B) method produced the best results. Therefore,

we only present results for LR-B. The Backwards method builds

the equation in steps. The initial model contains all of the input

fields as predictors, and fields can only removed from the model.

Input fields that contribute little to the model are removed until no

more fields can be removed without significantly degrading the

model. Generally, we found that the linear regression models can

be built quickly for our system. It took on the order of

milliseconds to generate the models from our input data set.

3.2. Neural Network Models

Neural networks, or more accurately, Artificial Neural

Networks (ANN), have been motivated by the recognition that the

human brain processes information in a way that is fundamentally

different from the typical digital computer [6]. A neural network

is basically a simplified model of the way the human brain

processes information. It works by simulating a large number of

interconnected simple processing units that resemble abstract

versions of neurons. The feedforward ANN are multivariate

statistical models used to relate p predictor variables x1,…,xp to q

response variables y1,…,yq. The model has several layers, each

consisting of either the original or some constructed variables. The

most common structure contains three layers: the inputs which are

the original predictors, the hidden layer comprised of a set of

constructed variables, and the output layer made up of the

responses. For a hidden unit the activation function can be linear,

hard limit, sigmoid, or tan-sigmoid function. The model is very

flexible containing many parameters and it is this feature that

gives a neural network a nearly universal approximation property.

The usual approach to estimate the parameters is by minimizing

the overall residual sum of squares taken over all responses and all

observations. This is a nonlinear least-squares problem. Often

backpropagation procedure, variation of steepest descent, is used.

We used the SPSS Clementine tool to build the ANN models.

The neural network node provides five different training methods:

Quick (NN-Q), Dynamic (NN-D), Multiple (NN-M), Prune (NN-

P), and Exhaustive Prune (NN-E). In our models, we use two

methods. The first one is the Single layer (NN-S) method (a

modified version of NN-Q) and has a constant learning rate. This

method uses only one hidden layer, which is smaller than others.

As a result, the models are faster to train. This model is similar to

the one developed by Ipek et al. [2]. Note that Ipek et al. use this

model to for estimating the results of processor simulations. The

other method that we use is Exhaustive prune (NN-E) method. In

this method, network training parameters are chosen to ensure a

very thorough search of the space of possible models to find the

best one. It is the slowest of all, but often yields the best results.

During our analysis of the models, we have observed that the time

it takes to build the neural network models vary significantly.

While the NN-S model takes on the order of seconds to build, the

NN-E models can take up to tens of minutes for the largest input

data sets. However, relative to the time and cost of building a real

system, these development times are still negligible.

3.3. Error Estimation using cross-validation

Clementine software does not provide the estimated

predictive error for the model it creates. In model creation,

Clementine randomly divides the training data into two equal sets,

using half of the data to train the model and the other half to

simulate. To get an accurate estimate for the estimated predictive

error, we have generated five random sets of 50% of the training

data, and calculated the error the model achieves on these data

subsets using cross-validation. We have taken the average

predictive error on these data sets, as well as the maximum of the

error. Both of the error estimates are very close, and in general

maximum gives a closer estimate. Therefore, in the following

sections we will only present the estimates using the maximum

error. Note that the true error rates of the models are calculated

by using the created models on the whole (100% of the) data.

3.4. Data Preparation and Input Parameters

Data preparation is an important part of the predictive

modeling. In our experiments, Clementine software automatically

scales the input data to the range 0-1 to prevent the effect of scales

of different parameters. The linear regression methods expect the

input parameters to be numerical. Therefore some of the inputs to

Clementine (as they will be presented in the following section)

need to be mapped to numeric values. For some other input

parameters this kind of transformation is not possible, hence these

are omitted by Clementine. However, neural network models can

have any type of input (numeric, flag, categorical), and are

automatically transformed and scaled to be used in model

generation. In this work, we feed all the input available parameters

to Clementine. Then the program automatically measures the

importance of the parameters, and depending on the methodology

adds or removes predictor variables to the model. In some of the

chronological design space experiments Clementine omits some

predictor variables because these input parameters does not have

any variation (e.g. single L2 cache size configuration). Other than

this kind of predictor elimination, we don’t discard any input.

