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ABSTRACT
The study of land cover change is an important problem
in the Earth Science domain because of its impacts on lo-
cal climate, radiation balance, biogeochemistry, hydrology,
and the diversity and abundance of terrestrial species. Most
well-known change detection techniques from statistics, sig-
nal processing and control theory are not well-suited for
the massive high-dimensional spatio-temporal data sets from
Earth Science due to limitations such as high computational
complexity and the inability to take advantage of seasonality
and spatio-temporal autocorrelation inherent in Earth Sci-
ence data. In our work, we seek to address these challenges
with new change detection techniques that are based on data
mining approaches. Specifically, in this paper we have per-
formed a case study for a new change detection technique
for the land cover change detection problem. We study land
cover change in the state of California, focusing on the San
Francisco Bay Area and perform an extended study on the
entire state. We also perform a comparative evaluation on
forests in the entire state. These results demonstrate the
utility of data mining techniques for the land cover change
detection problem.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications—
Data mining ; J.2 [Computer Applications]: Physical sci-
ences and engineering—Earth and atmospheric sciences

General Terms
Algorithms

1. INTRODUCTION
Remote sensing data consisting of satellite observations

of the land surface, biosphere, solid Earth, atmosphere, and
oceans, combined with historical climate records and pre-
dictions from ecosystem models, offer new opportunities for
understanding how the Earth is changing, for determining
what factors cause these changes, and for predicting future
changes. One important area where remote sensing plays a
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key role is in the study of land cover change. Specifically,
the conversion of natural land cover into human-dominated
cover types continues to be a change of global proportions
with many unknown environmental consequences. For ex-
ample, studies [13, 20] have shown that deforestation has
significant implications for local weather, and in places such
as the Amazon rainforest, cloudiness and rainfall are greater
over cleared land than over intact forest. Thus, there is a
need in the Earth Science domain to systematically study
land cover change in order to understand its impacts on
local climate, radiation balance, biogeochemistry, hydrol-
ogy, and the diversity and abundance of terrestrial species.
Land cover conversions include tree harvests in forested re-
gions, urbanization, and agricultural intensification in for-
mer woodland and natural grassland areas. These types of
conversions also have significant public policy implications
due to issues such as water supply management and atmo-
spheric CO2 output. For example, Charbonneau and Kon-
dolf [9] found that in California between 1984 and 1990, over
half of all new irrigated farmland put into production was of
lesser quality than prime farmland taken out of production
by urbanization.

The land cover change detection problem is essentially
one of detecting when the land cover at a given location has
been converted from one type to another. Examples include
the conversion of forested land to barren land (possibly due
to deforestation or a fire), grasslands to golf courses and
farmland to housing developments. There are a number of
factors that make this a challenging problem including the
nature of Earth Science data, which we will discuss later in
this paper. Change detection, in general, is an area that has
been extensively studied in the fields of statistics [22], signal
processing [19] and control theory [24]. However, most tech-
niques from these fields are not well-suited for the massive
high-dimensional spatio-temporal data sets from Earth Sci-
ence. This is due to limitations such as high computational
complexity and the inability to take advantage of season-
ality and spatio-temporal autocorrelation inherent in Earth
Science data.

There are a number of problems in the Earth Science do-
main that have a data mining requirement due to the unique
challenges posed by the types of data encountered. There
have been several recent applications of data mining tech-
niques to Earth Science problems [15, 28, 31, 32] using a
variety of data types ranging from remote-sensing data to
data obtained from climate models. The land cover change
detection problem is also one where data mining techniques
can have a significant impact. In particular, with the in-



creasing spatial and temporal resolutions of the underlying
data sets the use of efficient and scalable pattern discovery
algorithms is paramount. In our work, we seek to address
these challenges with new change detection techniques that
are based on novel data mining approaches. Specifically,
these techniques will take advantage of some of the inherent
characteristics of spatio-temporal data and will be scalable
so that they can be applied to increasingly high-resolution
Earth Science data sets. The long term goal of our work
is to determine where, when, and why natural ecosystem
conversions occur, which is a crucial scientific concern.

