Probabilistic Network
Library

User Guide and
Reference Manual

Copyright ©2002-2003 Intel Corporation
All Rights Reserved
Issued in U.S.A.

Version Version History Date
-001 Original Issue July, 2002

-002 Changed the title: the former title “Probabilistic Graphical Models February, 2003
Toolkit”; edited and amended User Guide; all prefixes in function
names changed from CPGM- and EPGM- to C- and E-
respectively; changed names of 8 classes; made numerous
changes in desription of functions and in examples; added 50%
new functions and operators.

-003 Major functionality updates December, 2003
-004 Functionality updates March, 2004

This manual as well as the software described in it is furnished under license and may only be used or copied in accordance with the terms
of the license. The information in this manual is furnished for informational use only, is subject to change without notice, and should not be
construed as a commitment by Intel Corporation. Intel Corporation assumes no responsibility or liability for any errors or inaccuracies that
may appear in this document or any software that may be provided in association with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in a retrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTELD PRODUCTS. NO LICENSE, EXPRESS OR

IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS
DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL
ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING
TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A
PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR
LIFE SUSTAINING APPLICATIONS. INTEL MAY MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT
ANY TIME, WITHOUT NOTICE.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Processors may contain design defects or errors known as errata which may cause the product to deviate from published specifications.
Current characterized errata are available on request.

Celeron, Dialogic, 1386, 1486, iCOMP, Intel, Intel logo, Intel386, Intel486, Intel740, IntelDX2, IntelDX4, IntelSX2, Intel Inside, Intel
Inside logo, Intel NetBurst, Intel NetStructure, Intel Xeon, Intel XScale, Itanium, MMX, MMX logo, Pentium, Pentium II Xeon, Pentium
IIT Xeon, and VTune are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other coun-
tries.

* Other names and brands may be claimed as the property of others.

Copyright © 2002-2003 Intel Corporation.

Contents

Contents
Chapter 1 Overview
ADOUL ThiS LIDrary ..o 2-1
ADOUL ThiS SOMWAIE ... 2-1
About This Manual ... 2-2
Notational CONVENTIONSciiiiiiiiiiiiiiiiiee e 2-2
FONt CONVENLIONS ..o 2-2
Naming CONVENLIONSccoeeiiiiii i, 2-2
Chapter 2 User Guide
GraphiCal MOAEISooiiiiiiii e 3-1
Dynamic Graphical Models.............oooviiiiiieicc e, 3-7
Inference Algorithms for Bayesian and Markov Networks.................... 3-10
Inference Algorithms for DBNS..........c.cciiiiiiiiiiice e, 3-15
Learning for Bayesian and Markov Networks............ccccveuvvvieieeeennnnne 3-21
7/ 010 3-22
1Y 1= PP P P PP PP PP P PPPPPPPPPPPPPN 3-26
7/ 0L T 3-29
Learning for DBINSoooiiiiiiiiiiie ettt 3-31
LOQg SUDSYSIEM ... i e e e e eeaes 3-33
Chapter 3 Reference Manual
(=T o] o PP 4-1
(O = TS L S 61 € =T o o 4-1
ClaSS CDAG......ceiiiiiiiiie ettt 4-22
intgl. .

Probabilistic Network Library

Contents

N[0T Lo 1Y/ o= S 4-34
Class CNOUETYPE ...cooiiiiiieeeee ettt e e 4-34
1V ToTo (=1 WD o] 4 =11 o KSR UPUPPR 4-36
Class CMOdEIDOMAINcivvvieeeiieie e e e e 4-37
EVIHENCES ...coeeeeee e e 4-43
Class CNOUEVAIUEScooveveeieeeee e 4-43
ClasS CEVIAENCEcoovviiieiee et 4-49
Graphical MOGEIS...........uiiiiiiieee e 4-57
Class CGraphicalModelccoooeeeeiiiiiiiiiii e, 4-57
Class CStaticGraphicalModelccoviiiiiiiiiiiiieeieeeee e 4-65
ClasS CBINEL ...t et 4-67
ClasS CIMNEL. .. .ot e 4-72
ClaSS CMRF2 ... e 4-79
Class CFaCtOrGraphoceiiiiiiiiiiiiiee e 4-82
Class CIUNCHONTIEEue i 4-88
Class CDynamicGraphicalModel ... 4-96
(O F= TS @1 B =] N R 4-98
Distribution FUNCHONSciiviie e 4-100
Class CDIStHDFUN ... 4-100
Class CTabularDistribFuncueiiiiiiiie e, 4-119
Class CGaussianDistribFUuN..........cccoooiiiiiiiiiiiie e, 4-125
Class CCondGaussianDistribFunccccceiiieeeiiiiiiiiiies e, 4-132
Class ScalarDistribFuncoooiiiiiii e, 4-138
Class CTreeDistribFUN.........viiiiiee e 4-140
= (0] (0] £ T 4-142
(O 1= S O = V1 (| S 4-143
(O 1= T3 O O = I PR 4-159
Class CTabUlarCPDoooiviieee e 4-161
Class CGauSSIaNCPDocuiiiiiiii e 4-163
Class CMixtureGaussSianCPD.......c.cccoovvieiiiiiiee e, 4-167
ClasS CTrEECPD ... e 4-170
Class CPOtENtIAlcocvveiiiiiiee e 4-171
Int6I® 2