4. Prediction Results

In our analysis we have used the SPEC benchmark and the

corresponding published results. There are several possible

methods of presenting SPEC performance numbers. For the first

setup, sampled design space exploration, we have used the

number of cycles the simulated processor consumes to run the

SPEC applications. For the chronological design space

exploration, we have used the published SPEC numbers. The most

common one, SPECint2000 rate (and SPECfp2000 rate), is the

geometric mean of twelve (fourteen) normalized ratios.

Specifically, SPEC CPU 2000 contains 12 integer applications, 14

floating-point applications, and base runtimes for each of these

applications. A manufacturer runs a timed test on the system, and

the time of the test system is compared to the reference time, by

which a ratio is computed. The geometric mean of these ratios

provides the SPEC ratings. These ratings are important for

companies because it is the means how companies compare their

products with others in the market, and form their marketing

strategies. Hence, in Section 4.3, we present the accuracy of our

techniques for this rate. In addition, we have also tested individual

SPEC applications and show that they can also be accurately

estimated, however due to space constraints their presentations are

omitted in this paper.

497

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

In Section 4.1, we present the simulation framework that we

have used and provide the details of the data that we used in the

real system framework. In Section 4.2, we present predictions for

sampled design space when data from the simulations are used.

Then, in Section 4.3, we present the predictive models for

chronological estimations, i.e., the results when the training data

set contains records from year 2005 and the predicted data set

contains records from year 2006, for single processor and

multiprocessor systems, respectively.

4.1. Framework

For sampled design space models, we use SimpleScalar [12]

tool set, which is a system software infrastructure used to build

modeling applications for program performance analysis, detailed

microarchitectural modeling, and hardware-software co-

verification. We do not use any particular feature of the simulator

in our models; hence our approach may be applied to other

simulator frameworks. For our analysis, based on the work by

Phansalkar et al. [14] we have selected 12 applications from the

SPEC2000 benchmark. The results for the following applications

are presented due to space constraints: applu (fp), equake (fp), gcc

(int), mesa (fp), and mcf (int). The remaining results are similar.

In our simulation framework, we use a partial simulation

technique to reduce time for simulation per each application,

while incurring a slight loss of accuracy, because the SPEC

applications runs billions of instructions, and simulators are

usually slow. Since we want to get simulations for all the

configurations in our design space, it is impossible to run the

applications to completion. We have used SimPoint [13], which

uses Basic Block Distribution Analysis as an automated approach

for finding the small portions of the program to simulate that are

representative of the entire program's execution. This approach is

based upon using profiles of a program's code structure (basic

blocks) to uniquely identify different phases of execution in the

program. We use the simulation points given by SimPoint and

execute 100 Million instructions for each interval.

Table 1 shows the parameters used for the microprocessor

study, which corresponds to 4608 different configurations per

benchmark. Note that this corresponds to performing 4608

simulations for each target benchmark. We have calculated the

range of the simulated execution cycles (i.e., the ratio of the

fastest to slowest configuration for each benchmark) and the

variance: Applu/1.62/0.16, Equake/1.73/0.19, Gcc/5.27/0.33,

Mesa/2.22/0.19, and Mcf/6.38/0.71. We can see that the range of

the results can be very wide for some applications (e.g., mcf has a

range of 6.38). Despite this range, our models can predict the

simulation outcome very accurately by using a small fraction of

the simulation data (c.f., Section 4.2).

In addition to predicting the simulation outcome (Sampled

Design Space described in Section 4.2), we also perform modeling

of real system performance (Chronological Estimations described

in Section 4.3). For these models, we use the SPEC

announcements. SPEC contains results announced since 1999.

Hence, we have to first prune the data before developing our

models. Specifically, SPEC results contain announcements from

Intel, Alpha, SGI, AMD, IBM Power PC, Sun Ultra SPARC, etc.

