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Abstract 

Computer manufacturers spend a huge amount of time, 
resources, and money in designing new systems and newer 
configurations, and their ability to reduce costs, charge competitive 
prices, and gain market share depends on how good these systems 
perform. In this work, we concentrate on both the system design and 
the architectural design processes for parallel computers and develop 
methods to expedite them. Our methodology relies on extracting the 
performance levels of a small fraction of the machines in the design 
space and using this information to develop linear regression and 
neural network models to predict the performance of any machine in 
the whole design space. In terms of architectural design, we show that 
by using only 1% of the design space (i.e., cycle-accurate 
simulations), we can predict the performance of the whole design 
space within 3.4% error rate. In the system design area, we utilize the 
previously published Standard Performance Evaluation Corporation 
(SPEC) benchmark numbers to predict the performance of future 
systems. We concentrate on multiprocessor systems and show that our 
models can predict the performance of future systems within 2.2% 
error rate on average. We believe that these tools can accelerate the 
design space exploration significantly and aid in reducing the 
corresponding research/development cost and time-to-market.  
 

1. Introduction 
 

Computer manufacturers spend considerable amount of time, 

resources, and money to design new desktop/server/laptop 

systems each year to gain advantage in a market that is worth 

hundreds of billions of dollars. When a new computer system is 

designed, there are many different types of components (such as 

CPU type, CPU frequency, motherboard, memory type, memory 

size, memory speed, busses, hard disk, etc.) that need to be 

configured. It is also hard to understand the different tradeoffs and 

interactions among these components. Designers cannot also use 

simulation or other modeling techniques, because at this high 

level, the existing models tend to have high inaccuracies resulting 

in possibly reducing the efficiency of end systems. As a result, 

systems designers need to rely on the existing systems’ 

performance and their intuitions during the design of new 

systems. In this work, we aim to fill this important gap and 

provide tools to guide the systems design process.  

The design of any computer component is complicated. For 

example, during the design of microprocessors, several parts of 

the processor need to be configured (e.g., cache size and 

configuration, number of ALUs, etc. need to be selected). 

Currently, the most common methodology architects use is to 

simulate possible configurations using cycle-accurate simulators 

and make decisions based on these outcomes of these simulations. 

During the design of a CPU, there are various parameters that 

need to be set. For example, in Section 4.1 we have selected 24 

different parameters that can be varied for a CPU. If a designer 

wants to simulate 4 different values for each parameter, then there 

are 4
24

 combinations, i.e., the design space consists of 4
24

 

elements. Finding the best configuration that meets the designers’ 

constraints among these is called the design space exploration. 

Each element in the design space can take hours to days to 

simulate, therefore it is not possible to simulate all the 

configurations on a cycle-accurate simulator. This limits the 

number of configurations architects can consider. Currently, most 

designers rely on heuristics to guide them during this design 

process. For example, simulated annealing [1] has been used to 

find the set of configurations they will evaluate. However, our 

work differs from such approaches in two important ways. First, 

we use the same modeling techniques on the systems data 

published on the SPEC webpage to create accurate models. 

Second, even for the simulation data, we show that our models 

provide higher accuracy levels than the existing methods.  

In summary, in this work we develop predictive models that 

will aid the developers. Specifically, we  

a) develop predictive models using neural networks and 

linear regression to estimate the performance of a system by just 

using the information about its components,  

b) show that the performance of a system can be accurately 

predicted by using information from past systems, and 

c) show that the performance of a processor can be accurately 

predicted by using a small fraction of the overall set of possible 

simulations. 

The rest of this paper is organized as follows. In Section 2, 

we give an overview of design space exploration and how our 

models can be used by system manufacturers. In Section 3, we 

present our predictive models. Section 4 presents the results. 

Sections 5 and 6 present the related work and conclusions, 

respectively.  

 

2. Overview of Predictive Modeling 

 

In this work, we develop two types of models. These models 

correspond to how the designers can utilize the predictive models. 

Both approaches are depicted in Figure 1. The first one (Figure 

1(a)) is called sampled design space exploration. It chooses a 

random subset of the configurations and using the performance of 

these configurations predicts the performance of the rest of the 

design space. This can be achieved by developing the selected 

configurations and evaluating their performance or by simulating 

the system on a simulator and using the performance numbers 

obtained from the simulator for the selected configurations. Then 

this data is used to generate a predictive model. As we will 
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describe in Section 3, we have developed several models based on 

linear regression and neural networks. Using the error estimation 

provided by modeling and validation process, we select the model 

(neural network or linear regression) that provides the highest 

accuracy. This model is then used during the design space 

exploration to estimate the performance of the target systems. In 

addition to this mode of operation, we can also generate models 

by using the results of the previous systems in the market. This 

mode of operation is called chronological predictive models, 

which uses historical performance announcements to predict the 

performance of future systems. In this modeling task, the selection 

of the input data set is determined by the already published results. 

