
Quantization Error and Accuracy-Performance
Tradeoffs for Embedded Data Mining Workloads

Ramanathan Narayanan, Berkin Özıs.ıkyılmaz, Gokhan Memik,
Alok Choudhary, and Joseph Zambreno

Department of Electrical Engineering and Computer Science
Northwestern University
Evanston, IL 60208, USA

{ran310,boz283,memik,choudhar}@eecs.northwestern.edu

Abstract. Data mining is the process of automatically finding implicit,
previously unknown and potentially useful information from large vol-
umes of data. Embedded systems are increasingly used for sophisticated
data mining algorithms to make intelligent decisions while storing and
analyzing data. Since data mining applications are designed and imple-
mented considering the resources available on a conventional computing
platform, their performance degrades when executed on an embedded
system. In this paper, we analyze the bottlenecks faced in implementing
these algorithms in an embedded environment and explore their porta-
bility to the embedded systems domain. Particularly, we analyze the
floating point computation in these applications and convert them into
fixed point operations. Our results reveal that the execution time of five
representative applications can be reduced by as much as 11.5× and 5.2×
on average, without a significant impact on accuracy.

1 Introduction

Data mining algorithms have been successfully applied to predict trends in a
variety of fields including marketing, biotechnology, multimedia, security, com-
binatorial chemistry, and remote sensing. As application-specific architectures
become increasingly available, there is an urgent need to port data mining ap-
plications to embedded systems. The increased availability of embedded devices
has led to a rapid increase in their usage in various fields. The level of intelligence
demanded of these embedded systems require them to use complex and expen-
sive data mining techniques. For example, a distributed traffic sensor system
providing real-time information may consist of embedded devices with access to
streaming data.

Data mining applications and algorithms are designed keeping in mind the
ample computing power available on conventional systems. As a result, their
performance on embedded systems is greatly hindered. In this paper, we study
the amount of floating point calculations used by several data mining applica-
tions, and identify these as a major cause of poor performance of these algorithms
on embedded environments. Further, we propose a solution to this problem by

Y. Shi et al. (Eds.): ICCS 2007, Part III, LNCS 4489, pp. 734–741, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Quantization Error and Accuracy-Performance Tradeoffs 735

replacing the floating point calculations with fixed point arithmetic. By doing
so, we are sacrificing the high precision offered by floating point operations for
the high implementation efficiency of fixed point computation. As data mining
applications are used in critical sectors like healthcare and traffic sensors, it
is imperative that we study the effects of our optimization techniques on the
accuracy of these algorithms.

The remainder of this paper is organized as follows. In the following section,
we present a brief overview of related work in this area. In Sect. 3, we present
our methodology to convert a data mining application to use fixed point compu-
tations. A brief description of the data mining applications analyzed is provided
in Sect. 4. The conversion procedure is described for each application in detail in
Sect. 5, after which we provide the quantization and error analysis results. The
paper is concluded in Sect. 6 with a look towards some planned future efforts.

2 Related Work

Our approach in this paper is similar to work done in the Digital Signal Process-
ing [1,2] domain. In [2], the authors have used MATLAB to semi-automate con-
version of floating point MATLAB programs into fixed point programs, to be
mapped onto FPGA hardware. Currently our fixed point conversion is done
manually. However, we support varying precisions and do not perform input
scaling transformations. In [3], an implementation of sensory stream data min-
ing using fixed point arithmetic has been described. The authors in [4] have used
fixed point arithmetic with pre-scaling to obtain decent speedups for artificial
neural networks used in natural language processing. Several data mining algo-
rithms have been previously implemented on FPGAs [3,5,6]. In [5], the Apriori
algorithm, which is nearly pure integer arithmetic, has been implemented on
hardware. In [6], algorithmic transformations on K-Means clustering have been
studied for reconfigurable logic.

