
MineBench: A Benchmark Suite for Data Mining
Workloads

Ramanathan Narayanan† Berkin Özıs.ıkyılmaz† Joseph Zambreno‡ Gokhan Memik† Alok Choudhary†
†Electrical Engineering and Computer Science ‡Electrical and Computer Engineering

Northwestern University Iowa State University
Evanston, IL 60208, USA Ames, IA 50011, USA

{ran310, boz283, memik, choudhar}@eecs.northwestern.edu zambreno@iastate.edu

Jayaprakash Pisharath
Architecture Performance and Projections Group

Intel Corporation
Santa Clara, CA 95054

jayaprakash.pisharath@intel.com

Abstract— Data mining constitutes an important class of sci-
entific and commercial applications. Recent advances in data
extraction techniques have created vast data sets, which require
increasingly complex data mining algorithms to sift through
them to generate meaningful information. The disproportionately
slower rate of growth of computer systems has led to a sizeable
performance gap between data mining systems and algorithms.
The first step in closing this gap is to analyze these algorithms
and understand their bottlenecks. With this knowledge, cur-
rent computer architectures can be optimized for data mining
applications. In this paper, we present MineBench, a publicly
available benchmark suite containing fifteen representative data
mining applications belonging to various categories such as
clustering, classification, and association rule mining. We believe
that MineBench will be of use to those looking to characterize
and accelerate data mining workloads.

I. I NTRODUCTION

Data mining, a technique to understand and convert raw
data into useful information, is increasingly being used in a
variety of fields like marketing, business intelligence, scientific
discoveries, biotechnology, internet searches, and multimedia.
In data mining, the process of extracting information from
raw data is automated, and mostly predictive. This is the
aspect that makes data mining different from common database
techniques. Data mining is essential to automate the finding
of useful information from such large input data. For instance,
a grocery chain would apply association rule mining to find
and analyze local buying patterns.

Recent advances in data extraction techniques have resulted
in massive data sets for data mining applications. A survey
done by University of California, Berkeley indicates that an
average person collects 800MB of data a year [1]. As a result,
increasingly complex data mining algorithms are being used
to extract information from these vast data sets. However,
limitations in overall system performance will ultimately result

in prohibitive execution times for these crucial applications.
Hence there is a need to redesign modern architectures to
optimize their performance on data mining workloads. This
process involves two steps: First, since data mining is a
relatively new application area, there is a need to understand
the performance characteristics of various representative ap-
plications. Second, high performance computer architectures
optimized for data mining systems need to be developed
and their performance on commonly used workloads needs
to be evaluated. For these purposes, there is a need for
a benchmark that encompasses various representative data
mining algorithms.

In this paper, we present MineBench, which contains fifteen
representative data mining workloads from various categories.
The workloads chosen represent the heterogeneity of algo-
rithms and methods used in data mining. Applications from
clustering, classification, association rule mining and optimiza-
tion categories are included in MineBench. The codes are full
fledged implementations of entire data mining applications,
as opposed to stand-alone algorithmic kernels. We provide
OpenMP parallelized codes for twelve of the fifteen appli-
cations. An important aspect of data mining applications are
the data sets used. For most of the applications, we provide
three categories of datasets with varying sizes: small, medium,
and large. In addition, we provide source code, information
for compiling the applications using various compilers, and
command line arguments for all of the applications.

The remainder of this paper is organized as follows. In the
following section, we provide a brief overview of the related
work in this area. In Section 3, we discuss the data mining
applications included in our benchmark suite. Section 4 details
the various input data sets available. In Section 5, we provide
command line arguments for the applications, discuss compiler
compatibility, and simulation methods available. Finally the



TABLE I

OVERVIEW OF THE M INEBENCH DATA MINING BENCHMARK SUITE

Application Category Description
ScalParC Classification Decision tree classification

Naive Bayesian Classification Simple statistical classifier
K-means Clustering Mean-based data partitioning method

Fuzzy K-means Clustering Fuzzy logic-based data partitioning method
HOP Clustering Density-based grouping method

BIRCH Clustering Hierarchical Clustering method
Eclat ARM Vertical database, Lattice transversal techniques used

Apriori ARM Horizontal database, level-wise mining based on Apriori property
Utility ARM Utility-based association rule mining

SNP Classification Hill-climbing search method for DNA dependency extraction
GeneNet Structure Learning Gene relationship extraction using microarray-based method
SEMPHY Structure Learning Gene sequencing using phylogenetic tree-based method

Rsearch Classification RNA sequence search using stochastic Context-Free Grammars
SVM-RFE Classification Gene expression classifier using recursive feature elimination

PLSA Optimization DNA sequence alignment using Smith-Waterman optimization method

paper is concluded in Section 6 with a summary.