Probabilistic Network Library Contents

Class CTabularPotential.............ccoooiiiiiiie 4-178
Class CGaussianPotentialccccoeeeieummmimmiiiiiiieiiiiieieneneenne. 4-179
Class CRACLOrSoooeiei i 4-183
ClaSS CMALIIX ceeeeeieeeiieee e 4-186
Class CDENSEMALIIXceeeeeiieeieeeee e 4-200
Class CSPArSEMALIIXveveieeiiiiiirieiiieee et e e e e anees 4-204
Class CNumericDenseMatriX.........cooeieieiiien e 4-206
Class CNUMETICSPArsEMALIIX........uvvririeeiiiiiiiieieee e 4-207
Class C2DNumericDenseMatriXoooeveeeieeniiieieee e 4-207
ReferenCe COUNLETuuiiiii e eneeeeneenne 4-215
Class CReferenceCoUNLErcooiiiiieeieeeeeee e 4-215
INTEIENCE ENQINES.....iiiiiiiiiieiie e 4-217
Class CINFENQGINEcooveeieiei e 4-217
Class CNaiVEINTENGINEooiiiiiiiiiiiiee e 4-223
Class CPearllNfENQGINEciiiiiie i e 4-224
Class CSpecPearlINference...........c.uevvvveeiiiiiiiiicece e 4-227
Class CIreelNfENGINEuvueiiiii e 4-230
Class CEXINTENGINEuuiiiieiiiiiiiiiiee e 4-237
Class CFGSUMMaXINfENGINEccovvviiiiiii e 4-239
Class CSamplingINfENGINEuviiiiiiiiiieeeee e 4-241
Class CGibbsSamplingInfENgine..........cccccevvieeeiiiieiiiciii e, 4-245
Class CGibbsWithAnnealingINnfENGINe..........cceevviieiiiiiiiiiiieees 4-247
Class CLWSamplingInfENGINe.........cocevviiiiii e 4-250
Class CDynamiCINfENGINEc.ovviiiiiiiiiiieee e 4-254
Class C2TBNINFENQGINEuiiiii i 4-261
Class C1_ 5SIicelnfENGINEcceviiiiiiieiieiiiieeeee e 4-264
Class C1_5SliceJdTreelnfENgine.......ccccccceeeeiieeiiiiiiciii e, 4-265
Class CBKINFENGINEcooiiiiiiiiiiiiiceeeiieeeee e 4-267
Class C2TPFINTENQGINEvvueiiiieieieeeeies e 4-269
Learning ENQINES..........ooiiiiiiiiiiiiiiieeee e 4-274
Class CLearniNngENQGINEcoiiiieirieeeiiiie et e e e e 4-274
Class CStaticLearningENgiNeccccvviiiiiiiiiiiieeieiiiiiieeeee s 4-276

Probabilistic Network Library Contents

Class CEMLearningENQGINE..........ccovevviiiiiiiie e e e e e 4-278
Class CBayesLearningENGINecovvviiiiiiiiiiiiiieeee e 4-280
Class CBICLearningENgINeccoovvviiiiiiiiii e 4-281
Class CMIStatiCStruCtLearNccoeeeiee e 4-283
Class CMIStaticStructLearnHC...........coooiiiiiiii e 4-287
Class CDynamicLearningENQgINeccoooiiiiiiiiiieeeeniiiiiiiiieee e 4-289
Class CEMLearningEngineDBNcccccoiiiiiiiiiiiiicciin e, 4-290
Class CMIDyNamiCStrUCILEAINevvvieiiiiiiiiiiiee e 4-292
Random Number GENerationccc.eeeueeeuuiemmeeiiiiiieinieeiieeeeeeeeeneees 4-294
BasiC Data StrUCLUIESciieieieiiniiiiiiiiiiiniieeeieeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeees 4-298
Class ValUe ... 4-298
Class PNIVECIONcooiiiiiiieii e 4-300
(o g = o | 11 o T 4-303
Class CEXCEPLONeiiiiiiiiee ettt 4-303
[0 To IS 013251 (= 1 4-306
ClaSS LOQ .. ueueeeeeeiee ettt 4-307
(O 1= TSIS3 W0 |\ (V1117 o] 1= (o P 4-311
ClasS LOGDIIVETcoiiiiiiiieie et 4-316
(O 1= TS SR Moo | B V] (== 1 1 o [4-319
Class LOGDIVSYSIEIMciiiiiiiiiiiiiiiiee et 4-321
Saving Models to File/Loading Models from File..............ccceevvvvvnnnnnn. 4-323
Class CCoNtexXtPErsiSteNCEccoeeeeeieeieccceceeeeeeenees 4-324
Class CCONTEXE.....cee i 4-325
Bibliography
Index
intgl. 4

Overview

This manual describes Probabilistic Network Library (PNL), the general tool for
working with graphical models. The library contains high-performance
implementation of algorithms for working with Bayesian networks and Markov
networks, such as belief propagation and Junction tree inference, maximum likelihood
and expectation maximization. The library is aimed at a wide spectrum of graphical
models applications including computer vision, pattern recognition, data mining, and
decision theory. The PNL core engine will be optimized and parallized to give
maximum performance on Intel” Architectures.