In this paper we have performed a case study for a new
change detection technique for the land cover change detec-
tion problem. Specifically, we study land cover change in
the state of California, focusing on the San Francisco Bay
Area and perform an extended study on the entire state.
We also perform a comparative evaluation on forests in the
entire state. We examine the results obtained by applying
the new technique to the Bay Area and California data sets.
For the forests data set, the proposed algorithm is systemat-
ically compared with a previously proposed technique from
the domain of Earth Science using ground truth information
to verify the results of the algorithms. These results demon-
strate the utility of data mining techniques for the land cover
change detection problem. Finally, we also discuss possible
directions for future work in using data mining techniques
for the problem of land cover change detection.

1.1 Key Contributions
The key contributions of this paper are as follows:

• We present the land cover change detection problem
and provide a discussion of the important challenges
from a data mining perspective.

• We present an algorithm for land cover change detec-
tion that is simple, efficient and takes advantage of the
inherent structure in Earth Science data.

• We systematically evaluate our algorithm by applying
it to data sets for the San Francisco Bay Area region
as well as the the entire state of California.

• We comparatively evaluate our proposed algorithm and
an algorithm from the Earth Science domain and show
that our algorithm gives high-quality results.

1.2 Organization of the Paper
The rest of the paper is organized as follows. In Section

2, we describe Earth Science data sets that we have used in
this work as well as the data cleaning procedure used. We
discuss previous related work in the area of change detection
in Section 4. In Section 5 we present the two change detec-
tion algorithms evaluated in this paper. Section 6 presents
the results of applying the proposed algorithm to two data
sets, and a comparative evaluation on a third data set.

2. EARTH SCIENCE DATA
The Earth Science data for our analysis consists of snap-

shots of measurement values for a vegetation-related vari-
able collected for all land surfaces (see Figure 1). The data
observations come from NASA’s Earth Observation System
(EOS) [2] satellites and the data sets are distributed through
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Figure 1: A simplified view of the problem domain.

the Land Processes Distributed Active Archive Center (LP
DAAC) [3].

The specific vegetation-related variable for this analysis
was the enhanced vegetation index (EVI) product mea-
sured by the moderate resolution imaging spectroradiome-
ter (MODIS). EVI is a vegetation index which essentially
serves as a measure of the amount and “greenness” of vege-
tation at a particular location. It represents the greenness
signal (area-averaged canopy photosynthetic capacity), with
improved sensitivity in high biomass cover areas. MODIS al-
gorithms have been used to generate the EVI index at 250-
meter spatial resolution from February 2000 to the present.
In this study, the data coverage is from the time period
February 2000—January 2006.

In this preliminary case study, we focused our analysis on
the state of California. Specifically, we apply our algorithm
to EVI data for the San Francisco Bay Area, which has seen
rapid population growth in recent years. We also system-
atically compare our algorithm with a previously proposed
algorithm from the Earth Science domain on forest regions of
California, since most land cover changes in forests are due
to forest fires and these are easily verified. We preprocessed
the data to eliminate poor-quality measurements in order to
simplify evaluation. Data cleaning was done by performing
the following steps:

1. The MODIS data sets are tagged with a quality as-
surance (QA) flag which is used to describe atmo-
spheric and sensor conditions when the measurement
was taken. We used the QA flag to remove all mea-
surements that were tagged as being of low quality.
Another filtering step recommended by Earth Science
domain experts was the removal of measurements of
EVI above 0.9.

2. We also discarded any locations that contained missing
data. Therefore, the data for a location is retained only
if the entire time series is available with no missing
values and no low quality data.

The final quality-filtered EVI data set for the San Fran-
cisco Bay Area contained 180,400 locations (covering a re-
gion of 100 miles × 50 miles), the entire California data
set contained over 5 million locations (covering a region of
800 miles × 200 miles), and the data set for forest locations
in the state of California contained 380,285 locations. The
length of the time series for all three data sets is 76, cor-
responding to 6 years and 4 months of monthly data from
February 2000 through May 2006.
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Figure 2: This figure shows an example of a change

point in the San Francisco Bay Area which corresponds

to a new golf course constructed in Oakland, CA. This

golf course was built in 2003, which corresponds to the

time step at which the time series exhibits a change.