II. RELATED WORK

Benchmarks play a major role in all domains. SPEC [2]
benchmarks have been well accepted and used by several pro-
cessor manufacturers and researchers to measure the effective-
ness of their design. Other fields have popular benchmarking
suites designed for the specific application domain: TPC [3]
for database systems, SPLASH [4] for parallel architectures,
and MediaBench [5] for media and communication processors.

Several bioinformatics benchmark suites have been devel-
oped recently. BioInfoMark [6], BioBench [7], and BioPerf [8]
all contain several applications in common, including Blast,
FASTA, Clustalw, and Hmmer. The bioinformatics applica-
tions presented in MineBench differ from those included in
these benchmark suites. BioInfoMark and BioBench contain
only serial workloads. In Bioperf, a few applications have been
parallelized, unlike in MineBench which contains full fledged
OpenMP parallelized codes of all bioinformatics workloads.
Compared to the above benchmarks, MineBench covers a
wider spectrum of data mining algorithms, in terms of quantity
and diversity.

III. B ENCHMARK SUITE OVERVIEW

Data mining applications can be broadly classified into
association rule mining, classification, clustering, data visu-
alization, sequence mining, similarity search, optimization,
and text mining, among others. Each domain contains unique
algorithmic features. In establishing MineBench, we based our
selection of categories on how commonly these applications
are used in industry, and how likely they are to be used in
the future. The fifteen applications that currently comprise
MineBench are listed in Table I, and are described in more
detail in the following sections.

A. Classification Workloads

A classification problem has an input dataset called the
training set, which consists of example records with a number

of attributes. The objective of a classification algorithm is to
use this training dataset to build a model such that the model
can be used to assign unclassified records into one of the
defined classes [9].

ScalParCis an efficient and scalable variation of decision
tree classification [10]. The decision tree model is built by
recursively splitting the training dataset based on an optimality
criterion until all records belonging to each of the partitions
bear the same class label. Decision tree based models are
relatively inexpensive to construct, easy to interpret and easy
to integrate with commercial database systems. ScalParC uses
a parallel hashing paradigm to achieve scalability during
the splitting phase. This approach makes it scalable in both
runtime and memory requirements.

The Naive Bayesianclassifier [11], a simple statistical
classifier, uses an input training dataset to build a predictive
model (containing classes of records) such that the model
can be used to assign unclassified records into one of the
defined classes. Naive Bayes classifiers are based on probabil-
ity models that incorporate strong independence assumptions
which often have no bearing in reality, hence the term ‘naive’.
They exhibit high accuracy and speed when applied to large
databases.

Single nucleotide polymorphisms (SNPs), are DNA se-
quence variations that occur when a single nucleotide is altered
in a genome sequence. Understanding the importance of the
many recently identified SNPs in human genes has become
a primary goal of human genetics. TheSNP [12] benchmark
uses the hill climbing search method, which selects an initial
starting point (an initial Bayesian Network structure) and
searches that point’s nearest neighbors. The neighbor that has
the highest score is then made the new current point. This
procedure iterates until it reaches a local maximum score.

Recent advances in DNA microarray technologies have
made it possible to measure expression patterns of all the genes
in an organism, thereby necessitating algorithms that are able
to handle thousands of variables simultaneously. By represent-



ing each gene as a variable of a Bayesian Network (BN), the
gene expression data analysis problem can be formulated as
a BN structure learning problem.GeneNet[12] uses a similar
hill climbing algorithm as in SNP, the main difference being
that the input data is more complex, requiring much additional
computation during the learning process. Moreover, unlike the
SNP application, the number of variables runs into thousands,
but only hundreds of training cases are available. GeneNet has
been parallelized using a node level parallelization paradigm,
where in each step, the nodes of the BN are distributed to
different processors.