3 Fixed Point Arithmetic

Fixed point representation uses a fixed number of digits to represent the integer
and fractional parts of real numbers. We use the notation Q.i.f to represent a
fixed point variable of size i + f , with i digits used to represent the integer part
and f digits used to represent the fractional part. The major stumbling blocks
associated with fixed point arithmetic are Overflow and Underflow. Overflow
occurs when a number is too large to be represented using the Q.i.f format.
The integer part of the fixed point number then wraps around and changes
sign. Underflow, on the other hand, occurs when a number is too small to be
represented using a fixed point notation, causing it to become zero.

3.1 Methodology

Our methodology for converting a data mining application using floating point
arithmetic, to a fixed point application is described in Fig. 1. The first step in our



736 R. Narayanan et al.

Floating
Point 

Application

Floating
Point 

Application

Range
Analysis

Testing
Algorithmic

Analysis

Accuracy
Analysis

Fixed
Point 

Application

Fixed
Point 

Application

Fig. 1. Fixed Point Conversion Methodology

methodology is algorithmic analysis of the target application. In this step, we
identify the functional blocks that are suitable for fixed point conversion. After
a detailed algorithmic analysis and functional block identification, we apply a
range analysis on the functional blocks. The purpose of range analysis is to
determine the variables that may be susceptible to Overflow and Underflow
errors. This step determines the various fixed point formats feasible and also
identifies the various combinations of integer and fractional bits that are valid
for the target application. In the accuracy analysis phase, we study the effects
of differences between floating point operations and fixed point operations. We
concentrate on the gradual loss of accuracy stemming from minor differences
between fixed point and floating point operations. We may need to retain some
of the critical components as floating point operations. In this phase, we may
also have to reorder some of the calculations to optimize them with regard to
fixed point calculations. This analysis procedure must be iterated several times
until we obtain a fixed point representation that is safe, meaning that there
are no critical errors. After the range and accuracy analysis are completed, we
convert the data mining application to use fixed point operations.

4 Data Mining Applications

Data mining applications can be broadly classified into association rule mining,
clustering, classification, sequence mining, similarity search, and text mining,
among others. Each domain contains unique algorithmic features. In our study,
we analyze applications belonging to four major domains: clustering, association
rule mining, classification, and sequence mining. We have selected five applica-
tions from NU-MineBench, a data mining applications benchmark suite [7]. In
our application selection, we have given priority to the applications that have
the most floating point operations, since these are negatively affected while ex-
ecuting on embedded environments. Table 1 highlights the relative execution
times on a conventional platform and an embedded system. The disparity in
runtimes is due to the higher processor speed and dedicated hardware float-
ing point unit available on the conventional (x86) platform (AMD Opteron,
2.4GHz), as compared to the embedded system (PowerPC). We also compute
the fraction of floating point operations within the executed instructions [8],
and surmise that there is significant scope for optimization by converting the



Quantization Error and Accuracy-Performance Tradeoffs 737

Table 1. Overview of the MineBench applications analyzed

Application
Inst Count
(billions)

Floating
Point Ops

Exec Time
[x86] (s)

Exec Time
[PPC] (s)

K-Means 53.77 19.87% 24.519 11145.89
Fuzzy 447.03 4.64% 443.7 57600.45

Utility 15.00 10.03% 9.506 482.21
ScalParC 5.47 9.61% 8.134 1553.82
PLSA 401.44 2.57% 136.67 2859.25

floating point operations to fixed point arithmetic. Detailed information about
the K-Means, Fuzzy K-Means, Utility, ScalParC and PLSA applications and
their corresponding datasets can be found in [7].

5 Conversion and Results

5.1 Experimental Setup

We performed our experiments on the Xilinx ML310, which is a Virtex-II Pro-
based embedded development platform. It includes an XC2VP30 FPGA with
two embedded PowerPC processors, DDR memory, PCI slots, ethernet, and
standard I/O on an ATX board. We have 16KB separate, configurable, two-
way set-associative instruction and data cache units. The operating frequency is
100MHz.