based systems. Among these, we have chosen to analyze the

systems based on AMD Opteron (Opteron), Intel Pentium D

Table 1. Configurations used in microprocessor study

Parameters Values

L1 Data Cache Size 16, 32, 64 KB

L1 Data Cache Line Size 32, 64 B

L1 Data Cache Associativity 4

L1 Instruction Cache Size 16, 32, 64 KB

L1 Instruction Cache Line Size 32, 64 KB

L1 Instruction Cache Assoc. 4

L2 Cache Size 256, 1024 KB

L2 Cache Line Size 128 B

L2 Cache Associativity 4, 8

L3 Cache Size 0, 8 MB

L3 Cache Line Size 0, 256 B

L3 Cache Associativity 0, 8

Branch Predictor
Perfect, Bimodal,

2-level, Combination

Decode/Issue/Commit Width 4, 8

Issue wrong Yes, No

Register Update unit 128, 256

Load/Store queue 64, 128

Instruction TLB size 256, 1024 KB

Data TLB size 512, 2048 KB

Functional Units (ialu, imult,

memport, fpalu, fpmult)
4/2/2/4/2, 8/4/4/8/4

 (Pentium D), Intel Pentium 4 (Pentium 4), and Intel Xeon (Xeon).

We also model multiprocessor systems based on AMD Opteron:

2, 4, and 8 way Shared Memory Multiprocessors (SMPs) are

modeled, corresponding to AMD Opteron 2, 4, and 8,

respectively. The main reason for this selection is that these

systems are the most commonly used systems, which is also

evidenced by the low number of SPEC entries with the remaining

processors. We analyze the systems based on the processor type

because we have observed that when different processor types are

used, the system configurations were significantly different from

each other, preventing us from making a relative comparison.

An important property of the announcements is that even

within a single processor family, the performance numbers

showed significant variation: Opteron based systems has 138

records with a range of 1.40 times (i.e., the best system has 1.40

times better performance than the worst system) and variation of

0.08; Opteron 2 based systems have 152/1.58/0.11, Opteron 4

based systems have 158/1.70/0.12, Opteron 8 based systems have

58/1.68/0.13, Pentium D based systems have 71/1.45/0.10,

Pentium 4 based systems have 66/3.72/0.34 and Xeon based

systems have 216/1.34/0.09 records/range/variation values. The

SPEC announcements contain information about the systems as

well as execution times of each application. Each announcement

provides the configuration of 32 system parameters: company,

system name, processor model, bus frequency, processor speed,

floating point unit, total cores (total chips, cores per chip), SMT

(yes/no), Parallel (yes/no), L1 instruction and data cache size (per

core/chip), L2 data cache size (on/off chip, shared/nonshared,

unified/nonunified), L3 cache size (on/off chip, per core/chip,

shared/nonshared, unified/nonunified), L4 cache size (# shared,

on/off chip), memory size and frequency, hard drive size, speed

and type, and extra components. Currently, there are 7032

announced results (3550 integer and 3482 floating-point).

498

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

4.2. Sampled Design Space Modeling

In this section, we present the prediction accuracy results for

the sampled design space exploration. For these experiments,

prediction models are created by randomly sampling 1% to 5% of

the data and then using this data subset to build (train) the models.

We then extract estimated error rates for each model using the

approach presented in Section 3 and the true error rates are

calculated using the entire data set. As described in Section 2, this

approach can be used to reduce the design space size and hence

accelerate the design space exploration. In Figures 2 through 6, we

present the mean of the percentage prediction error, which is

calculated by 100*|ŷi-yi|/yi, where ŷi is the predicted and yi is the

true (reported) number for the i
th
 record in the data used. In

general, we observe that neural network models have better

prediction rates than linear regression models. This relative

success is expected because neural networks are better at

modeling complex data sets.

Due to limited space, in this section we present the results for

the best Linear Regression model (LR-B) and the best Neural

Network model (NN-E), and a fast Neural Network model (NN-

S). The general trend shows that as the training sample size

increases from 1% to 5%, we obtain better prediction accuracy.