SEMPHY [12] is a structure learning algorithm that is
based on phylogenetic trees. Phylogenetic trees represent the
genetic relationship of a species, with closely related species
placed in nearby branches. Phylogenetic tree inference is
a high performance computing problem as biological data
size increases exponentially. SEMPHY uses the structural
expectation maximization algorithm, to efficiently search for
maximum likelihood phylogenetic trees. The computation in
SEMPHY scales quadratically with the input data size, neces-
sitating parallelization. The computation intensive kernels in
the algorithm are identified and parallelized using OpenMP.

Typically, RNA sequencing problems involve searching the
gene database for homologous RNA sequences.Rsearch[12]
uses a grammar-based approach to achieve this goal. Stochastic
context-free grammars are used to build and represent a
single RNA sequence, and a local alignment algorithm is
used to search the database for homologous RNAs. Rsearch is
parallelized using a dynamic load-balancing mechanism based
on partitioning the variable length database sequence to fixed
length chunks, with specific domain knowledge.

SVM-RFE [12], or Support Vector Machines - Recursive
Feature Elimination, is a feature selection method. SVM-
RFE is used extensively in disease finding (gene expression
problem). The selection is obtained by a recursive feature elim-
ination process - at each RFE step, a gene is discarded from the
active variables of a SVM classification model, according to
some support criteria. Vector multiplication is the computation
intensive kernel of SVM-RFE, and data parallelism, using
OpenMP, is utilized to parallelize the algorithm.

B. Clustering Workloads

Clustering is the process of discovering the groups of similar
objects from a database to characterize the underlying data
distribution [9]. It has wide applications in market or customer
segmentation, pattern recognition, and spatial data analysis.

The first clustering application in MineBench isK-
means[13]. K-means represents a cluster by the mean value of
all objects contained in it. Given the user-provided parameter
k, the initial k cluster centers are randomly selected from the
database. Then, each object is assigned a nearest cluster center
based on a similarity function. Once the new assignments are
completed, new centers are found by finding the mean of all
the objects in each cluster. This process is repeated until some

convergence criteria is met. K-means tries to minimize the
total intra-cluster variance.

The clusters provided by the K-means algorithm are some-
times called “hard” clusters, since any data object either is
or is not a member of a particular cluster. TheFuzzy K-
meansalgorithm [14] relaxes this condition by assuming that
a data object can have a degree of membership in each cluster.
Compared to the similarity function used in K-means, the
calculation for fuzzy membership results in a higher com-
putational cost. However, the flexibility of assigning objects
to multiple clusters might be necessary to generate better
clustering qualities. Both K-means and Fuzzy K-means are
parallelized by distributing the input objects among the pro-
cessors. At the end of each iteration, extra communication is
necessary to synchronize the clustering process.

HOP [15], originally proposed in astrophysics, is a typical
density-based clustering method. After assigning an estimation
of the density for each particle, HOP associates each particle
with its densest neighbor. The assignment process continues
until the densest neighbor of a particle is itself. All particles
reaching the same such particle are clustered into the same
group. The advantage of HOP over other density based cluster-
ing methods is that it is spatially adaptive, coordinate-free and
numerically straightforward. HOP is parallelized using a three
dimensional KD tree data structure, which allows each thread
to process only a subset of the particles, thereby reducing
communication cost significantly.

In the next version of MineBench there will be more
clustering applications incorporated from Clusbench [16]. This
clustering benchmark consists of single threaded versions
of K-means online, K-means batch, Self Organizing Map-
1D (SOM-1D), SOM-2D, Hierarchical K-means online and
Hierarchical SOM-1D algorithms. K-means batch algorithm
is similiar to the implementation available in MineBench.
However, in K-means online algorithm, the cluster center
positions are updated during each assignment of the objects.
Hence it is an incremental version of batch K-means. The self-
organizing map is a type of artficial neural network which uses
unsupervised learning to reduce the dimensions of the data.
The algorithm randomizes the input weight vectors for the
input data. Then for each object, Euclidean distance is used
to find similarity between the object and each node’s weight
vector in the map. Finally, the nodes in the neighbourhood of
the nearest map node are updated by pulling them closer to the
input object. The difference between SOM-1D and SOM2-D
is the way the original nodes weight vectors are connected in
space. Hierarchical versions of this algorithm employ recursive
calls of the original clustering algorithm. More information
regarding these applications and their usage can be found
in [16].