3. THE LAND COVER CHANGE DETEC-
TION PROBLEM

The land cover change detection problem studied in this
paper is essentially one of taking a data set of vegetation-
related time series and detecting changes by giving each lo-
cation a change score based on the extent to which it is
considered a change point. There are a number of specific
challenges associated with Earth Science data that make this
a challenging problem. The spatio-temporal nature of Earth
Science data is especially challenging since traditional data
mining techniques do not take advantage of the spatial and
temporal autocorrelation present in such data. In particu-
lar, change detection becomes challenging since changes in
vegetation levels are occurring all the time, i.e., due to the
seasonal growth cycles the EVI index is constantly fluctuat-
ing. However, these changes in vegetation levels are usually
uninteresting for the land cover change detection problem,
although they may be useful for tasks such as land cover
classification that are outside the scope of this work.

Furthermore, vegetation-related data sets are often of high
spatial resolution, which poses computational challenges.
Finally, there is the issue of high-dimensionality since long
time series are common in Earth Science (and the temporal
resolution is increasing).

Figure 2 shows an example of a land cover change pattern
that is typically of interest to Earth Scientists. The time
series shows an abrupt jump in EVI in 2003. The location
of the point corresponds to a new golf course, which was in
fact opened in 2003. Changes of this nature can be detected
only with high-resolution data.

4. RELATED WORK
The problem of land cover change detection can be tied

to previous work in two broad themes: change detection in
general (in the fields of statistics, signal processing, etc.),
and the specific land cover change problem studied in Earth
Science. We will discuss the previous work related to this
problem by organizing the discussion into these two themes.

The change detection problem has a very rich literature
in the fields of statistics, signal processing and control the-
ory. Although change detection has been studied for a very
long time (at least since the 1920s [7]), most activity has
occurred in the last several decades due to the growth of

information technology. This has led to two developments:
the increasing complexity of virtually all activities that use
technology, and more detailed monitoring of such activities.
This ranges from monitoring of the heart with implanted de-
vices to satellite sensors that are used to detect vegetation
levels on the Earth’s surface. As a result, there are a vari-
ety of change detection problems with differing requirements
and a large number of techniques seek to address specific
problems. However, most of the previous work in change
detection is not suitable for our land cover change detection
problem for two reasons: (1) the techniques are computa-
tionally expensive, making them infeasible for large scale
high-resolution Earth Science data sets, and (2) the tech-
niques are unable to take advantage of the inherent structure
present in Earth Science data. The monograph by Brodsky
and Darkhovsky [7], and the books by Basseville and Niki-
forov [6] and Gustafsson [19] comprehensively discuss the
major developments in change detection.

We briefly list a few recent developments in change de-
tection that are relevant in the data mining context. Chen
and Gopalakrishnan [11] presented the problem of acous-
tic change detection where the goal is to segment an audio
signal into homogeneous sections based on the speaker and
surrounding conditions. Event detection, presented by Gu-
ralnik and Srivastava [18], is the problem of recognizing the
change of parameters in the underlying model or the change
of the model itself at unknown times; given a time series and
a set of basis functions, the problem is to find a piecewise
segmented model where each segment is represented by a ba-
sis function. Therefore, the number of change points, their
locations in time, and the basis functions for each segment
must all be determined. Ge and Smyth [17] proposed a semi-
Markov (Markov model combined with a Bayesian update)
model-based technique which uses state switching to detect
change points. Their framework models individual segments
using regression functions, and each segment is a state in an
HMM; a change in states corresponds to a change point. A
stream-based approach to change point detection was pro-
posed by Yamanishi and Takeuchi [34]. This technique re-
duces the problem of change detection in time series into
that of outlier detection from time series of moving-averaged
scores. Chan and Mahoney [8] proposed a technique called
box modeling which divides time series into boxes, and con-
structs a feature space based on boxes; an anomaly score is
assigned based on the relationship between query time series
and the boxes.