This is due to the fact that the smaller training sets include

less/insufficient information to capture the underlying complex

relationship between design parameters. In some instances, we

may observe that the error rates may have increased a little or

stayed about the same when going to a higher training sample

size. The main reason for this is the random selection of the

training set. Even though the data selection is random, it is

possible that the selected points may not be uniform through out

the design space; hence the created model fits a portion of the

space very accurately and not fitting the rest. Another point to

observe is that Neural Network models generally have better

prediction accuracy than Linear Regression models. This is due to

the fact that linear models are inadequate to model the nonlinear

changes and predictor interactions, while neural networks’

complex data modeling capabilities provide a good fit of the

results and hence highly accurate predictions. As it is seen in

Figure 2, for the Applu application NN-E achieves 1.8% error rate

when 1% of the design spaced is used in training. This rate drops

below 1% error as the training data set size is increased to 2%. For

NN-E, we observe a similar behavior for Equake (Figure 3) and

Mcf (Figure 5) applications. On the other hand, Gcc (Figure 4)

and Mesa (Figure 6) exhibit higher error rates. An interesting

observation is that the accuracy of Neural Network models

increases while the training data increases and very little change

occurs for linear regression models. On average (over the all

applications), NN-S method achieves 94.06% estimation accuracy

at 1% sampling rate and the accuracy goes up to 98.22% when 3%

sampling rate is used. NN-E, on the other hand, achieves 96.52%

estimation accuracy on 1% sampling rate, which goes up to

99.08% at 3% sampling rate. Note that the NN-S method is

similar to the model used by Ipek et al. [2].

Another observation is that the difference between the

estimated error and the true error rates is generally small. The

estimated error is smaller than the true error in some cases. They

become very close to the true error rates after 3% sampling of the

whole design space.

4.3. Chronological Predictive Modeling

In the previous section, we have shown that the predictive

models achieve high prediction accuracies for estimating the

performance of simulations. In this section, we present the success

of the models when applied to performance prediction of

manufactured systems. This section presents the results for

chronological predictive models for single processor and

multiprocessor based systems, which use historical performance

announcements to predict the performance of future systems. We

used the published results in 2005 to predict the performance of

the systems that were built and reported in 2006.

In Figure 7, we present the prediction error for different

Linear Regression and Neural Network models for Intel Xeon,

Intel Pentium 4, and Intel Pentium D based systems. The

percentage error is calculated as described in the previous section.

The mean and standard deviation of the percentage prediction

error are shown by circles and error bars, respectively. In general,

we see that Linear Regression models perform better than Neural

Networks. One of the main reasons for this is the fact that neural

networks tend to over-fit to the data. In our case, the model built

using 2005 data is very accurate for predicting 2005 data, however

when we try to predict 2006, the over-fitting causes larger errors

in estimations. However, linear regression does not have this

problem and is successful in predicting 2006 results. In Figure 7,

we see the best accuracy is achieved using with linear regression

enter (LR-E) method of linear regression with an error rate of

2.1%, 1.5%, and 2.2% for Intel Xeon, Pentium 4, and Pentium D

based systems, respectively. Figure 8a shows the results for

Opteron based systems. The accuracies of the models are similar

to the other single processor families. For Pentium D (Figure 7c),

all the models perform about the same and produce roughly 2%

error rate. The reason for this is that the data points are very

similar to each other, because Pentium D results contain less than

2 years of data. Therefore, there have not been major changes in

the systems and as a result, the neural network models are as

successful as the linear regression models.

 In Figure 8, we present the 1, 2, 4, 8 processor results for

AMD Opteron based systems. The prediction accuracy results for

the multiprocessor systems are similar to the single processor

cases. A trend that we observe is that going to more complex

systems, Opteron-2 (Figure 8b) to Opteron-4 (Figure 8c) to

Opteron-8 (Figure 8d), we have a slightly higher minimum error

rate of 3.1%, 3.2%, and 3.5%, respectively. These minimum error

rates are achieved with the stepwise (LR-S) and backward (LR-B)

methods. Here we see that LR-S/LR-B methods perform

significantly better than the LR-E method. The reason for this is

LR-E method uses all predictors as input and hence the model has

a tighter fit to the training data, while LR-S method only adds a

predictor to the model if it improves the quality of the model

significantly. Likewise, LR-B method removes predictors if the

predictor does not improve the quality of the model above a

specified threshold. Hence, LR-S and LR-B methods converge to

the same model in these cases. In these examples we see that LR-

S/LR-B methods use lesser predictors than LR-E and perform

better on the test (future) data. Another observation is that the

neural networks perform poorer than linear regression models.

Their prediction rate seems to get highly inaccurate as the number

of processors in the system increases.