5.2 K-Means
Algorithmic analysis of K-Means reveals that a major fraction of floating point
operations are due to Euclidean distance calculation. We performed a range
analysis of the floating point operations, and determined the maximum and
minimum values produced during computation. It is seen that at least 13 integer
bits are required to avoid overflow, which generates negative values for distance
and causes a critical error. Also, the input data requires precision of up to 10−3,
hence the binary representation of the number in fixed point notation must
contain at least 12 fractional digits for accurate representation of the input data.
Keeping this in mind, we find that the number of integer bits required by the
fixed point representation for K-Means lies between 12 and 20.

The timing results for various fixed point implementation of K-Means are
shown in Table 2. The results indicate that the fixed point versions run 9.1×
to 11.6× faster than the floating point enabled version. The metric we use for
accuracy analysis of K-Means is the ‘membership’ of each object to its cluster, as
seen in Table 4. Here we study the percentage of points that change their cluster
membership while varying the computation formats. The values obtained are
well within reasonable error bounds for the Q.16.16 and Q.20.12 formats. The
loss of precision is responsible for the larger error percentages in the Q.24.8 case.



738 R. Narayanan et al.

Table 2. Timing and speedup for K-
Means

Type Total
Floating point 11145.89s

Q16.16 9.06x
Q20.12 8.80x
Q24.8 11.59x

Table 3. Timing and speedup for Fuzzy

Type Total
Floating point 3404.497s

Q12.20 1.46x
Q16.16 1.94x
Q20.12 3.19x
Q24.8 8.86x

Table 4. Relative error for K-Means

Num
Clusters

Membership Error
Q16.16 Q20.12 Q24.8

5 1.52% 1.83% 2.44%
7 1.53% 1.58% 2.43%
9 1.55% 1.55% 2.09%
11 1.54% 1.62% 18.71%
13 1.61% 1.72% 4.65%

Table 5. Relative error for Fuzzy

Num
Clusters

Membership
Q12.20 Q16.16 Q20.12 Q24.8

5 35.57% 1.69% 4.23% 4.85%
7 20.50% 0.35% 0.97% 1.87%
9 8.30% 0.17% 0.49% 1.18%
11 0.00% 0.12% 0.52% 3.33%
13 0.00% 0.08% 2.05% 2.89%

Considering various factors, it is seen that the Q.16.16 fixed point representation
offers the best tradeoff between performance and accuracy. We also analyzed the
difference in the cluster centers generated between the fixed point and floating
point versions of the K-Means application. We notice that as the number of
fractional bits increases from 8 to 16, the error in cluster centers decreases from
8% to 0.9%, for k = 13. In summary, K-Means can be executed using several
fixed point representation formats to achieve significant speedups with minimal
loss of accuracy.

5.3 Fuzzy K-Means

The major floating point computation intensive part in Fuzzy K-Means is the
Euclidean distance calculation. Another important computation is that of the
‘fuzzy membership’ value and ‘fuzzy validity’ criterion. The Euclidean distance
kernel discussed above, generates values that require 12 or more integer bits
to avoid Overflow . The calculation of the ‘fuzzy membership’ value requires a
fractional exponentiation computation, which is expensive to implement using
fixed point computation. Hence, we make a design choice to compute this value
using floating point variables. The choice of fractional bits for Fuzzy K-Means
is slightly more flexible than the K-Means algorithm. Therefore the number of
fractional bits needs only to be more than 10 in order to achieve reasonable
results.