Let’s assume without losing any generality that we are trying to 

estimate the performance of the systems that will be built in 2007. 

We can then utilize the results announced in 2006 to develop a 

model, i.e. use as our training data. We estimate the error of the 

developed models using 2006 data set and then use the best model 

to predict the performances of future systems as shown in Figure 

1(b). We must note that there may be other means of utilizing the 

predictive models during the design space exploration. However, 

we restrict ourselves to sampled design space exploration and 

chronological predictions, because they exhibit the most beneficial 

use for the design space exploration. 

 

 

 

 

 

 

 

 

 

                        (a)                   (b) 

Figure 1. Overview of design space exploration using predictive 

modeling: (a) sampled design space exploration and  

(b) chronological predictive models. 

An important aspect of our work is the use of real data. In 

this work, we do not only show that our models can be effectively 

used to model simulation data, but more importantly we show that 

the real system performance can be accurately predicted. 

Specifically, we show that our models have high accuracy on 

performance numbers created via simulation and then show that 

these methods also achieve high accuracy when data from real 

systems are used. We train and evaluate our models using 

previously announced SPEC results [4] (Section 4.3). For 

example, to develop our models for the chronological estimations, 

we utilize the SPEC announcements made in 2005 to train our 

models and then predict the performance of the systems 

announced in 2006. Hence, we can precisely report how 

accurately we can estimate the real system performance. We must 

highlight that SPEC rating is the most common means of 

comparing the performance of different systems and hence they 

are of tremendous importance to system manufacturers. SPEC 

ratings are commonly used for marketing and also used for setting 

the prices of the systems. Consequently, system manufacturers put 

great effort in optimizing their systems for these ratings.  

As we elaborate further in Section 4, the complexity and 

dimensionality of the data is high: the records based on the 

simulations include 24 dimensions (i.e., parameters); for SPEC 

announcements, each record provides information on 32 

parameters (representing the dimensionality of the data) in the 

system. Each SPEC announcement also provides the execution 

times of SPEC applications as well as the SPEC ratings (output 

measures). Similarly, the simulations also provide the execution 

time in terms of cycles (output measure). Despite the diversity of 

the data sets, our predictive models are very accurate in estimating 

the system performance for both sampled design space exploration 

and chronological estimations. Specifically, for sampled design 

space exploration, we obtain 3.5% error rate on average when 

only 1% of the design space is used for training. For chronological 

predictions, on the other hand, the estimation error is 2.2% on 

average. Considering the tremendous cost advantages of using 

predictive models and such highly accurate predictions, the use of 

machine learning tools during system design space exploration, 

therefore, could be significant competitive advantage.  

 

3. Predictive Models 
 

In this paper, we use predictive modeling techniques from 

machine learning [5, 6] to obtain estimates of performance of 

systems by using information about their components as the input. 

We use a total of nine models. The four linear regression models 

are described in the next section. Section 3.2 discusses the five 

neural network based models developed in this work.  

 

3.1. Linear Regression (LR) Models 
 

Regression analysis is a statistical technique for investigating 

and modeling the relationship between variables. In this model, 

we have n observations y=y1,…,yn called the response variables 

and xi=xi,1,…,xi,p for i=1..n that are predictor or regressor 

variables. The simplest linear regression is of the form 

y=β0+β1x+ε. In this formula β represents the coefficients used in 

describing the response as a linear function of predictors plus a 

random error ε. In our input data set we have multiple predictor 

variables, causing the response y to be related to p 

regressor/predictor variables. The model then becomes y= 

β0+β1x+β2x+…+βpx+ε, where y and x are vectors of n numbers 

(observations). The fitting of a regression model to the 

observations is done by solving the p+1 β coefficients. The 

method of least squares error (LSE) is used. In this model, it is 

assumed that the error term ε has E(ε)=0, Var(ε)=σ
2
 , and that they 

are uncorrelated. The least-square equation is of the form [7] 

S(β0, β1,…, βp) = ∑
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S(β) may be minimized by solving a system of p+1 partial 

derivatives of S with respect to βij Є [0,p]. The solutions to these 

equations are the estimates for the coefficients β.  

We used the linear regression model inside the SPSS 

Clementine [8] tool. In Clementine there are 4 available methods 

for creating the linear regression models: Enter (LR-E), Stepwise 

(LR-S), Forwards (LR-F), and Backwards (LR-B). In our 

experiments, for sampled design space we have seen that the 
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Backwards (LR-B) method produced the best results. Therefore, 

we only present results for LR-B. The Backwards method builds 

the equation in steps. The initial model contains all of the input 

fields as predictors, and fields can only removed from the model. 

Input fields that contribute little to the model are removed until no 

more fields can be removed without significantly degrading the 

model. Generally, we found that the linear regression models can 

be built quickly for our system. It took on the order of 

milliseconds to generate the models from our input data set. 