About This Library
The library can be roughly divided into three parts:

— graphical models that implement graphical models (Bayesian and Markov
networks), including dynamic graphical models (Dynamic Bayesian
networks). This part includes an implementation of the graph structure along
with the factors (tabular and Gaussian so far) to specify the factorized
distribution;

— inference engines that contain Naive inference, Junction tree inference, and
belief propagation;

— learning engines that implement maximum likelihood, expectation
maximization, and score-based structure learning.

About This Software

The library is open source and free for use on license terms.

intel@ 1-1

Probabilistic Network Library Overview 1

PNL is a library implemented in C++, exporting C++ API, and some preliminary
version of MATLAB API. The library is currently available for Windows. Linux port
is also planned.

About This Manual

The manual consists of two parts: User Guide and Reference Manual. The first part
contains the overview of the implemented algorithms together with sample calls of
PNL functions to solve specific tasks. The second part gives a systematic description
of the objects and their member functions.

Notational Conventions

In this manual, notational conventions include:
* TFonts used for distinction between the text and the code

* Naming conventions.

Font Conventions

The following font conventions are used:

This type style Newly introduced important notions in User Guide; for
example, Markov Random Fields, chain graph.

This type style Mixed with the uppercase in class structure names as in
CGraph; also used in function names, code examples, public
destructor names, and call statements; for example, virtual
void CCPD, ~CFactor ().

This type style Variables and parameter types in arguments discussion; for
example, SerialNumber, data, dtTabular.
Naming Conventions

The PNL software uses the following naming conventions for different items:

* All class names start with prefix C, for example, cGraphicalModel.

intel@ 1-2

Probabilistic Network Library Overview 1

* All global functions start with prefix pn1, for example,

pnlDetermineDistributionType.

* Every new part of a function name starts with an uppercase character, without
underscore; for example, GetDomainsize.

Probabilistic Network Library Overview 1

User Guide

Graphical Models

A probabilistic graphical model (PGM) is a factorized joint probability distribution
over a set of random variables termed a model domain. Each factor is a function
defined on some small subset of variables and such subsets are called factor domains.
From the probabilistic viewpoint the factorized representation encodes independence
relationships, while from the technical viewpoint it relaxes strict memory and
computing power requirements for using PGMs, which allows exploitation of models
with large domains.

Probabilistic graphical models have three components:
* variables (model domain)
* factorization type (structure)

* factors proper.

Variables of the model can be either discrete vectors, which take a finite number of
values, or continuous vectors.

All commonly used factorization types have a corresponding graph representation. The
nodes of the graph correspond to random variables. In this documentation we will
further identify the notion of a random variable with the notion of a node in a graph.
Edges of the graph reflect the factorization of the joint probability distribution.

PNL implements some important classes of graphical models:

— Markov Random Fields (MRFs), also called Markov Networks (MNets), that
are characterized by undirected graphs. The domain of each factor is a set of
nodes in the graph, which form a clique.

21

Probabilistic Network Library User Guide 2

— Bayesian Networks (BNets) are represented by directed acyclic graphs (DAG),
where each factor is associated with a child node and has a domain consisting
of all parent nodes and the child node.

A factor in a BNet has a meaning of conditional probability distribution (CPD) of the
child node, given the parent nodes. In this context a directed edge from node 4 to node
B may be interpreted as a causal relationship though absence of the edge does not
mean the nodes are statistically independent.

The third constituent of a graphical model is a factor. It has different meaning and
functionality depending on the type of the model. In particular, MRF factors are
called potentials. These are arbitrary positive functions. BNet factors are CPDs —
positive functions that sum to 1 over the child node regardless of parent node
values.

A graphical model in terms of PNL is created by the following routine, which is shown
here for a Bayesian network model only, but also true for Markov Networks, if
implemented with minor changes. The model represented is called “water-sprinkler”.
The graph structure of the model and the parameters (CPDs in this case) are all shown

in Figure 2-1:

2-2

Probabilistic Network Library User Guide 2

Figure 2-1 Water-sprinkler model

B(C=F) B(C=T)
05 0.5

C | FIS=RPIS=T) @ o |PiR=F] BIR=T)

F |05 05 : / Floe o2
LS

T |02 o8

s R|ppwes) opw)

FEF| 10 00
TFE | Q1 [+]
ET| Q1 o9

T T| 001 0%

The nodes are numbered as follows:

Cloudy (C) =0;

Sprinkler (S) = 1;

Rain (R) = 2;

Wet Grass (W) =3
PNL has special containers for storing scalar and vector data. Value object is designed
to store inhomogeneous scalar data used for evidence. pnlvector is a template

intended for storing vector data. For the sake of brevity PNL defines several synonyms
to specializations of pn1vector. For more details please see Reference Manual.