BIRCH [17] is an incremental and hierarchical clustering
algorithm for large databases. It employs a hierarchical tree
to represent the closeness of data objects. BIRCH scans the
database to build a clustering-feature (CF) tree to summarize



TABLE II

SUMMARY OF M INEBENCH EXECUTION COMMANDS

Application Execution Command
ScalParC scalparc<datafile> <# records> <# attributes> <# classes> <# threads>

Naive Bayesian bci [options] -d—-h<hdrfile> <tabfile> <bcfile>
K-means example [options] -i<input file>

Fuzzy K-means example [options] -f -i<input file>
HOP parahop <num particles> <particle file> <nsmooth> <bucketsize> <nHop> <nthreads>

BIRCH birch <parafile> <schefile> <projfile> <datafile>
Eclat eclat -i <input file> -o <output file> -s <support>

Apriori no outputapriori -i <input file> -f <offset file> -s <support> -n <# threads>
Utility utility mine <transaction file> <offset file> <profit file> <utility threshold> <# threads>

SNP snp<input file>
GeneNet genenet.icc<input file>
SEMPHY semphy.mt -s<input file> -f <input format> -m <model type> -G <alpha value>

Rsearch rsearch [options]<query sequence file> <data file>
SVM-RFE svm mkl <data file> <# cases> <# genes> <# iterations>

PLSA
parasw.mt<sequence 1> <sequence 2> <block height> <block width> <grid rows>
<grid columns> <# alignments> <# threads>

the cluster representation. For a large database, BIRCH can
achieve good performance and scalability. It is also effective
for incremental clustering of incoming data objects, or when
an input data stream has to be clustered.

C. ARM Workloads

The goal of Association Rule Mining (ARM) is to find inter-
esting relationships hidden in large data sets. More specifically,
it attempts to find the set of all subsets of items or attributes
that frequently occur in database records [9]. In addition, the
uncovered relationships can be represented in the form of
association rules, which state how a given subset of items
influence the presence of another subset.

Apriori [18] is the first ARM algorithm that pioneered the
use of support-based pruning to systematically control the
exponential growth of the search space. It is a level-wise
algorithm that employs a generate-and-test strategy for finding
frequent itemsets. It is based on the property that all non-empty
subsets of a frequent itemset must all be frequent (the so-
called “Apriori” property). For determining frequent items in
a fast manner, the algorithm uses a hash tree to store candidate
itemsets. Note: This hash tree has item sets at the leaves
and hash tables at internal nodes. The Apriori algorithm is
parallelized by distributing chunks of the input data among
the processors. The master processor then gathers the local
candidate itemsets, and generates globally frequent itemsets.

Utility mining [19] is another association rule-based mining
technique where the assumption of uniformity among items
is discarded. Higher “utility” itemsets are identified from a
database by considering different values for individual items.
The goal of utility mining is to restrict the size of the candidate
set so as to simplify the total number of computations required
to calculate the value of items. It uses the “transaction-
weighted downward closure property” to prune the search
space. The parallelization paradigm applied to Utility mining
is the same as in Apriori, described above.

Eclat [20] uses a vertical database format. It can determine
the support of any k-itemset by simply intersecting the id-
list of the first two (k-1)-length subsets that share a common
prefix. It breaks the search space into small, independent, and
manageable chunks. Efficient lattice traversal techniques are
used to identify all the true maximal frequent itemsets.

D. Optimization Workloads

Sequence alignment is an important problem in bioinformat-
ics used to align DNA, RNA or protein primary sequences so
as to emphasize their regions of similarity. It is used to identify
the similar and diverged regions between two sequences,
which may indicate functional and evolutionary relationships
between them.PLSA [12] uses a dynamic programming ap-
proach to solve this sequence matching problem. It is based
on the algorithm proposed by Smith and Waterman, which
uses the local alignment to find the longest common substring
in sequences. PLSA uses special data structures to intelli-
gently segment the whole sequence alignment problem into
several independent subproblems, which dramatically reduce
the computation necessary, thus providing more parallelism
than previous sequence alignment algorithms.