 

3.2. Neural Network Models 
 

Neural networks, or more accurately, Artificial Neural 

Networks (ANN), have been motivated by the recognition that the 

human brain processes information in a way that is fundamentally 

different from the typical digital computer [6]. A neural network 

is basically a simplified model of the way the human brain 

processes information. It works by simulating a large number of 

interconnected simple processing units that resemble abstract 

versions of neurons. The feedforward ANN are multivariate 

statistical models used to relate p predictor variables x1,…,xp to q 

response variables y1,…,yq. The model has several layers, each 

consisting of either the original or some constructed variables. The 

most common structure contains three layers: the inputs which are 

the original predictors, the hidden layer comprised of a set of 

constructed variables, and the output layer made up of the 

responses. For a hidden unit the activation function can be linear, 

hard limit, sigmoid, or tan-sigmoid function. The model is very 

flexible containing many parameters and it is this feature that 

gives a neural network a nearly universal approximation property. 

The usual approach to estimate the parameters is by minimizing 

the overall residual sum of squares taken over all responses and all 

observations. This is a nonlinear least-squares problem. Often 

backpropagation procedure, variation of steepest descent, is used. 

We used the SPSS Clementine tool to build the ANN models. 

The neural network node provides five different training methods: 

Quick (NN-Q), Dynamic (NN-D), Multiple (NN-M), Prune (NN-

P), and Exhaustive Prune (NN-E). In our models, we use two 

methods. The first one is the Single layer (NN-S) method (a 

modified version of NN-Q) and has a constant learning rate. This 

method uses only one hidden layer, which is smaller than others. 

As a result, the models are faster to train. This model is similar to 

the one developed by Ipek et al. [2]. Note that Ipek et al. use this 

model to for estimating the results of processor simulations. The 

other method that we use is Exhaustive prune (NN-E) method. In 

this method, network training parameters are chosen to ensure a 

very thorough search of the space of possible models to find the 

best one. It is the slowest of all, but often yields the best results. 

During our analysis of the models, we have observed that the time 

it takes to build the neural network models vary significantly. 

While the NN-S model takes on the order of seconds to build, the 

NN-E models can take up to tens of minutes for the largest input 

data sets. However, relative to the time and cost of building a real 

system, these development times are still negligible.  
 

3.3. Error Estimation using cross-validation 
 

Clementine software does not provide the estimated 

predictive error for the model it creates. In model creation, 

Clementine randomly divides the training data into two equal sets, 

using half of the data to train the model and the other half to 

simulate. To get an accurate estimate for the estimated predictive 

error, we have generated five random sets of 50% of the training 

data, and calculated the error the model achieves on these data 

subsets using cross-validation. We have taken the average 

predictive error on these data sets, as well as the maximum of the 

error. Both of the error estimates are very close, and in general 

maximum gives a closer estimate. Therefore, in the following 

sections we will only present the estimates using the maximum 

error. Note that the true error rates of the models are calculated 

by using the created models on the whole (100% of the) data. 

 

3.4. Data Preparation and Input Parameters 
 

Data preparation is an important part of the predictive 

modeling. In our experiments, Clementine software automatically 

scales the input data to the range 0-1 to prevent the effect of scales 

of different parameters. The linear regression methods expect the 

input parameters to be numerical. Therefore some of the inputs to 

Clementine (as they will be presented in the following section) 

need to be mapped to numeric values. For some other input 

parameters this kind of transformation is not possible, hence these 

are omitted by Clementine. However, neural network models can 

have any type of input (numeric, flag, categorical), and are 

automatically transformed and scaled to be used in model 

generation. In this work, we feed all the input available parameters 

to Clementine. Then the program automatically measures the 

importance of the parameters, and depending on the methodology 

adds or removes predictor variables to the model. In some of the 

chronological design space experiments Clementine omits some 

predictor variables because these input parameters does not have 

any variation (e.g. single L2 cache size configuration). Other than 

this kind of predictor elimination, we don’t discard any input. 

 

4. Prediction Results 
 

In our analysis we have used the SPEC benchmark and the 

corresponding published results. There are several possible 

methods of presenting SPEC performance numbers. For the first 

setup, sampled design space exploration, we have used the 

number of cycles the simulated processor consumes to run the 

SPEC applications. For the chronological design space 

exploration, we have used the published SPEC numbers. The most 

common one, SPECint2000 rate (and SPECfp2000 rate), is the 

geometric mean of twelve (fourteen) normalized ratios. 