The problem of land cover change detection has been con-
sidered extensively in the Earth Science literature, partic-
ularly after the early 1970s when remote-sensing satellites
came into use. The survey by Singh [30] gives an overview
of the various land cover change detection techniques pro-
posed in the 1970s and 1980s. The primary techniques in
use at the time were simple thresholding, a variety of image-
based methods (differencing, regression, and ratioing), and
principal components analysis. The introduction of satel-
lite instruments such as the Advanced Very High Resolu-
tion Radiometer (AVHRR) led to an increase in the quality
of multispectral data leading to more sophisticated change
detection algorithms being developed. Lu et al. [25] provides
a very comprehensive survey of all major change detection
algorithms that were proposed until 2003. Another recent
survey was provided by Coppin et al. [12]. Although high-
resolution data from instruments such as MODIS have been



available since 2000, as seen from the recent surveys [25, 12],
most change detection techniques were proposed for data
of coarser resolutions. A change detection technique devel-
oped for MODIS data was proposed by Lunetta et al. [26]
in 2006; they performed a case study applying their change
detection technique (discussed in detail in Section 5.1) to
a region known as the Albemarle-Pamlico Estuary System
(this region is along the Virginia-North Carolina border). In
this paper, we will compare the performance of our change
detection algorithm with the one proposed in [26].

5. CHANGE DETECTION TECHNIQUES
We introduce the following notation in order to describe

the land cover change detection algorithms, as well as the
properties of the underlying data sets. Let D be a data set
with N land locations each of which has a time series of
length T . The time series for a location corresponds to T
monthly EVI observations at that location. We also define
the following notation:

• Y : the number of years of data in the data set. In this
paper, we will work with complete years by truncating
trailing months. Thus Y = T

12
.

• ni: an individual location.

• nij : a particular month of data for the location ni.

5.1 Earth Science Techniques for Land Cover
Change Detection

Recently, a change detection study that uses MODIS data
was performed by Lunetta et al. [26]. This comprehensive
study consists of a data cleaning method (based on the dis-
crete Fourier transform), a change detection method, as well
as an extensive discussion of the change patterns in the re-
gion of interest. They also performed a case study apply-
ing their change detection technique to a region known as
the Albemarle-Pamlico Estuary System. For our study, the
change detection method is of most relevance since it is one
of the few change detection methods that has been applied
to high-resolution MODIS data. Although Lunetta et al.
do not work with EVI data in their paper, they do work
with a closely related variable called the Normalized Differ-
ence Vegetation Index (NDVI). NDVI, like EVI, is also a
measure of the vegetation level at a given land location, the
main difference being that EVI is designed to enhance the
vegetation signal with improved sensitivity in high biomass
(high vegetation density) regions [21].

Since NDVI and EVI are similar variables, we will ap-
ply Lunetta et al.’s scheme to EVI data in this paper. Their
change detection methodology essentially works with annual
sums of NDVI for a given land location. The difference be-
tween consecutive years is then computed; this is equivalent
to applying first-order differencing [10] to the time series of
annual sums. The resulting differences are assumed to fol-
low an approximately normal distribution with µ = 0, which
represents that no change has occurred. This is justifiable
in that most locations do not exhibit change and therefore
on average the change in annual sum between consecutive
years is expected to be 0. To detect whether a change has
occurred between time t1 and time t2, the z-score of the
difference of annual sums is computed (the standard devi-
ation is computed with respect to all land locations) and

if the z-score is above a threshold, a change is considered
to have occurred between t1 and t2. The specific steps in
Lunetta et al.’s algorithm for land cover change detection
are as follows:

1. For each location ni, the annual EVI sum is computed
for each year of data. Let {ai1, . . . , aiY } correspond to
this list of annual sums, where ai1 =

P12
j=1 nij , etc.

2. The difference between the annual sum for a given year
and the previous year is computed, i.e., {ai2−ai1, ai3−
ai2, . . . , aiY − aiY−1}. Let dij = aij+1 − aij .