IV. I NPUT DATASETS

Input data is an integral part of data mining applications.
The data used in our experiments are either real-world data
obtained from various fields or widely-accepted synthetic data
generated using existing tools that are used in scientific and
statistical simulations. During evaluation, multiple data sizes
were used to investigate the characteristics of the MineBench
applications. For the non-bioinformatics applications, the in-
put datasets were classified into three different sizes: small,
medium, and large. For the ScalParC and Naive Bayesian ap-
plications, three synthetic datasets were generated by the IBM
Quest data generator [21]. Apriori also uses three synthetic
datasets from the IBM Quest data generator with a varying



TABLE III

RUNTIMES OF M INEBENCH APPLICATIONS WITH DIFFERENT COMPILERS(IN SECONDS)

Application ICC 7.0 ICC 8.1 ICC 9.1 GCC 2.96 GCC 3.2 GCC 3.4.5
ScalParC 55.49 56.30 56.54 68.07 52.21 52.60

Naive Bayesian 26.50 69.85 25.59 24.48 72.63 24.60
K-means 29.70 81.10 29.24 29.54 30.46 32.70

Fuzzy K-means 962.40 1375.42 625.86 949.68 938.21 937.88
HOP 26.45 29.53 27.11 33.16 31.85 31.00

Birch C.E.† C.E. C.E. 15.86 C.E. C.E.
Eclat C.E. 92.63 30.50 33.96 113.59 33.86

Apriori 55.53 98.53 54.64 53.42 74.24 51.64
Utility 8.65 9.14 6.16 9.52 8.47 8.37

SNP 855.41 995.98 C.E. C.E. C.E. C.E.
GeneNet 1166.29 698.23 C.E. C.E. C.E. 663.5*
SEMPHY 880.40 1422.31 1423.50 C.E. 1356.27 1234.52

Rsearch 742.81 714.65 835.28 1473.70 1546.06 1831.15
SVM-RFE 51.69 44.57 40.74 C.E. 45.65 40.37

PLSA 1648.6 2295.68 3035.40 3045.05 1716.62 1733.29
† C.E.: Compilation Error *Compiled using GCC3.3.4 instead of GCC3.4.5

number of transactions, average transaction size, and average
size of the maximal large itemsets. For HOP and Birch, three
sets of real data were extracted from a cosmology application,
ENZO [22], each having 61440 particles, 491520 particles and
3932160 particles.

A section of the real image database distributed by Corel
Corporation is used for K-means and Fuzzy K-means. This
database consists of 17695 scenery pictures. Each picture is
represented by two features: color and edge. The color feature
is a vector of 9 floating points while the edge feature is a vector
of size 18. Since the clustering quality of K-means methods
highly depends on the input parameter k, both K-means were
executed with 10 different k values ranging from 4 to 13.

Utility mining uses both real as well as synthetic datasets.
The synthetic data consists of two databases generated using
the IBM Quest data generator. The first synthetic dataset is a
dense database, where the average transaction size is 10; the
other is a relatively sparse database, where average transaction
size is 20. The average size of the potentially frequent itemsets
is 6 in both sets of databases. In both sets of databases,
the number of transactions varies from 1000K to 8000K and
the number of items varies from 1K to 8K. The real dataset
consists of only one database of size 73MB, where the average
transaction length is 7.2.

Bioinformatics applications use datasets obtained from dif-
ferent biological databases. SNP uses the Human Genic Bi-
Allelic Sequences (HGBASE) database containing 616,179
SNPs sequences. For GeneNet, Yeast microarray data was
used as the input dataset. SEMPHY considers three datasets
from Pfam database. The dataset for Rsearch, obtained from
Washington University at St. Louis [23], uses a sequence of
length 97 to search a database of size 100KB. SVM-RFE
uses a benchmark microarray data set on ovarian cancer.
This dataset contains 253 (tissue samples) x 15154 (genes)
expression values, including 91 control and 162 ovarian cancer
tissues with early stage cancer samples. For PLSA, nucleotides

ranging from 30K to 900K length are chosen as test se-
quences [12].