Specifically, SPEC CPU 2000 contains 12 integer applications, 14 

floating-point applications, and base runtimes for each of these 

applications. A manufacturer runs a timed test on the system, and 

the time of the test system is compared to the reference time, by 

which a ratio is computed. The geometric mean of these ratios 

provides the SPEC ratings. These ratings are important for 

companies because it is the means how companies compare their 

products with others in the market, and form their marketing 

strategies. Hence, in Section 4.3, we present the accuracy of our 

techniques for this rate. In addition, we have also tested individual 

SPEC applications and show that they can also be accurately 

estimated, however due to space constraints their presentations are 

omitted in this paper.  
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In Section 4.1, we present the simulation framework that we 

have used and provide the details of the data that we used in the 

real system framework. In Section 4.2, we present predictions for 

sampled design space when data from the simulations are used. 

Then, in Section 4.3, we present the predictive models for 

chronological estimations, i.e., the results when the training data 

set contains records from year 2005 and the predicted data set 

contains records from year 2006, for single processor and 

multiprocessor systems, respectively.  

 

4.1. Framework 
 

For sampled design space models, we use SimpleScalar [12] 

tool set, which is a system software infrastructure used to build 

modeling applications for program performance analysis, detailed 

microarchitectural modeling, and hardware-software co-

verification. We do not use any particular feature of the simulator 

in our models; hence our approach may be applied to other 

simulator frameworks. For our analysis, based on the work by 

Phansalkar et al. [14] we have selected 12 applications from the 

SPEC2000 benchmark. The results for the following applications 

are presented due to space constraints: applu (fp), equake (fp), gcc 

(int), mesa (fp), and mcf (int). The remaining results are similar. 

In our simulation framework, we use a partial simulation 

technique to reduce time for simulation per each application, 

while incurring a slight loss of accuracy, because the SPEC 

applications runs billions of instructions, and simulators are 

usually slow. Since we want to get simulations for all the 

configurations in our design space, it is impossible to run the 

applications to completion. We have used SimPoint [13], which 

uses Basic Block Distribution Analysis as an automated approach 

for finding the small portions of the program to simulate that are 

representative of the entire program's execution. This approach is 

based upon using profiles of a program's code structure (basic 

blocks) to uniquely identify different phases of execution in the 

program. We use the simulation points given by SimPoint and 

execute 100 Million instructions for each interval.  

Table 1 shows the parameters used for the microprocessor 

study, which corresponds to 4608 different configurations per 

benchmark. Note that this corresponds to performing 4608 

simulations for each target benchmark. We have calculated the 

range of the simulated execution cycles (i.e., the ratio of the 

fastest to slowest configuration for each benchmark) and the 

variance: Applu/1.62/0.16, Equake/1.73/0.19, Gcc/5.27/0.33, 

Mesa/2.22/0.19, and Mcf/6.38/0.71. We can see that the range of 

the results can be very wide for some applications (e.g., mcf has a 

range of 6.38). Despite this range, our models can predict the 

simulation outcome very accurately by using a small fraction of 

the simulation data (c.f., Section 4.2).  

In addition to predicting the simulation outcome (Sampled 

Design Space described in Section 4.2), we also perform modeling 

of real system performance (Chronological Estimations described 

in Section 4.3). For these models, we use the SPEC 

announcements. SPEC contains results announced since 1999. 

Hence, we have to first prune the data before developing our 

models. Specifically, SPEC results contain announcements from 

Intel, Alpha, SGI, AMD, IBM Power PC, Sun Ultra SPARC, etc. 

based systems. Among these, we have chosen to analyze the 

systems based on AMD Opteron (Opteron), Intel Pentium D     

Table 1. Configurations used in microprocessor study 

Parameters Values 

L1 Data Cache Size 16, 32, 64 KB 

L1 Data Cache Line Size 32, 64 B 

L1 Data Cache Associativity 4 

L1 Instruction Cache Size 16, 32, 64 KB 

L1 Instruction Cache Line Size 32, 64 KB 

L1 Instruction Cache Assoc. 4 

L2 Cache Size 256, 1024 KB 

L2 Cache Line Size 128 B 

L2 Cache Associativity 4, 8 

L3 Cache Size 0, 8 MB 

L3 Cache Line Size 0, 256 B 

L3 Cache Associativity 0, 8 

Branch Predictor 
Perfect, Bimodal,  

2-level, Combination 

Decode/Issue/Commit Width 4, 8 

Issue wrong Yes, No 

Register Update unit 128, 256 

Load/Store queue 64, 128 

Instruction TLB size 256, 1024 KB 

Data TLB size 512, 2048 KB 

Functional Units (ialu, imult, 

memport, fpalu, fpmult) 
4/2/2/4/2, 8/4/4/8/4 

 (Pentium D), Intel Pentium 4 (Pentium 4), and Intel Xeon (Xeon). 

We also model multiprocessor systems based on AMD Opteron: 

2, 4, and 8 way Shared Memory Multiprocessors (SMPs) are 

modeled, corresponding to AMD Opteron 2, 4, and 8, 

respectively. The main reason for this selection is that these 

systems are the most commonly used systems, which is also 

evidenced by the low number of SPEC entries with the remaining 

processors. We analyze the systems based on the processor type 

because we have observed that when different processor types are 

used, the system configurations were significantly different from 

each other, preventing us from making a relative comparison.  