3. The z-score is computed for each of the Y − 1 values
in {di1, di2, . . . , diY−1}. This is done for each dij by
subtracting the mean (set to 0) and dividing by the
standard deviation (= st. dev.{d1j , d2j , . . . , dNj}). Let
{zi1, zi2, . . . , ziY−1} correspond to this list of z-scores.

4. If zij is above a certain threshold, then location ni is
considered to have a change between the consecutive
years corresponding to j and j + 1.

In this paper we have slightly modified Lunetta et al.’s
algorithm in order to apply it to our change detection prob-
lem. Essentially, after applying Lunetta et al.’s algorithm
to the data set, we are left with a list of z-scores for each
location that corresponds to each pair of consecutive years.
Since a single change score is assigned to each location in our
problem setting, we adapt Lunetta et al.’s algorithm by tak-
ing the absolute maximum for each location’s list of z-scores
to be the change score for the location, i.e.,

change score(ni) = max{|zi1|, |zi2|, . . . , |ziY−1|}.

5.2 Recursive Merging Algorithm
We now present our technique (called the recursive merg-

ing algorithm) for land cover change detection. We designed
this technique based on some key characteristics of the un-
derlying data set: (1) most land locations do not exhibit a
change; given the large coverage of land cover data sets, it
is fairly obvious that only a small fraction of points will ac-
tually exhibit a change, (2) the major mode of behavior in
the vegetation signal is seasonality, i.e., the natural seasonal
growing cycle is a dominant characteristic of a time series
and this intrinsic seasonality should not itself be called a
change. The main idea behind the recursive merging algo-
rithm is to exploit seasonality in order to distinguish be-
tween points that have had a land cover change and those
that have not. In particular, if a given location has not had
a land cover change, then we expect the seasonal cycles to
look very similar going from one year to the next; if this is
not the case, then based on the extent to which the seasons
are different one can assign a change score to a land location.
The time series for each location is processed as follows:

1. The two most similar consecutive annual cycles are
merged, and the distance is stored. Let {bi1, . . . , biY }
correspond to the list of annual cycles, where bi1 =
[ni1 ni2 . . . ni12], etc. Suppose bi1 and bi2 are the
two most similar annual cycles; then, at the end of
this step what is left is a list with 1 less element,
{ bi1+bi1

2
, bi3 . . . , biY }, along with the distance s1 =

dist(bi1, bi2).
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Figure 3: k-means cluster centroids for the Bay Area

EVI data set.

2. Step 1 is applied recursively until one annual cycle is
left remaining. This results in a list of distances of
length Y − 1, {s1, . . . , sY−1}. Note that the order in
which items are inserted into this list is not related to
the order of the annual cycles, it is merely the order in
which seasonal cycles were merged.

3. The change score for this location is based on whether
any of the observed distances are extreme. This can be

quantified by computing the quantity
max{s1,...,sY−1}
min{s1,...,sY−1}

.

Note that it is possible that min{s1, . . . , sY−1}might be 0,
in which case a small value ε can be added to this quantity.

Our technique bears some resemblance to the bottom-up
segmentation algorithm discussed by Keogh et al. [23]: in
the first step, the original time series of length n is replaced
with an initial approximation of length n/2. Then, the cost
of merging each pair of segments is computed and the pair
with the lowest cost is merged. This procedure is repeated
until a user-supplied threshold for the cost of merging is
reached.

The computational complexity of the recursive merging
algorithm is O(NT ) (the cost of processing a single location
is T − 12 and there are N locations). The storage require-
ment is O(N).

6. APPLICATION OF CHANGE DETECTION
TECHNIQUES TO EVI DATA

In this preliminary study, we focused our analysis on the
state of California primarily because our team members have
domain expertise in this region. In addition, due to high
population growth in recent years, California has experi-
enced many land use changes such as the urbanization of
farmland and desert converted to farmland. The state also
has many forest fires each year that can lead to temporary
changes in the land cover.