Example 2-1 Creation of water sprinkler Bayesian network

const int numOfNds = 4;

// 1 STEP:

tel.

Probabilistic Network Library

User Guide 2

Example 2-1 Creation of water sprinkler Bayesian network

// need to specify the graph structure of the model;
// there are two way to do it

CGraph *pGraph;

1if (1)

{
// Graph creation using adjacency matrix
int numAdjMatDims = 2;
int ranges[] = { numOfNds, numOfNds };

intVector matrixData (numOfNds*numOfNds, 0);

CDenseMatrix<int>* adjMat = CDenseMatrix<int>::Create(numAdjMatDims,

ranges, é&matrixData.front());
int indices[] = { 0, 1 };
adjMat->SetElementByIndexes(1, indices);

indices[1l] = 2;
adjMat->SetElementByIndexes(1, indices);

indices[0] = 1;
indices[1l] = 3;
adjMat->SetElementByIndexes(1, indices);

indices[0] = 2;
adjMat->SetElementByIndexes(1, indices);

// this is a creation of directed graph for the BNet model based on

//adjacency matrix
pGraph = CGraph::Create (adjMat) ;

else

{

// Graph creation using neighbors list

int numOfNbrs[numOfNds] = { 2, 2, 2, 2 };
int nbrsO[] = { 1, 2 };
int nbrsl[] = { 0, 3 };
int nbrs2[] = { 0, 3 };
int nbrs3[] = { 1, 2 };

// number of neighbors for every node
int *nbrs[] = { nbrs0, nbrsl, nbrs2, nbrs3 };

// neighbors can be of either one of the three following types:

Probabilistic Network Library User Guide 2

Example 2-1 Creation of water sprinkler Bayesian network

// a parent, a child (for directed arcs) or Jjust a neighbor (for

//undirected graphs) .
// Accordingly, the types are ntParent, ntChild or ntNeighbor.

ENeighborType nbrsTypesO[]
ENeighborType nbrsTypesl|[]
ENeighborType nbrsTypes2[] =
ENeighborType nbrsTypes3|[]

ntChild, ntChild };

ntParent, ntChild };
ntParent, ntChild };
ntParent, ntParent };

|
PN

ENeighborType *nbrsTypes[] = { nbrsTypes0, nbrsTypesl,
nbrsTypes2, nbrsTypes3 };

// this is creation of a directed graph for the BNet model using

neighbors list
pGraph = CGraph::Create(numOfNds, numOfNbrs, nbrs, nbrsTypes);

// 2 STEP:
// Creation NodeType objects and specify node types for all nodes of the

model.
nodeTypeVector nodeTypes;

// number of node types is 1, because all nodes are of the same type
// all four are discrete and binary

CNodeType nt(1,2);

nodeTypes.push back(nt);

intVector nodeAssociation;

// reflects association between node numbers and node types
// nodeAssociation[k] is a number of node type object in the
// node types array for the k-th node

nodeAssociation.assign (numOfNds, O0);

// 2 STEP:
// Creation base for BNet using Graph, types of nodes and nodes association

CBNet* pBNet = CBNet::Create(numOfNds, nodeTypes, nodeAssociation, pGraph

// 3 STEP:
// Allocation space for all factors of the model
pBNet->AllocFactors () ;

// 4 STEP:
// Creation factors and attach their to model

//create raw data tables for CPDs

i ntel . 25

Probabilistic Network Library User Guide 2

Example 2-1 Creation of water sprinkler Bayesian network

float tableO 0.5f, 0.5f };

(1 ={
float tablel[] = { 0.5f, 0.5f, 0.9f, 0.1f };
float table2[] = { 0.8f, 0.2f, 0.2f, 0.8f };
float table3[] = { 1.0f, 0.0f, 0.1f, 0.9f, 0.1f, 0.9f, 0.01f, 0.99f };
float* table[] = { tablelO, tablel, table2, table3 };
int i;

for(i = 0; i < numOfNds; ++1i)
{
pBNet->AllocFactor (i) ;
CFactor* pFactor = pBNet->GetFactor(i);

pFactor->AllocMatrix(table[i], matTable);

NOTE. [fthe graph structure is not known by the time the model is
created, user can create an empty graph specifying all the arguments
of the CGraph: :Create member function equal to NULL. Then user
can first call the member function of the CGraph class named
AddNodes () to specify the number of nodes in the graph and either
add edges one by one by the call of the member function nddedge (),
or set all the neighbors for each node by the call of the member
function setNeighbors (). See the declarations of all these functions
below.