An important property of the announcements is that even 

within a single processor family, the performance numbers 

showed significant variation: Opteron based systems has 138 

records with a range of 1.40 times (i.e., the best system has 1.40 

times better performance than the worst system) and variation of 

0.08; Opteron 2 based systems have 152/1.58/0.11, Opteron 4 

based systems have 158/1.70/0.12, Opteron 8 based systems have 

58/1.68/0.13, Pentium D based systems have 71/1.45/0.10, 

Pentium 4 based systems have  66/3.72/0.34 and Xeon based 

systems have 216/1.34/0.09 records/range/variation values. The 

SPEC announcements contain information about the systems as 

well as execution times of each application. Each announcement 

provides the configuration of 32 system parameters: company, 

system name, processor model, bus frequency, processor speed, 

floating point unit, total cores (total chips, cores per chip), SMT 

(yes/no), Parallel (yes/no), L1 instruction and data cache size (per 

core/chip), L2 data cache size (on/off chip, shared/nonshared, 

unified/nonunified), L3 cache size (on/off chip, per core/chip, 

shared/nonshared, unified/nonunified), L4 cache size (# shared, 

on/off chip), memory size and frequency, hard drive size, speed 

and type, and extra components. Currently, there are 7032 

announced results (3550 integer and 3482 floating-point).  
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4.2. Sampled Design Space Modeling 
 

In this section, we present the prediction accuracy results for 

the sampled design space exploration. For these experiments, 

prediction models are created by randomly sampling 1% to 5% of 

the data and then using this data subset to build (train) the models. 

We then extract estimated error rates for each model using the 

approach presented in Section 3 and the true error rates are 

calculated using the entire data set. As described in Section 2, this 

approach can be used to reduce the design space size and hence 

accelerate the design space exploration. In Figures 2 through 6, we 

present the mean of the percentage prediction error, which is 

calculated by 100*|ŷi-yi|/yi, where ŷi is the predicted and yi is the 

true (reported) number for the i
th
 record in the data used. In 

general, we observe that neural network models have better 

prediction rates than linear regression models. This relative 

success is expected because neural networks are better at 

modeling complex data sets. 

Due to limited space, in this section we present the results for 

the best Linear Regression model (LR-B) and the best Neural 

Network model (NN-E), and a fast Neural Network model (NN-

S). The general trend shows that as the training sample size 

increases from 1% to 5%, we obtain better prediction accuracy. 

This is due to the fact that the smaller training sets include 

less/insufficient information to capture the underlying complex 

relationship between design parameters. In some instances, we 

may observe that the error rates may have increased a little or 

stayed about the same when going to a higher training sample 

size. The main reason for this is the random selection of the 

training set. Even though the data selection is random, it is 

possible that the selected points may not be uniform through out 

the design space; hence the created model fits a portion of the 

space very accurately and not fitting the rest. Another point to 

observe is that Neural Network models generally have better 

prediction accuracy than Linear Regression models. This is due to 

the fact that linear models are inadequate to model the nonlinear 

changes and predictor interactions, while neural networks’ 

complex data modeling capabilities provide a good fit of the 

results and hence highly accurate predictions. As it is seen in 

Figure 2, for the Applu application NN-E achieves 1.8% error rate 

when 1% of the design spaced is used in training. This rate drops 

below 1% error as the training data set size is increased to 2%. For 

NN-E, we observe a similar behavior for Equake (Figure 3) and 

Mcf (Figure 5) applications. On the other hand, Gcc (Figure 4) 

and Mesa (Figure 6) exhibit higher error rates. An interesting 

observation is that the accuracy of Neural Network models 

increases while the training data increases and very little change 

occurs for linear regression models. On average (over the all 

applications), NN-S method achieves 94.06% estimation accuracy 

at 1% sampling rate and the accuracy goes up to 98.22% when 3% 

sampling rate is used. NN-E, on the other hand, achieves 96.52% 

estimation accuracy on 1% sampling rate, which goes up to 

99.08% at 3% sampling rate. Note that the NN-S method is 

similar to the model used by Ipek et al. [2]. 

Another observation is that the difference between the 

estimated error and the true error rates is generally small. The 

estimated error is smaller than the true error in some cases. They 

become very close to the true error rates after 3% sampling of the 

whole design space. 

4.3. Chronological Predictive Modeling  
 

In the previous section, we have shown that the predictive 

models achieve high prediction accuracies for estimating the 

performance of simulations. In this section, we present the success 

of the models when applied to performance prediction of 

manufactured systems. This section presents the results for 

chronological predictive models for single processor and 

multiprocessor based systems, which use historical performance 

announcements to predict the performance of future systems. We 

used the published results in 2005 to predict the performance of 

the systems that were built and reported in 2006.  