6.1 Analysis of the San Francisco Bay Area
We initially performed a clustering of the EVI data for

the San Francisco Bay Area region in order to observe the
high-level characteristics of the vegetation data. We used
the k-means algorithm to cluster the EVI data to produce a
minimum number of distinct centroids (in this case five cen-
troids were found to have the optimal SSE). Figure 3 shows
the cluster centroids for the Bay Area EVI data. What we
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Figure 4: Histogram of change scores produced by the

recursive merging algorithm for the Bay Area data set.

observed was that most of the data was predominantly from
5 classes of vegetation thereby implying that for the vast
majority of the points in the data set, there is no change in
land cover. Additionally, when the clusters are viewed on a
map and compared to satellite imagery, the clusters corre-
sponded to the actual vegetation in the region very closely.
The land cover type corresponding to each cluster is as fol-
lows: Cluster 1 is high seasonal biomass density, moder-
ate interannual variability (shrub cover); cluster 2 is moder-
ate annual biomass density, moderate interannual variability
(grass cover); cluster 3 is high annual biomass density, low
interannual variability (evergreen tree cover); cluster 4 is low
annual biomass density, low interannual variability (urban-
ized cover); cluster 5 is high seasonal biomass density, high
interannual variability (agricultural cover).

We then applied the recursive merging change detection
algorithm to the Bay Area EVI data set. The output from
the algorithm is a list of change scores, one for each location.
Figure 4 shows a histogram of the change scores obtained.
We observe that the distribution of the scores conforms to
our expectation based on the clustering results that most of
the locations in the data set do not exhibit a change. We
manually examined the top 31 points which had a change
score greater than a threshold of 8. Of these, 22 points were
found to correspond to interesting land cover changes and
others corresponded to changing crop patterns in farmland.
A majority of the points with change scores less that 8 (but
greater than 4) were from farmland. We briefly discuss a
few of the interesting land cover changes discovered:

1. Barren land to golf course. Figure 2 shows the time
series and map for a location where a golf course was
built. Specifically, this location corresponds to the
Metropolitan Golf Links in Oakland, CA which was
built in 2003 on a site which was previously a dis-
posal site for dredged material from San Francisco Bay.
The time series for the location clearly shows the low
level of vegetation at the location prior to 2003, after
which the vegetation is relatively uniform, consistent
with what is expected at a golf course that is watered
throughout the year.

2. Construction of a housing subdivision. Figure 5 shows
the time series and map for a location where a subdi-
vision is under construction in Hayward, CA on a site
which was previously vegetated, with the level of veg-
etation suggesting that this land may have been grass-
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Figure 5: Construction of a subdivision in Hayward.
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Figure 6: Construction of a shopping center in San Jose.

land prior to the construction. Interestingly, the con-
struction of housing can actually lead to the increase
in vegetation at a location such as this one since after
the construction period, the area is typically planted
with lawns and trees. In such situations, land cover
change detection techniques that examine only the be-
ginning and end of a time series may fail to detect this
type of change.

3. Construction of a shopping center. Figure 6 shows the
time series and map for a location where a shopping
center has been built on a site which was previously
vegetated in San Jose, CA. The year of construction
for this shopping center was 2002, which is also when
the change in vegetation-level occurs in the time series.

4. Construction of a golf course. Figure 7 shows the time
series and map for a location where a golf course was
built. This is the location of the Golf Club at Boul-
der Ridge in San Jose, CA. This golf course was con-
structed in 2001, and this is clearly seen again in the
time series for the location.

5. Construction of a shopping center. Figure 8 shows the
time series and map for a location where a shopping
center has been built on a site which was previously
vegetated. This location corresponds to the Pacific
Commons shopping center in Fremont, CA.

These results show the effectiveness of the recursive merg-
ing algorithm on the Bay Area data set. Specifically, in ex-
amining the top ranked change locations from the algorithm,
we observe that a variety of interesting land cover changes
are detected. The ability of the algorithm to discount nat-
ural seasonal changes (such as those seen in Figure 3) is
particularly appealing.
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Figure 7: Construction of a golf course in San Jose.
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Figure 8: Construction of the Pacific Commons shop-

ping center in Fremont.