® CGraph::AddNodes (int newNumOfNds) ;

® CGraph::SetNeighbors (int nodeNum, int numOfNbrs, const int* nbrs,
const ENeighborType *nbrsTypes) ;

® CGraph::AddEdge (int startNode, int endNode, int directed);
® CGraph::RemoveEdge (int startNode, int endNode) ;

Probabilistic Network Library User Guide 2

Dynamic Graphical Models

Dynamic Bayesian network (DBN) represents a directed graphical model of stochastic
processes that generalize Hidden Markov models (HMMs) and Kalman Filter models
(KFMs) by representing the hidden and observed state in terms of state variables,
which can have complex interdependencies. DBN is defined by the following
characteristics:

— prior, or initial, network

— transition network frequently named two-slice temporal Bayesian network
(2TBN).

Prior network determines distribution of probabilities for all variables at the initial
moment of time. 2TBN represents a two-slice Bayesian network in which nodes from
the first layer have no parameters associated with them and determine the system at the
previous moment of time while each node from the second layer has conditional

probabilities (Figure 2-2).

Probabilistic Network Library User Guide 2

Nodes of the second slice can have parents both in that very same layer (corresponding
to time ¢), and in the layer that represents the previous moment. Note, that the word
“dynamic” does not mean that the network changes over time. It only means that a
dynamic process is modelled.

Figure 2-2 Dynamic Bayesian Networks

OWN SO
ORGS0
& @ @

Prior Network Transition Network

The semantics of DBN can be defined by unrolling the 2TBN for 7 time slices. The
resulting joint probability distribution is then defined by expression

1—1 n—1

P(xg.p_y) = I_l HP(x”T[(xf)) , where Ti(x!) means parents of x!, that is, i
t=0i=0

node in #" time-slice, n is the number of nodes.

The Dynamic Bayesian network storage in terms of PNL is implemented similarly to
the Bayesian network storage. Suppose, the prior network consists of # nodes. The
network, which is stored internally to represent the Dynamic Bayesian network, will
then consist of 2n nodes, where the first #» nodes are joint in one Graph to represent the
topology of the prior network and nodes with numbers starting with n to 2xn-17 are joint
in a Graph, which represents the i?" slice, where i > 0. The joint Graph is represented

2-8

Probabilistic Network Library User Guide 2

by those two layers (prior and i) and is obtained after joining them together.

Figure 2-3 shows a Bayesian network constructed by unrolling for two time-slices of a
dynamic Bayesian network. Note, that it is always possible to restore the prior and the
transition networks.

Figure 2-3 Unrolled Bayesian Networks
}
(P

N/ N —

Slice 0 Slice 1

The following routine creates a DBN in terms of PNL:

Example 2-2

Creation of DBN model
X0 ->X1
| |

v v
YO ->Y1

all nodes are discrete and binary

*/

//Create static model
const int nnodes = 4;//Number of nodes

// 1) First need to specify the graph structure of the model;

int numOfNeigh[] = {2, 2, 2, 2};
int neighO[] = {1, 2};
int neighl[] = {0, 3};

intel. 29

Probabilistic Network Library User Guide 2

Example 2-2
int neigh2[] = {0, 3};
int neigh3[] = {1, 2};

ntChild, ntChild };

ntParent, ntChild };
ntParent, ntChild };
ntParent, ntParent };

ENeighborType orientO
ENeighborType orientl
ENeighborType orient2
ENeighborType orient3

|
e

int *neigh[] = { neighO, neighl, neigh2, neigh3 };
ENeighborType *orient[] = { orient0O, orientl, orient2, orient3 };

CGraph* pGraph = CGraph::Create(nnodes, numOfNeigh, neigh, orient);
// 2) Creation of the Model Domain.

nodeTypeVector variableTypes;

const int numNt = 1;//number of Node types (all nodes are discrete)
variableTypes.resize (numNt) ;

variableTypes[0] .SetType (1, 2);

intVector variableAssociation;
variableAssociation.assign (nnodes, 0);

CModelDomain *pMD;

pMD = CModelDomain::Create(variableTypes, variableAssociation);

// 3) Creation static BNet with random matrices
CBNet *pBNet = CBNet::CreateWithRandomMatrices(pGraph, pMD) ;

// 4) Creation DBN
CDBN *pDBN = CDBN::Create(pDBN) ;

Inference Algorithms for Bayesian and Markov Networks

An inference problem in the context of a graphical model is equivalent to the
estimation of joint probability distribution, also called marginal distribution or simply
marginal, of one or several nodes without evidence or when certain nodes of the
graphical model are observed:

P(xg1r Xgpr o XgrlXe1r XeprXes) = P(XglXe),

where e denotes the evidences or observed nodes, and g denotes the query nodes
whose distribution needs to be calculated.