V. USING M INEBENCH

The applications in MineBench are written using C/C++
and the codes have been parallelized using OpenMP. Table II
provides a summary of MineBench executables and command
line arguments. The details about the data sets have been given
in the previous section, and the detailed commandline usage
is provided in the source distribution.

In the current version, we make use of GCC v2.96, and
Intel C/C++ (ICC) compiler version 7.0 to compile serial and
parallel codes, respectively. We have also tried compiling the
codes using different versions of ICC and GCC (for ICC v7.0,
v8.1, v9.1 and GCC v2.95, v3.2, v3.4.5), on Redhat Linux,
Redhat Linux Enterprise, Fedora Core and Suse distributions.
Most of the applications compile properly, requiring only
slight changes to header files and makefiles. The execution
times using each compiler are presented in Table III. To obtain
the runtimes, we have executed the MineBench applications on
a dual-processor Intel Xeon 2.8GHz machine using medium
sized data sets. Amongst the GCC compilers, we see that the
newest version performs the best for a vast majority of the
applications. On the other hand, ICC v9.1 produces the fastest
running times for around half the applications.

A. Simulation of MineBench Applications

Because of the way these applications have been parallelized
using OpenMP, it is difficult to cross-compile and simulate on
most widely-used computer architecture simulators. In addi-
tion, the long execution times of these applications prohibit
detailed simulations. An architectural simulator that can be
used to evaluate single-threaded workloads is PTLSim [4].
On this x86-64 cycle-accurate simulator, it is possible to run
executables created with ICC, using the -openmpstubs flag to
create a single-threaded application binary. Another important



feature of the simulator is its ability to switch between
simulation and native execution modes using built-in function
calls. By examining the applications’ call graphs and inserting
appropriate PTLSim function calls, we have been able to
perform an in-depth study of the computationally intensive
kernels. By doing so, we reduce the simulation time by several
orders of magnitude. The binaries containing PTLSim function
calls are also provided on our center’s website [24].

VI. CONCLUSION

Data mining applications are gaining significance as com-
putationally intensive workloads, necessitating application-
specific architectures to optimize their performance. A new
data mining benchmark is required for workload characteri-
zation and architecture evaluation. In this paper, we present
MineBench, a diverse benchmark suite that covers a wide
spectrum of data mining applications. More information about
benchmark characteristics and workload characterization can
be found in [25], [26]. We have provided optimized source
codes, data sets of various sizes, and information for compiling
and using the MineBench applications on various platforms.
MineBench is freely available at our center’s website [24].
MineBench will continually evolve to reflect changing trends
in the data mining field. We believe MineBench is a useful
tool in computer architecture, and systems research.

ACKNOWLEDGMENTS

This work was supported in part by National Science
Foundation (NSF) under grants NGS CNS-0406341, IIS-
0536994/002, CNS-0551639, CCF-0621443, CCF-0546278,
and NSF/CARP ST-HEC program under grant CCF-0444405,
and in part by the Department of Energy’s (DOE) SCiDAC
program (Scientific Data Management Center), number DE-
FC02-01ER25485, DOE grants DE-FG02-05ER25683, and
DE-FG02-05ER25691, and in part by Intel Corporation.

REFERENCES

[1] University of California, Berkeley, “The ’how much information?’
project,” Available at http://www2.sims.berkeley.edu/, 2000.

[2] Standard Performance Evaluation Corporation, “SPEC CPU2000 V1.2,
CPU Benchmarks,” Available at http://www.spec.org, 2001.

[3] Transaction Processing Performance Council, “TPC-H Benchmark Re-
vision 2.0.0,” 2004.

[4] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2
programs: Characterization and methodological considerations,” inPro-
ceedings of the 22nd International Symposium on Computer Architecture
(ISCA), June 1995, pp. 24–36.

[5] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “MediaBench: A
tool for evaluating and synthesizing multimedia and communications
systems,” inProceedings of 30th Annual International Symposium on
Microarchitecture (MICRO), Dec. 1997, pp. 330–335.

[6] Y. Li, T. Li, T. Kahveci, and J. Fortes, “Workload characterization of
bioinformatics applications,” inProceedings of the 13th IEEE Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems (MASCOTS), Sept. 2005, pp. 15–22.