The timing results for Fuzzy K-Means, shown in Table 3, indicate signifi-
cant speedups for the fixed point computation enabled versions. The speedup
in execution time peaks at 8.86x for the Q.24.8 fixed point representation. To
evaluate accuracy of the results, we analyze the percentage variation in the



Quantization Error and Accuracy-Performance Tradeoffs 739

Table 6. Timing and speedup for Utility

Support Value Floating point Q23.9 Q24.8
0.002 2863.02033s 1.27x 3.38x
0.004 1003.537s 1.18x 1.21x
0.008 571.711s 1.25x 1.32x
0.01 482.2119s 1.27x 1.59x
0.02 280.631s 1.38x 1.37x
0.03 367.3135s 1.37x 1.38x

Table 7. Average Relative Error for the total utility values of the points for various
support values

Type/support 0.002 0.004 0.008 0.01 0.02 0.03
Q23.9 0.00147% 0.01100% 0.00314% 0.00314% 0% N/A
Q24.8 0.02831% 0.02715% 0.00772% 0.00772% 1% N/A

fuzzy-membership value. This value indicates the degree of membership of each
object to its cluster. This value is shown in Table 5. We also analyze the dif-
ferences in the cluster centers produced by the fixed point formats, and notice
between 63% (for Q.24.8) and 0.73% (for Q.12.20) variation. Since the cluster
centers are a derived attribute, we may compute them using higher precision
floating point values. Therefore it can be seen that the optimum configuration
for Fuzzy K-Means is the Q.16.16 representation, which achieves significant
speedup, with minimal loss of accuracy.

5.4 Utility Mining

Algorithmic analysis of Utility mining yields the calculation of ‘Utility’ value
as the major floating point computation kernel. The range of Utility values
generated using the dataset indicated that at least 23 integer bits would be
required in the fixed point representation. Prevention of overflow is critical to
the application and hence we are forced to choose fewer than 9 fractional bits.
Fortunately, we have observed that other modules require accuracy of up to
10−2, thus necessitating at least 8 fractional digits for successful termination of
the algorithm. Consequently, we decided to use the Q.23.9 or Q.24.8 fixed point
representation.

The speedup values for Utility mining shown in Table 6 reveal that a speed
up of up to 3.38× is possible using the valid fixed point representations deter-
mined in Sect. 5. To measure the accuracy of the results, we compared the utility
itemsets generated by the algorithm, for various values of minimum utility sup-
port. The results show that for lower values of minimum utility support, the
Q.24.8 format produces only 10 of 25 utility itemsets, whereas the Q.23.9 fixed
point format produces all the utility itemsets generated by the floating point
version. However, as the minimum utility support increases, there is 100% corre-



740 R. Narayanan et al.

Table 8. Timing and speedup for
ScalParC

Type I/O Comp. Total
Floating 74.70s 1458.82s 1553.52s
Q4.28 0.98x 1.27x 1.25x
Q8.24 0.98x 1.27x 1.25x
Q12.20 0.99x 1.26x 1.24x

Table 9. Timing and speedup for
PLSA

Type Total
Floating point 2859.25s

Q2.30 1.003x
Q1.31 1.014x
Q0.32 1.003x

spondence in the utility itemsets generated. Another measure of accuracy is the
‘total utility’ value of each utility itemset (Table 7). Percentage variation over
the total utility value over the valid fixed point representation formats shows
there there is insignificant error due to fixed point conversion.

5.5 ScalParC

ScalParC has a large percentage of floating point operations (9.61%), thus hin-
dering performance on embedded systems. All the expensive floating point op-
erations are done in the ‘Calculate Gini’ module, which is the most compute
intensive module of ScalParC. By using a fixed point variable to store the ’Gini’
value and simple reordering of the computations, we were able to avoid signifi-
cant floating point data type casting overheards.

The timing results for various fixed point implementation of ScalParC are
shown in Table 8. The fixed point operations achieves a execution time speedup
of 1.25x and 1.24x for the Q12.20 and Q4.28 configurations, respectively. We
have also compared the accuracy of various implementations by examining the
number of nodes in the generated decision tree at each level and discovered
that with 20 fractional bits, one out of 697 splits was not performed. Our results
reveal that the accuracy increases with increasing precision, however, the output
changes for the ScalParC are in general negligible.