Probabilistic Network Library User Guide 2

This problem has several possible solutions. The most evident of them is direct
computation of joint probability distribution for all nodes of the graphical model
followed by calculation of probability distribution for the query nodes using Bayes
equation:

P(X, X,) _ Y (Prsxy s xy), 10 g0 e)'
P(X,) ZP(xl,xz, s xy), i0 e

P(X,|X,) =

By definition, this joint probability distribution can be found by multiplying all
conditional probability distributions of a Bayesian network or all joint probability
distributions at the cliques of a Markov network. Before multiplication is started, these
conditional and unconditional distributions should be adjusted according to the values
at the observed nodes of the network. The final step is to sum up the resulting values.

This description fully applies to the NaiveInfEngine.

See Example 2-3 of call of such inference engine for the “water-sprinkler” model
(Figure 2-1).

Example 2-3 Inference engine creation water sprinkler BNet

//create Water - Sprinkler BNet
CBNet* pWSBnet =

pnlExCreateWaterSprinklerBNet ();//CreateWaterSprinklerBNet () ;

//get content of Graph
pWSBnet->GetGraph () —>Dump () ;

//create simple evidence for node 0 from BNet

CEvidence* pEvidForWS;

//make one node observed

int nObsNds = 1;

//the observed node is 0

int obsNds[] = { 0 };

//node 0 takes its second value (from two possible values {0, 1})
valueVector obsVals;

obsVals.resize (1) ;

obsVals[0].SetInt (1) ;

pEvidForWS = CEvidence: :Create(pWSBnet, nObsNds, obsNds, obsVals

intel@ 211

Probabilistic Network Library User Guide 2

Example 2-3 Inference engine creation water sprinkler BNet

//create Naive inference for BNet
CNaiveInfEngine* pNaiveInf = CNaiveInfEngine::Create(pWSBnet);

//enter evidence created before
pNaiveInf->EnterEvidence (pEvidForWs);

//get a marginal for query set of nodes
int numQueryNds = 2;
int queryNds[] = { 1, 3 };

pNaiveInf->MarginalNodes (queryNds, numQueryNds);
const CPotential* pMarg = pNaiveInf->GetQueryJPD() ;

intVector obsNds;
pConstValueVector obsVls;
PEvidForWS->GetObsNodesWithValues (&obsNds, &obsVls);

int 1i;
for(i = 0; i < obsNds.size(); i++)
{
std::cout<<" observed value for node "<<obsNds[i];
std::cout<<" is "<<obsVls[i]->GetInt ()<<std::endl;
}

int nnodes;

const int* domain;

pMarg->GetDomain (&nnodes, &domain);
std::cout<<" inference results: \n";

std::cout<<" probability distribution for nodes [";

for(i = 0; 1 < nnodes; 1i++)

{
std::cout<<domain[i]<<™ ";

}
std::cout<<"]"<<std::endl;
CMatrix<float>* pMat = pMarg->GetMatrix (matTable);

// graphical model hase been created using dense matrix

// so, the marginal is also dense

EMatrixClass type = pMat->GetMatrixClass();

if(! (type == mcDense || type == mcNumericDense || type ==
mc2DNumericDense))

{

assert (0) ;

intel@ 212

Probabilistic Network Library User Guide 2

Example 2-3 Inference engine creation water sprinkler BNet

int nEl;
const float* data;
static_cast<CNumericDenseMatrix<float>*>(pMat)->GetRawData (&nEl,

&data) ;

for(i = 0; i1 < nEl; i++)
{
std::cout<<" "<<datal[i];

}
std::cout<<std::endl;

delete pEvidForWS;
delete pNaivelInf;
delete pWSBnet;

This direct computation, however, is too laborious, as the complexity grows
exponentially with respect to the number of network nodes, and becomes ineffective
even for small models. For this reason it is very seldom used in practice.

The idea, which helps to reduce the complexity of computation, is the distribution law.
Since local distributions in certain parts of the network are independent of the
variables in other parts, the distribution law can be applied to calculate distributions for
the query nodes. For instance, for the “water-sprinkler” problem the probability
distribution at node 3 with no observed variables can be expanded in the following

way:

3) = Z P(xy, xy, Xy, X3) = Z P(xy, x)) P(xg, x5) PCxy, X5, X3)
Xgr X1y Xy Xor X1s X

y P(xg, x;, x5) P(xy, X, x3) = Z P(xy, x|, x,) ZP(xl, X5,

1 X Xy X1y X» X1, X

This is the idea underlying some exact and approximate inference engines.

Initially each component of the network, which may be either a single node or a group
of nodes combined together, is assigned a certain distribution function, representing
the assumed node values of the network. Then these functions are modified in the
course of iterative message passing between the neighboring components of the
network. Generally, two components can be neighbors in terms of one inference
engine and non-neighbors in terms of another. Order of message passing, often called a

Probabilistic Network Library User Guide 2

protocol, can also be different: from one component to all the others and back (tree
protocol, or serial protocol) or all-to-all simultaneous message passing (parallel
protocol).