In Figure 7, we present the prediction error for different 

Linear Regression and Neural Network models for Intel Xeon, 

Intel Pentium 4, and Intel Pentium D based systems. The 

percentage error is calculated as described in the previous section. 

The mean and standard deviation of the percentage prediction 

error are shown by circles and error bars, respectively. In general, 

we see that Linear Regression models perform better than Neural 

Networks. One of the main reasons for this is the fact that neural 

networks tend to over-fit to the data. In our case, the model built 

using 2005 data is very accurate for predicting 2005 data, however 

when we try to predict 2006, the over-fitting causes larger errors 

in estimations. However, linear regression does not have this 

problem and is successful in predicting 2006 results. In Figure 7, 

we see the best accuracy is achieved using with linear regression 

enter (LR-E) method of linear regression with an error rate of 

2.1%, 1.5%, and 2.2% for Intel Xeon, Pentium 4, and Pentium D 

based systems, respectively. Figure 8a shows the results for 

Opteron based systems. The accuracies of the models are similar 

to the other single processor families. For Pentium D (Figure 7c), 

all the models perform about the same and produce roughly 2% 

error rate. The reason for this is that the data points are very 

similar to each other, because Pentium D results contain less than 

2 years of data. Therefore, there have not been major changes in 

the systems and as a result, the neural network models are as 

successful as the linear regression models. 

 In Figure 8, we present the 1, 2, 4, 8 processor results for 

AMD Opteron based systems. The prediction accuracy results for 

the multiprocessor systems are similar to the single processor 

cases. A trend that we observe is that going to more complex 

systems, Opteron-2 (Figure 8b) to Opteron-4 (Figure 8c) to 

Opteron-8 (Figure 8d), we have a slightly higher minimum error 

rate of 3.1%, 3.2%, and 3.5%, respectively. These minimum error 

rates are achieved with the stepwise (LR-S) and backward (LR-B) 

methods. Here we see that LR-S/LR-B methods perform 

significantly better than the LR-E method. The reason for this is 

LR-E method uses all predictors as input and hence the model has 

a tighter fit to the training data, while LR-S method only adds a 

predictor to the model if it improves the quality of the model 

significantly. Likewise, LR-B method removes predictors if the 

predictor does not improve the quality of the model above a 

specified threshold. Hence, LR-S and LR-B methods converge to 

the same model in these cases. In these examples we see that LR- 

S/LR-B methods use lesser predictors than LR-E and perform 

better on the test (future) data. Another observation is that the 

neural networks perform poorer than linear regression models. 

Their prediction rate seems to get highly inaccurate as the number 

of processors in the system increases. 

499

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore.  Restrictions apply. 



 

Model Error - Applu

0

1

2

3

4

5

6

7

1 2 3 4 5
Training Sample Size [% ]

P
e
rc

e
n

ta
g

e
 E

rr
o

r 
[%

]

NN-E NN-E-est

Model Error - Applu

0

1

2

3

4

5

6

7

1 2 3 4 5
Training Sample Size [% ]

P
e
rc

e
n

ta
g

e
 E

rr
o

r 
[%

]

NN-S NN-S-est

Model Error - Applu

0

1

2

3

4

5

6

7

1 2 3 4 5
Training Sample Size [% ]

P
e
rc

e
n

ta
g

e
 E

rr
o

r 
[%

]

LR-B LR-B-est  
Figure 2. Estimated vs. true error rates for Applu application: NN-E (L), NN-S (M), LR-B (R) 
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Figure 3. Estimated vs. true error rates for Equake application: NN-E (L), NN-S (M), LR-B (R) 
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Figure 4. Estimated vs. true error rates for Gcc application: NN-E (L), NN-S (M), LR-B (R) 
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Figure 5. Estimated vs. true error rates for Mcf application: NN-E (L), NN-S (M), LR-B (R) 
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Figure 6. Estimated vs. true error rates for Mesa application: NN-E (L), NN-S (M), LR-B (R) 
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Figure 7. Chronological predictions for Xeon (a), Pentium 4 (b), Pentium D (c) based systems 
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Figure 8. Chronological predictions for Opteron based multiprocessor systems:  (a) one (b) two (c) four, and (d) eight processors 

Table 2. The best accuracy and the model that achieves this for single and multi-processor chronological predictive modeling. 
Prediction Xeon Pentium D Pentium 4 Opteron Opteron 2 Opteron 4 Opteron 8 

Accuracy 2.1 2.2 1.5 2.1 3.1 3.2 3.5 

Method LR-E LR-E LR-E LR-B/LR-S LR-B/LR-S LR-B/LR-S LR-B/LR-S 

Table 3. Average accuracy results from SPEC simulations 
Statistics 1% 2% 3% 4% 5% 