6.2 Analysis of the entire state of California
We performed an extended study on the entire state of

California, which involves about a 30-fold increase in data
over the Bay Area. For this data set we found 2,833 locations
that had a change score greater than a threshold of 15, a vast
majority of which corresponded to land cover change points.
We analyzed about 1,000 of the top change locations for the
larger California data set and we found that more types
of changes were detected than in the Bay Area data set.
In particular, we found numerous instances where the land
cover had changed from desert to farmland, forests to barren
(due to forest fires), farmland to housing subdivisions, and
desert to golf courses.

A few interesting land cover changes that were discov-
ered in the California data set are shown in Figures 9, 10
and 11 (note that the figures show several time series each;
these correspond to groups of spatially close locations) and
described below:

1. Desert to farmland. This is a group of points corre-
sponding to a change from a desert location to farm-
land in southern California. This type of land cover
change is prevalent in California and across the United
States [5, 33].

2. Farmland to subdivision. This is a location in Sacra-
mento, CA where farmland has been cleared and a
housing subdivision is being built. This location is
in the north-west outskirts of the city, where the sur-
rounding land currently consists of farms. This is an
example of land cover change where urbanization is
converting agricultural land into housing.

3. Desert to golf course. This is an example of a new
golf course being built in Palm Desert, CA. This town
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Figure 9: Desert to farmland.
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Figure 10: Farmland being converted into a housing

subdivision in Sacramento.

has over 100 golf courses, putting intense pressure on
the water supply [4] in a region where water is already
scarce.

6.3 Forests in California
To provide a comparative evaluation, we also evaluated

the recursive merging algorithm on the EVI data set con-
sisting of forests in California in comparison to an algorithm
from the Earth Science domain proposed by Lunetta et al.
[26]. This specific data set was selected because most land
cover changes in forests are due to forest fires, and forest fires
can easily be verified using the incidents database available
from the California Department of Forestry and Fire Pro-
tection [1].

Similar to the Bay Area case study, we apply a given
change detection algorithm to the vegetation data set and
obtain a change score for each of the 380,285 land locations.
The change scores are then sorted and grouped by spatial
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Figure 11: A newly constructed golf course in Palm

Desert.
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Figure 12: This figure shows an example of a land cover

change due to a forest fire.

location to give “events”: an event is a group of closely lo-
cated pixels that exhibit the same change. For this study,
the top 15 events (covering about 125 points in each case)
were individually examined and the changes were verified
using ground truth information. The results of applying
the two change detection algorithms are shown in Table
1. We see that for all the events examined, the recursive
merging algorithm finds locations with verifiable land cover
changes. These include changes due to forest fires, conver-
sion of forests to farmland and loss of forests due to construc-
tion or logging. We also examined the top points discovered
by the Lunetta et al. algorithm and found that several of
those corresponded to forest fires. However, a significant
number of locations did not exhibit an apparent land cover
change and no change could be discerned by examining the
EVI time series.

The dominant land cover change in forests in California
is due to forest fires. Therefore, the most common pattern
expected is reduction in EVI followed by regrowth (Figure
12). There is also some construction and logging activity
that takes place in forests (Figure 13). These change pat-
terns are different from those due to forest fires in that the
reduction of EVI tends to be gradual rather than abrupt.
Table 2 lists examples of fires detected.

Although we were unable to do a thorough evaluation of
highly scored change points except for those covered by the
top 15 events, we did examine the top 5% of the total points
to get a sense of the nature of land cover changes being de-
tected by our algorithm. We found that among the top 1% of
the points (approximately 38,000 points), an overwhelming
majority correspond to forest fires.

These results show that our proposed algorithm for change
detection gives high quality results for forest data. In partic-
ular, we showed that the top results from the recursive merg-
ing algorithm are verifiable change points. This is significant
since the results of change detection algorithms are often
manually examined by expert analysts from the Earth Sci-
ence domain. Therefore, the analyst’s time is used more ef-
fectively if the algorithm produces high-quality change points
in the top portion of the results.