5.6 PLSA

We also analyzed and converted the PLSA application, which has a relatively low
percentage of floating point operations. The main floating point operation lies in
the area calculation module. Because of the large values of area, we can have only
0-2 fractional bits. The algorithm has been modified so that the implementation
does not need any fractional bits, and a multiplication with 0.1 has been replaced
by division by 10.

The timing results for various fixed point implementations of PLSA are shown
in Table 9. In general, the performance improvement of the fixed point conver-
sion is small. Higher speed-ups may be achieved when using larger data-sets,
because there will be a higher fraction of floation point operations. To analyze
the accuracy of the converted application, two metrics have been considered.
The first one is the sequence alignments. The alignments are exactly the same in
all the runs, which shows that the application has executed correctly. Another



Quantization Error and Accuracy-Performance Tradeoffs 741

metric is the total area of the blocks solved in the dynamic programming ap-
proach. Our analysis has shown that the difference between these values is also
negligible.

6 Conclusions

In this paper, we have described a method for implementation of data mining al-
gorithms on embedded systems. Data mining algorithms are designed and imple-
mented for conventional computing systems, and show poor performance while
executing on an embedded system. We applied our methodology to several rep-
resentative data mining applications and have shown that significant speedups
can be achieved. We also quantized the error in each case and determined the
optimum configurations for fixed point implementation. Particularly, with our
fixed point conversion methodology in 4 out of the 5 applications, we achieve
significant speedups, as much as 11.5x and 5.2x on average, with minimal loss of
accuracy. As embedded data mining assumes importance in various key fields,
our methodology will serve as a starting step towards efficient implementations.

References

1. Menard, D., Chillet, D., Charot, F., Sentieys, O.: Automatic floating-point to fixed-
point conversion for DSP code generation. In: Proceedings of International Con-
ference on Compilers, Architecture and Synthesis for Embedded Systems (CASES).
(October 2002)

2. Roy, S., Banerjee, P.: An algorithm for trading off quantization error with hardware
resources for MATLAB-based FPGA design. IEEE Transactions on Computers
54(7) (July 2005) 886–896

3. Cai, Y., Hu, Y.X.: Sensory steam data mining on chip. In: Second NASA Data
Mining Workshop: Issues and Applications in Earth Science. (May 2006)

4. Ferrer, D., Gonzalez, R., Fleitas, R., Acle, J.P., Canetti, R.: NeuroFPGA - imple-
menting artificial neural networks on programmable logic devices. In: Proceedings
of Design, Automation and Test in Europe (DATE). (February 2004)

5. Baker, Z.K., Prasanna, V.P.: Efficient parallel data mining with the Apriori al-
gorithm on FPGAs. In: Proceedings of IEEE Symposium on Field-Programmable
Custom Computing Machines (FCCM). (April 2005)

6. Estlick, M., Leeser, M., Theiler, J., Szymanski, J.J.: Algorithmic transformations in
the implementation of k-means clustering on reconfigurable hardware. In: Proceed-
ings of the International Symposium on Field Programmable Gate Arrays (FPGA).
(February 2001)

7. Narayanan, R., Ozisikyilmaz, B., Zambreno, J., Memik, G., Choudhary, A.:
MineBench: A benchmark suite for data mining workloads. In: Proceedings of the
International Symposium on Workload Characterization (IISWC). (October 2006)

8. Zambreno, J., Ozisikyilmaz, B., Pisharath, J., Memik, G., Choudhary, A.: Per-
formance characterization of data mining applications using MineBench. In: Pro-
ceedings of the Workshop on Computer Architecture Evaluation using Commercial
Workloads (CAECW). (February 2006)


	Introduction
	Related Work
	Fixed Point Arithmetic
	Methodology

	Data Mining Applications
	Conversion and Results
	Experimental Setup
	K-Means
	Fuzzy K-Means
	Utility Mining
	ScalParC
	PLSA

	Conclusions