LR-B 4.2 4 3.82 3.8 3.8 
NN-E 3.48 2.04 1.14 0.94 0.88 
NN-S 5.94 3.18 2.22 1.16 1.5 
Select 3.4 2.6 1.14 0.94 0.88 

4.4. Summary  
 

In the previous sections, we have presented the results for 

SPEC benchmark simulation results for the microprocessors and 

SPEC published results for real systems. For the sampled design 

space exploration using simulation results (Section 4.2), we see 

that generally neural network methods perform better than linear 

regression methods. When we compare the neural network models 

in themselves, exhaustive prune method has the best prediction 

accuracy. The summary of the results presented in Section 4.2 are 

shown in Table 3. The last row, select method, shows the error 

rates that would be achieved if the method that gives the best 

result on the estimation is used for predicting the whole data set. 

The results reveal that select method successfully finds the best 

model and uses it for the predictions. Note that for the 1% 

sampling rate, select method performs better than the NN-E. The 

reason for this is the Applu application; select method uses LR-B, 

which gives a better accuracy than NN-E. Therefore, the average 

accuracy of the select method is better than the NN-E method.  

Table 2 summarizes the results presented in Section 4.3. In 

this table, we present the best accuracy achieved and the method 

that achieves it for different systems. As mentioned previously, 

linear regression models perform well, achieving error rates 

ranging between 1.5% and 3.5% on single and multiprocessor 

systems. The models described in Section 4.3 include 3 to 10  

predictor variables. Within these, there are generally two or three 

factors that are significantly more important than others. The 

important factors and their order of importance change from a 

processor family to another. For example, for the Opteron 

systems, (Figure 8) the most important parameters for neural 

networks (with their relative importance presented in parenthesis) 

are processor speed (0.659), memory frequency (0.154), L2 being 

on chip or off chip (0.147), and L1 data cache size (0.139). Note 

that the importance factor denotes the relative importance of the 

input factor (0 denoting that the field has no effect on the 

prediction and 1.0 denoting that the field completely determines 

the prediction). For the same predictions, the linear regression 

model included processor speed and memory size with 

standardized beta coefficients of 0.915 and 0.119, respectively. 

Standardized beta coefficients show the relative importance of the 

predictor variable. While for Pentium D based systems (Figure 

7c), the important factors used in the neural network model are 

processor speed (0.570), L2 cache size (0.500), L1 cache being 

shared or not (0.206), L2 cache being shared or not (0.154), L1 

data cache size (0.145), and bus frequency (0.120). Linear 

regression, on the other hand, uses processor speed (0.733), L2 

cache size (0.583), memory size (0.001), memory frequency 

(0.094), and L1 cache size (0.297). Overall, the combinations of 

all parameters aid in the high prediction rates we observe.  

An important difference between the chronological and 

simulation analysis is that the number of available data points is 

usually small for chronological analysis. Hence the diversity for 

many of the components is hard to capture in the created models, 

higher error rates are seen. In simulation data, the huge number of 

points is created by keeping the input parameters as constant and 
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changing only one parameter at a time. Even with sampling 1% of 

the data, the diversity can be captured, and it is easier for the 

predictive models to achieve higher accuracy on simulation data.  

 

5. Related Work  
 

There have been numerous works done in the area of 

design space exploration. Eyerman et al. [9] uses a different 

heuristics to model the shape of the design space of superscalar 

out-of-order processor. Ipek et al. [2] use artificial neural 

networks (with cross-validation to calculate their prediction 

accuracy) to predict the performance of memory, processor and 

CMP design spaces. Meanwhile, Lee et al. [3] use regression 

models to predict performance and power usage of the 

applications found in the SPECjbb and SPEC2000 benchmarks. 

As in the previous reference, the data points are created using 

simulations. Kahn et al. [15] uses predictive modeling, a machine 

learning technique to tackle the problem of accurately predicting 

the behavior of unseen configurations in CMP environment. 

Ghosh et al. [10] have presented an analytical approach to the 

design space exploration of caches that avoids exhaustive 

simulation. The problem that they are trying to solve (only 

varying cache size and associativity) is very small compared to the 

ones that other researches are trying to solve. Dubach et al. [16] 

has used a combination of linear regressor models in conjunction 

with neural networks to a model that can predict the performance 

of programs on any microarchitectural configuration with only 

using 32 further simulations. In this work, we target system 

performance rather than processor performance. All of these 

works have based their models on simulation while our results use 

simulation results and already built existing computer systems. To 

our knowledge there has not been any work done in this area. The 

closest work is by Ipek et al. [11], where they use artificial neural 

networks to predict the performance of SMG2000 applications run 

on multi-processor systems. The application inputs and the 

number of processors the application runs on are changed during 

their analysis. Their accuracy results are around 12.3% when they 

have 250 data points for training. However, we must point that 

they also do not estimate the performance of the systems but 

rather simulate the execution of an application on one system.   