499

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

Model Error - Applu

0

1

2

3

4

5

6

7

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-E NN-E-est

Model Error - Applu

0

1

2

3

4

5

6

7

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-S NN-S-est

Model Error - Applu

0

1

2

3

4

5

6

7

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

LR-B LR-B-est
Figure 2. Estimated vs. true error rates for Applu application: NN-E (L), NN-S (M), LR-B (R)

Model Error - Equake

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-E NN-E-est

Model Error - Equake

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-S NN-S-est

Model Error - Equake

0

0.5

1

1.5

2

2.5

3

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

LR-B LR-B-est

Figure 3. Estimated vs. true error rates for Equake application: NN-E (L), NN-S (M), LR-B (R)
Model Error - Gcc

0

2

4

6

8

10

12

14

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-E NN-E-est

Model Error - Gcc

0

2

4

6

8

10

12

14

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-S NN-S-est

Model Error - Gcc

0

2

4

6

8

10

12

14

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

LR-B LR-B-est

Figure 4. Estimated vs. true error rates for Gcc application: NN-E (L), NN-S (M), LR-B (R)
Model Error - Mcf

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-E NN-E-est

Model Error - Mcf

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-S NN-S-est

Model Error - Mcf

0

0.5

1

1.5

2

2.5

3

3.5

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

LR-B LR-B-est

Figure 5. Estimated vs. true error rates for Mcf application: NN-E (L), NN-S (M), LR-B (R)
Model Error - Mesa

0

1

2

3

4

5

6

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-E NN-E-est

Model Error - Mesa

0

1

2

3

4

5

6

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

NN-S NN-S-est

Model Error - Mesa

0

1

2

3

4

5

6

1 2 3 4 5
Training Sample Size [%]

P
e
rc

e
n

ta
g

e
 E

rr
o

r
[%

]

LR-B LR-B-est

Figure 6. Estimated vs. true error rates for Mesa application: NN-E (L), NN-S (M), LR-B (R)

500

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

Chronological Predictions - Xeon

0

1

2

3

4

5

6

7

8

9

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

Chronological Predictions - Pentium 4

0

2

4

6

8

10

12

14

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

Chronological Predictions - Pentium D

0

1

2

3

4

5

6

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

(a) (b) (c)

Figure 7. Chronological predictions for Xeon (a), Pentium 4 (b), Pentium D (c) based systems

Chronological Predictions - Opteron

0

1

2

3

4

5

6

7

8

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

Chronological Predictions - Opteron 2

0

2

4

6

8

10

12

14

16

18

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

Chronological Predictions - Opteron 4

0

2

4

6

8

10

12

14

16

18

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

Chronological Predictions - Opteron 8

0

2

4

6

8

10

12

14

16

18

20

LR-E LR-S LR-B LR-F NN-Q NN-D NN-M NN-P NN-E
Predictive Model

P
e

rc
e

n
ta

g
e

 E
rr

o
r

[%
]

(a) (b) (c) (d)

Figure 8. Chronological predictions for Opteron based multiprocessor systems: (a) one (b) two (c) four, and (d) eight processors

Table 2. The best accuracy and the model that achieves this for single and multi-processor chronological predictive modeling.
Prediction Xeon Pentium D Pentium 4 Opteron Opteron 2 Opteron 4 Opteron 8

Accuracy 2.1 2.2 1.5 2.1 3.1 3.2 3.5

Method LR-E LR-E LR-E LR-B/LR-S LR-B/LR-S LR-B/LR-S LR-B/LR-S

Table 3. Average accuracy results from SPEC simulations
Statistics 1% 2% 3% 4% 5%

LR-B 4.2 4 3.82 3.8 3.8
NN-E 3.48 2.04 1.14 0.94 0.88
NN-S 5.94 3.18 2.22 1.16 1.5
Select 3.4 2.6 1.14 0.94 0.88

4.4. Summary

In the previous sections, we have presented the results for

SPEC benchmark simulation results for the microprocessors and

SPEC published results for real systems. For the sampled design

space exploration using simulation results (Section 4.2), we see

that generally neural network methods perform better than linear

regression methods. When we compare the neural network models

in themselves, exhaustive prune method has the best prediction

accuracy. The summary of the results presented in Section 4.2 are

shown in Table 3. The last row, select method, shows the error

rates that would be achieved if the method that gives the best

result on the estimation is used for predicting the whole data set.