If the graph of Bayesian or Markov network is a tree, the most obvious network
components are the nodes. Following this approach, neighboring nodes in the graph
are also neighbors in the network. This is called Pear! Inference or Belief Propagation,
which is exact. If the graph contains undirected cycles, then assuming nodes as
network components helps to get an approximate result; to improve the approximation,
the number of iterations should be increased. This algorithm is often referred to as
Loopy Belief Propagation. However, in certain cases it may not converge or converge
to a local minimum [MWIJ], [H], yet it was proven to be exact on acyclic networks
[P1]. A lot of research is being carried out at present on the adaptability of Belief
Propagation to networks of various types ([WE2000], [WE2001]).

Inference engines of different types are created in the same manner:
CInferenceEngine* pInfEngine = CPearlInfEngine::Create(pGraphModel);

As the sample model contains an undirected cycle (through nodes 0, 1, 2, and 3) any
inferred result is generally only an estimation.

To infer exact result in case of an arbitrary network, the nodes of the network are
grouped into subsets, or clusters, which are set in correspondence with the nodes of an
auxiliary junction tree structure. Message passing in this case takes place between the
nodes of this junction tree, called Junction Tree Inference, which is exact [LS],
[CDLS].

Particle-based Inference

Besides exact inference engines, for example, Junction Tree Inference, there is an
important class of particle-based inference methods. To approximate the joint
distribution either of all or of a number of the network variables, the method samples a
set of approximations. They represent a part of the probability mas and are called
particles. Particle-based approximate inference engine can calculate the query
potential and estimate real states of query nodes. Commonly used particle-based
methods are LWSamping, GibbsSampling and ParticleFiltering.

A particle-based inference engine is easily implemented and works with a wide range
of models, among them non-linear, non-Gaussian cpps. It converts heuristics to
provably correct algorithms by using them as proposal distributions and under the

2-14

Probabilistic Network Library User Guide 2

restriction of the number of particles, it provides the exact answer. For the dynamic
adaptation among multi-cue observations the engine provides an intuitive fusion
mechanism.

Inference Algorithms for DBNs

Table 2-1

An inference problem in the context of a dynamic graphical model is equivalent to the
marginal estimation of one or several nodes from some slices irrespective of whether
certain nodes of certain slices are observed or hidden, that is, to compute

P(x(i, t)|y(:, t,:t,)), where x(i, t)represents the i hidden variable at time moment
t,and tand y(:, t,:t,) represent all the evidence between times #; and 7,. Computing
joint distributions of variables over one or more time slices is also often needed.

Several types of inference problems are distinguished for Dynamic Graphical models:

filtering (on-line procedure)
smoothing

fixed-lag smoothing (on-line procedure)

— Viterbi decoding
— prediction.
Types of Inference Problems for DBNs
Procedure Goal
Filtering P(x(#)|y(1: 1))
On-line procedure to estimate current model
state.
Smoothing P(x(1: #)[y(1: 1))

Off-line procedure to estimate the states of the
past, given all evidence up to the current time t.

Fixed-Lag Smoothing P(x(t—dt)|y(1: 1))

On-line procedure to estimate the state of some
past moment (f-df), given all evidence up to the
current time ¢.

Probabilistic Network Library User Guide 2

Table 2-1

Types of Inference Problems for DBNs (continued)

Procedure Goal

Viterbi max P(x(1: #)|y(1: ¢t))
x(1:¢)

Off-line procedure to compute the most likely
sequence of hidden states, given the data.
Prediction P(x(t+dt)|y(1: 1))

On-line procedure that extrapolates probability
distribution for future time slices.

Note that filtering is equivalent to fixed-lag smoothing with zero lag.

Inference procedure can be implemented through various approaches, some of which
are naive as those that follow:

— combine all the latent nodes from a single layer into a single meganode and
apply the forward-backward algorithm for HMM, if the nodes are discrete.

— unroll DBN and do inference, for example Junction Tree or Pearl Inference,
for the BNet obtained as a result of unroll operation.

To compute statistics necessary to learn the parameter values, inference, which is
smoothing in this case, should be called for a BNet that is as long as the
observations sequence. If the sequences of evidences are of variable lengths,
junction trees (for Junction Tree Inference) should be constructed every time,
which extremely slows down the process, or precompute and store junction trees
for all possible unrolled DBN, which requires a lot of memory. Hence it is
necessary to use a DBN with repeating structure. One of the algorithms that uses
repeating structures of DBNs is Zweig's inference algorithm. The idea of the
algorithm is to unroll a DBN once to some T, slices, to create a junction tree and
splice out extra cliques from it, when ¢ < T,,,,. But T}, should be preliminarily
specified for the inference, and online inference can be performed for this
maximum number of slices. PNL implements 1.5-slice Junction tree inference
algorithm [Murphy02]. This approach involves the following steps:

1. Create a 1.5-slice DBN - one time slice of DBN plus interface nodes from the
previous slice. Interface nodes are the nodes connected with the nodes from
the next slice and they are always the same for all time slices.