Table 3 shows the total number of forest fires as well as
the number of large fires (those that burn more than 300
acres) in California between 2000 and 2006. Two things
that stand out from the Table are: (1) there are thousands
of verified fires in California every year, and (2) the large



Land Cover Change Detected Lunetta et al. Algorithm Recursive Merging Algorithm

Forest fires 5 12
Conversion to farming 1 2
Construction or logging 0 1

No apparent change 8 0

Table 1: Results of the change detection algorithms. Note that these are events and each event corresponds to a

group of pixels. The total number of pixels covered in each case is about 125.
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Figure 13: This figure shows an example of a land cover

change due to construction or logging.

Year Forest Fire Detected by algo-
rithm(s)

September 2002 Curve Recursive Merging
June 2002 Troy Recursive Merging
June 2002 Wolf Lunetta et al., Recur-

sive Merging
July 2002 Pines Recursive Merging
May 2004 Cachuma Recursive Merging
Mid-2003 Spanish Recursive Merging
Late 2003 Grand Prix Lunetta et al., Recur-

sive Merging
October 2004 Rumsey Recursive Merging
Mid 2001 Poe Recursive Merging
< 2000 Kirk Complex Lunetta et al., Recur-

sive Merging
September 2001 Darby Recursive Merging
Mid-2004 Geysers Recursive Merging
Late 2003 Cedar Lunetta et al.

Table 2: Examples of fires detected by the change de-

tection algorithms.

Year Total Number of Fires Large Fires (> 300 acres)

2000 5,177 59
2001 6,223 74
2002 5,759 88
2003 5,961 93
2004 5,574 82
2005 4,908 73
2006 4,805 107

Table 3: Forest fires in California for each year from

2000—2006.

fires are a fraction of the total number of verified fires in the
state. From this situation, it can be inferred that some small
fires may occur every year that are not seen or verified, es-
pecially in sparsely populated regions (i.e., these small fires
occur in remote areas where they are not observed but some
forest has been destroyed). Change detection algorithms
have a significant role to play in detecting such burned re-
gions. There have been a number of studies that have shown
the utility of vegetation data for detecting burned regions
[27, 14, 29, 16]. Most of these studies were performed in
the 1990s on coarse-resolution vegetation data such as those
from the AVHRR instrument. The results from our study
with forest data suggest that the recursive merging algo-
rithm has the ability to detect forest fires from vegetation
data, and thus this approach could potentially be used to
monitor fires on a global scale.

7. CONCLUDING REMARKS
In this paper, we have performed a case study showing the

application of change detection algorithms for the problem of
land cover change detection. We focused on three data sets
for the state of California corresponding to the San Francisco
Bay Area, the entire state, and forests in the state. We ap-
plied two change detection algorithms: the Lunetta et al.
algorithm proposed by domain experts from Earth Science
and the recursive merging algorithm proposed in this pa-
per. The recursive merging algorithm was applied to the
Bay Area data set and the results showed that it discovers
high-quality change points. We also applied both algorithms
to the forest data set in order to compare their performance
and found that the locations given high change scores by the
recursive merging algorithm are better-quality change loca-
tions. These encouraging results mean that this algorithm
is effective for the land cover change detection problem.

However, there are a number of limitations of the cur-
rent algorithm which require further work. The current
algorithm does not make use of spatial information that
is present in the data. Since Earth Science data sets ex-
hibit significant spatio-temporal autocorrelation, the use of
spatial information can be expected to give superior perfor-
mance. Some patterns—such as changing crops on farmland—
may not be of interest to the analyst, in which case a scheme
must be devised to filter such points. Another interesting
extension would be to use clustering to discover the domi-
nant land cover patterns in the data, and then characterize
the changes in terms of clusters. This approach appears
promising since there are a few major classes of data (for-
est, farmland, shrubland, urban, etc.) and characterizing
changes in terms of these major classes increases the infor-
mation the algorithm provides to the analyst. In this prelim-
inary study, we have not used statistics that are commonly
used for land cover change detection [26], such as accuracy,



kappa, omission error (false negative rate) and commission
error (false positive rate). A more thorough evaluation of
the results that incorporates such statistics and examines a
much larger set of pixels must be done.
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