[7] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C. Tseng,
and D. Yeung, “BioBench: A benchmark suite of bioinformatics ap-
plications,” in Proceedings of The 5th International Symposium on
Performance Analysis of Systems and Software (ISPASS), Mar. 2005.

[8] D. Bader, Y. Li, T. Li, and V. Sachdeva, “BioPerf: A benchmark suite
to evaluate high-performance computer architecture on bioinformatics
applications,” inProceedings of the IEEE International Symposium on
Workload Characterization (IISWC), Oct. 2005.

[9] J. Han and M. Kamber,Data Mining: Concepts and Techniques.
Morgan Kaufmann Publishers, Aug. 2000.

[10] M. Joshi, G. Karypis, and V. Kumar, “ScalParC: A new scalable and
efficient parallel classification algorithm for mining large datasets,” in
Proceedings of the 11th International Parallel Processing Symposium
(IPPS), 1998.

[11] P. Domingos and M. Pazzani, “Beyond independence: Conditions for
optimality of the simple bayesian classifier,” inProceedings of the
International Conference on Machine Learning, 1996.

[12] Y. Chen, Q. Diao, C. Dulong, W. Hu, C. Lai, E. Li, W. Li, T. Wang,
and Y. Zhang, “Performance scalability of data-mining workloads in
bioinformatics,”Intel Technology Journal, vol. 09, no. 12, pp. 131–142,
May 2005.

[13] J. MacQueen, “Some methods for classification and analysis of mul-
tivariate observations,” inProceedings of the Berkeley Symposium on
Mathematical Statistics and Probability, 1967.

[14] J. Bezdek,Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Kluwer Academic Publishers, 1981.

[15] D. Eisenstein and P. Hut, “Hop: A new group finding algorithm for
N-body simulations,”Journal of Astrophysics, no. 498, pp. 137–142,
1998.

[16] O. Altun, N. Dursunoglu, and M. F. Amasyali, “Clustering application
benchmark,” inTo Appear in Proceedings of the International Sympo-
sium on Workload Characterization (IISWC), Oct. 2006.

[17] T. Zhang, R. Ramakrishnan, and M. Livny, “BIRCH: an efficient data
clustering method for very large databases,” inSIGMOD, 1996.

[18] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. Verkamo, “Fast
discovery of association rules,”Advances in Knowledge Discovery and
Data Mining, pp. 307–328, 1996.

[19] Y. Liu, W. Liao, and A. Choudhary, “A two-phase algorithm for fast
discovery of high utility itemsets,” inProceedings of the Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), May
2005.

[20] M. Zaki, “Parallel and distributed association mining: A survey,”IEEE
Concurrency, Special Issue on Parallel Mechanisms for Data Mining,
vol. 7, no. 4, pp. 14–25, Dec. 1999.

[21] R. Agrawal, A. Arning, T. Bollinger, M. Mehta, J. Shafer, and R. Srikant,
“The Quest data mining system,” inProceedings of the 2nd International
Conference on Knowledge Discovery in Databases and Data Mining,
Aug. 1996.

[22] M. Norman, J. Shalf, S. Levy, and G. Daues, “Diving deep: Data
management and visualization strategies for adaptive mesh refinement
simulations,”Computing in Science and Engineering, vol. 1, no. 4, pp.
36–47, 1999.

[23] Sean Eddy’s Lab, “Rsearch software repository,”
http://www.genetics.wustl.edu/eddy/software, 2005.

[24] The Center for Ultra-scale Computing and Information Security (CU-
CIS) at Northwestern University, “NU-Minebench version 2.0,” Avail-
able at http://cucis.ece.northwestern.edu, 2006.

[25] B. Ozisikyilmaz, R. Narayanan, J. Zambreno, G. Memik, and A. Choud-
hary, “An architectural characterization study of data mining and bioin-
formatics workloads,” inTo Appear in Proceedings of International
Symposium on Workload Characterization (IISWC), Oct. 2006.

[26] J. Zambreno, B. Ozisikyilmaz, J. Pisharath, G. Memik, and A. Choud-
hary, “Performance characterization of data mining applications using
MineBench,” in 9th Workshop on Computer Architecture Evaluation
using Commercial Workloads (CAECW), Feb. 2006.