The results reveal that select method successfully finds the best

model and uses it for the predictions. Note that for the 1%

sampling rate, select method performs better than the NN-E. The

reason for this is the Applu application; select method uses LR-B,

which gives a better accuracy than NN-E. Therefore, the average

accuracy of the select method is better than the NN-E method.

Table 2 summarizes the results presented in Section 4.3. In

this table, we present the best accuracy achieved and the method

that achieves it for different systems. As mentioned previously,

linear regression models perform well, achieving error rates

ranging between 1.5% and 3.5% on single and multiprocessor

systems. The models described in Section 4.3 include 3 to 10

predictor variables. Within these, there are generally two or three

factors that are significantly more important than others. The

important factors and their order of importance change from a

processor family to another. For example, for the Opteron

systems, (Figure 8) the most important parameters for neural

networks (with their relative importance presented in parenthesis)

are processor speed (0.659), memory frequency (0.154), L2 being

on chip or off chip (0.147), and L1 data cache size (0.139). Note

that the importance factor denotes the relative importance of the

input factor (0 denoting that the field has no effect on the

prediction and 1.0 denoting that the field completely determines

the prediction). For the same predictions, the linear regression

model included processor speed and memory size with

standardized beta coefficients of 0.915 and 0.119, respectively.

Standardized beta coefficients show the relative importance of the

predictor variable. While for Pentium D based systems (Figure

7c), the important factors used in the neural network model are

processor speed (0.570), L2 cache size (0.500), L1 cache being

shared or not (0.206), L2 cache being shared or not (0.154), L1

data cache size (0.145), and bus frequency (0.120). Linear

regression, on the other hand, uses processor speed (0.733), L2

cache size (0.583), memory size (0.001), memory frequency

(0.094), and L1 cache size (0.297). Overall, the combinations of

all parameters aid in the high prediction rates we observe.

An important difference between the chronological and

simulation analysis is that the number of available data points is

usually small for chronological analysis. Hence the diversity for

many of the components is hard to capture in the created models,

higher error rates are seen. In simulation data, the huge number of

points is created by keeping the input parameters as constant and

501

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

changing only one parameter at a time. Even with sampling 1% of

the data, the diversity can be captured, and it is easier for the

predictive models to achieve higher accuracy on simulation data.

5. Related Work

There have been numerous works done in the area of

design space exploration. Eyerman et al. [9] uses a different

heuristics to model the shape of the design space of superscalar

out-of-order processor. Ipek et al. [2] use artificial neural

networks (with cross-validation to calculate their prediction

accuracy) to predict the performance of memory, processor and

CMP design spaces. Meanwhile, Lee et al. [3] use regression

models to predict performance and power usage of the

applications found in the SPECjbb and SPEC2000 benchmarks.

As in the previous reference, the data points are created using

simulations. Kahn et al. [15] uses predictive modeling, a machine

learning technique to tackle the problem of accurately predicting

the behavior of unseen configurations in CMP environment.

Ghosh et al. [10] have presented an analytical approach to the

design space exploration of caches that avoids exhaustive

simulation. The problem that they are trying to solve (only

varying cache size and associativity) is very small compared to the

ones that other researches are trying to solve. Dubach et al. [16]

has used a combination of linear regressor models in conjunction

with neural networks to a model that can predict the performance

of programs on any microarchitectural configuration with only

using 32 further simulations. In this work, we target system

performance rather than processor performance. All of these

works have based their models on simulation while our results use

simulation results and already built existing computer systems. To

our knowledge there has not been any work done in this area. The

closest work is by Ipek et al. [11], where they use artificial neural

networks to predict the performance of SMG2000 applications run

on multi-processor systems. The application inputs and the

number of processors the application runs on are changed during

their analysis. Their accuracy results are around 12.3% when they

have 250 data points for training. However, we must point that

they also do not estimate the performance of the systems but

rather simulate the execution of an application on one system.