 

6. Conclusion 
 

In this work, we have used two different machine learning 

techniques, linear regression and neural network, in the area of 

design space exploration. The design space exploration is an 

important task for all system manufacturers. The possible 

combinations of system parameters that can be set in design space 

exploration is generally huge and the models we generate in this 

work can be used to estimate the performance of various systems 

by using a small fraction of the design space as a training set. As a 

result, these models will reduce design and development cost. In 

our work, we have used the results from the SPEC2000 

benchmark. We have first used a simulator to generate 

performance numbers for a selected number of applications from 

the benchmarks, and then used predictive modeling techniques to 

show that the design space can be efficiently modeled. Neural 

networks are generally better for this goal; the best neural network 

model (NN-E) achieves 96.5% accuracy on average when 1% of 

the design space is used. If error estimations are used to guide the 

selection for the prediction model, 96.6% accuracy is achieved for 

the same design space. Then, to show that our predictive models 

can be applied to the real world systems, we have used the 

published SPECint2000 numbers from the SPEC website. Using 

these performance numbers and the chronological prediction 

technique, we have shown that performance of future systems can 

be estimated with less than 2.2% error rate on average by using 

the data from previous systems. These results indicate that the 

designers can select a small portion of the design space to estimate 

the performance of new systems. Our models are also successful 

for estimating future system performance when limited data is 

available for the already built systems. 
 

7. Acknowledgements 
 

This work was supported in part by NSF grants CNS-

0406341, CNS-0551639, IIS-0536994, CCR-0325207, CNS-

0720691, IIS-0613568, CCF-0541337, and DOE's SCIDAC and 

FASTOS programs. 

 

8. References 
 
[1] Moya F., Moya J. M. and Lopez J. C., Evaluation of Design Space 

Exploration Strategies. In Proc. of the EUROMICRO Conference, Sep 

1999, York, England 

[2] Ipek E., McKee S. A., deSupinski B. R., Schultz M. and Caruana R. 

Efficiently Exploring Architectural Design Spaces via Predictive 

Modeling. In Proc. of the ASPLOS, Oct. 2006, San Jose, CA.  

[3] Lee B. C. and Brooks D. M. Accurate and Efficient Regression 

Modeling for Microarchitectural Performance and Power Prediction. In 

Proc. of the ASPLOS, Oct 2006, San Jose, CA. 

[4] The Standard Performance Evaluation Corporation, http://spec.org  

[5] Tan P., Steinbach M. and Vipin K. Introduction to Data mining. 

Addison-Wesley, 2005.  

[6] Ramakrishnan R. and Gehrke J. Database Management Systems. 

McGraw-Hill, 2000.  

[7] Montgomery D. C., Peck E. A. and Vining G. C. Introduction to 

Linear Regression Analysis. Wiley, New York, NY, 2001.  

[8] SPSS Clementine version 11, http://www.spss.com/clementine 

[9] Eyerman S., Eeckhout L. and Bosschere K. D. The Shape of the 

Processor Design Space and its Implications for Early Stage Explorations. 

In Proc. of the Int. Conf. on ACMOS. Mar 2005, Prague, Czech Republic. 

[10] Ghosh A. and Givargis T. Analytical Design Space Exploration of  

Caches for Embedded Systems. In the Proc. of the DATE Conference. 

Mar 2003, Munich Germany. 

[11] Ipek E., de Supinski B. R., Schulz M. and McKee S. A. An Approach 

to Performance Prediction for Parallel Applications. In Proc. of the Euro-

Par. May 2005, Monte de Caparica, Portugal. 

[12] SimpleScalar Tool Set, http://www.simplescalar.com/  

[13] Sherwood T., Perelman E., Hammerly G., and Calder B.  

Automaticall characterizing large scale program behaivour. In the Proc. of 

the ASPLOS. Oct 2002, San Jose, CA. 

[14] Phansdalkar A., Joshi A., Eeckhout L., and John L. Measuring 

program similarity: Experiments with SPEC CPU benchmark suites. In  

Proc. of IEEE ISPASS, Mar 2005, Austin, TX. 

[15] Khan S., Xekalakis P., Cavazos J. and Cintra M. Using Predictive  

Modeling for Cross-Program Design Space Exploration in Multicore  

Systems. In Proc. of the Int. Conf. on PACT, Sep 2007, Brasov, Romania. 
[16] Dubach C., Jones T. M. and O’Boyle M. F. P. Microarchitectural  

Design Space Exploration Using An Architecture-Centric Approach. In  

Proc. of the Int. Symp. on Microarchitecture, Dec 2007, Chicago, IL.

502

Authorized licensed use limited to: Northwestern University. Downloaded on February 3, 2010 at 17:41 from IEEE Xplore.  Restrictions apply. 