6. Conclusion

In this work, we have used two different machine learning

techniques, linear regression and neural network, in the area of

design space exploration. The design space exploration is an

important task for all system manufacturers. The possible

combinations of system parameters that can be set in design space

exploration is generally huge and the models we generate in this

work can be used to estimate the performance of various systems

by using a small fraction of the design space as a training set. As a

result, these models will reduce design and development cost. In

our work, we have used the results from the SPEC2000

benchmark. We have first used a simulator to generate

performance numbers for a selected number of applications from

the benchmarks, and then used predictive modeling techniques to

show that the design space can be efficiently modeled. Neural

networks are generally better for this goal; the best neural network

model (NN-E) achieves 96.5% accuracy on average when 1% of

the design space is used. If error estimations are used to guide the

selection for the prediction model, 96.6% accuracy is achieved for

the same design space. Then, to show that our predictive models

can be applied to the real world systems, we have used the

published SPECint2000 numbers from the SPEC website. Using

these performance numbers and the chronological prediction

technique, we have shown that performance of future systems can

be estimated with less than 2.2% error rate on average by using

the data from previous systems. These results indicate that the

designers can select a small portion of the design space to estimate

the performance of new systems. Our models are also successful

for estimating future system performance when limited data is

available for the already built systems.

7. Acknowledgements

This work was supported in part by NSF grants CNS-

0406341, CNS-0551639, IIS-0536994, CCR-0325207, CNS-

0720691, IIS-0613568, CCF-0541337, and DOE's SCIDAC and

FASTOS programs.

8. References

[1] Moya F., Moya J. M. and Lopez J. C., Evaluation of Design Space

Exploration Strategies. In Proc. of the EUROMICRO Conference, Sep

1999, York, England

[2] Ipek E., McKee S. A., deSupinski B. R., Schultz M. and Caruana R.

Efficiently Exploring Architectural Design Spaces via Predictive

Modeling. In Proc. of the ASPLOS, Oct. 2006, San Jose, CA.

[3] Lee B. C. and Brooks D. M. Accurate and Efficient Regression

Modeling for Microarchitectural Performance and Power Prediction. In

Proc. of the ASPLOS, Oct 2006, San Jose, CA.

[4] The Standard Performance Evaluation Corporation, http://spec.org

[5] Tan P., Steinbach M. and Vipin K. Introduction to Data mining.

Addison-Wesley, 2005.

[6] Ramakrishnan R. and Gehrke J. Database Management Systems.

McGraw-Hill, 2000.

[7] Montgomery D. C., Peck E. A. and Vining G. C. Introduction to

Linear Regression Analysis. Wiley, New York, NY, 2001.

[8] SPSS Clementine version 11, http://www.spss.com/clementine

[9] Eyerman S., Eeckhout L. and Bosschere K. D. The Shape of the

Processor Design Space and its Implications for Early Stage Explorations.

In Proc. of the Int. Conf. on ACMOS. Mar 2005, Prague, Czech Republic.

[10] Ghosh A. and Givargis T. Analytical Design Space Exploration of

Caches for Embedded Systems. In the Proc. of the DATE Conference.

Mar 2003, Munich Germany.

[11] Ipek E., de Supinski B. R., Schulz M. and McKee S. A. An Approach

to Performance Prediction for Parallel Applications. In Proc. of the Euro-

Par. May 2005, Monte de Caparica, Portugal.

[12] SimpleScalar Tool Set, http://www.simplescalar.com/

[13] Sherwood T., Perelman E., Hammerly G., and Calder B.

Automaticall characterizing large scale program behaivour. In the Proc. of

the ASPLOS. Oct 2002, San Jose, CA.

[14] Phansdalkar A., Joshi A., Eeckhout L., and John L. Measuring

program similarity: Experiments with SPEC CPU benchmark suites. In

Proc. of IEEE ISPASS, Mar 2005, Austin, TX.

[15] Khan S., Xekalakis P., Cavazos J. and Cintra M. Using Predictive

Modeling for Cross-Program Design Space Exploration in Multicore

Systems. In Proc. of the Int. Conf. on PACT, Sep 2007, Brasov, Romania.
[16] Dubach C., Jones T. M. and O’Boyle M. F. P. Microarchitectural

Design Space Exploration Using An Architecture-Centric Approach. In

Proc. of the Int. Symp. on Microarchitecture, Dec 2007, Chicago, IL.

502

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore. Restrictions apply.