Probabilistic Network Library User Guide 2

2. Create a junction tree for the obtained network.

3. Link up all the junction trees via interfaces.

This algorithm is able to do on-line inference with no preliminarily specified 7},
Inference procedure consists of two steps, which are the forward and the backward
operation. They are the same as the steps in the classical inference algorithm for

HMM. See Example 2-4.

Besides exact inferences described above there are different variants of approximate
inferences. One of them is Boyen-Koller inference (BK). BK inference is the
approximate inference in which the belief state of the interface clique (clique consists
of interface nodes is used for message passing between slices in 1.5 Slice Junction tree
inference) is represented as a product of marginals, even though the factors may not be
independent. For details, see [BKUAI98] and [BKNIPS98]. The first paper discusses
filtering and theory while the NIPS98 paper discusses smoothing. Note that the exact
1.5 Slice Junction tree inference is the special case of BK inference.

Example 2-4 Creation of inference algorithm for DBN

CBNet *pBNetForArHMM = pnlExCreateRndArHMM() ;
CDBN *pArHMM = CDBN::Create(pBNetForArHMM) ;

//Create an inference engine
Cl 5SlicedtreelInfEngine* pInfEng;
pInfEng = Cl 5SliceJtreeInfEngine::Create (pArHMM) ;

//Number of time slices for unrolling
int nTimeSlices = 5;
const CPotential* pQueryJPD;

//Crate evidence for every slice
CEvidence** pEvidences;
pEvidences = new CEvidence* [nTimeSlices];

//Let node 1 is always observed
const int obsNodesNums[] = { 1 };
valueVector obsNodesVals(l);

int 1i;

for(i = 0; 1 < nTimeSlices; i++)

{
// Generate random value
// all nodes in the model are discrete
obsNodesVals[0] .SetInt (rand() %2);

intel@ 217

Probabilistic Network Library User Guide 2

Example 2-4 Creation of inference algorithm for DBN

pEvidences[i] = CEvidence::Create(pArHMM, 1, obsNodesNums,
obsNodesVals) ;
}

// Create smoothing procedure
pInfEng->DefineProcedure (ptSmoothing, nTimeSlices) ;
// Enter created evidences

pInfEng->EnterEvidence (pEvidences, nTimeSlices);

// Start smoothing process

pInfEng->Smoothing () ;

// Choose query set of nodes for every slice

int queryPrior[] = { 0 };
int queryPriorSize = 1;
int queryl] = { 0, 2 };
int querySize = 2;

// inference results gaining and representation
std::cout << " Results of smoothing " << std::endl;

int slice = 0;

pInfEng->MarginalNodes (queryPrior, queryPriorSize, slice);
pQuerydPD = pInfEng->GetQueryJPD () ;

std::cout<<"Query slice"<<slice<<std::endl;

int nnodes;

const int* domain;

pQueryJPD->GetDomain (&nnodes, &domain);

std::cout<<" domain :";

for(i = 0; 1 < nnodes; 1i++)

{
}

std::cout<<domain[i]<<" ";
std::cout<<std::endl;
CMatrix<float>* pMat = pQueryJPD->GetMatrix (matTable) ;

// graphical model hase been created using dense matrix
std::cout<<" probability distribution \n";

int nEl;

const float* data;
static_cast<CNumericDenseMatrix<float>*>(pMat)->GetRawData (&nEl,

&data) ;

for(i = 0; 1 < nEl; i++)

intel@ 218

Probabilistic Network Library User Guide 2

Example 2-4 Creation of inference algorithm for DBN
{
}

std::cout<<" "<<datal[i];

std::cout << std::endl;

for(slice = 1; slice < nTimeSlices; slice++)

{
pInfEng->MarginalNodes (query, querySize, slice);
pQueryJdPD = pInfEng->GetQueryJPD() ;

std::cout<<"Query slice"<<slice<<std::endl;
// Representation information using Dump ()
pQueryJPD->Dump () ;

}

slice = 0;

//Create filtering procedure
pInfEng->DefineProcedure (ptFiltering);
pInfEng->EnterEvidence (& (pEvidences([slice]), 1);
pInfEng->Filtering(slice);

pInfEng->MarginalNodes (queryPrior, queryPriorSize);
pQuerydPD = pInfEng->GetQueryJPD () ;

std::cout<<" Results of filtering " << std::endl;
std::cout<<"™ Query slice "<<slice<<std::endl;
pQueryJPD->Dump () ;

for(slice = 1; slice < nTimeSlices; slice++)

{
pInfEng->EnterEvidence (& (pEvidences([slice]), 1);

pInfEng->Filtering(slice);

pInfEng->MarginalNodes (query, querySize);
pQuerydPD = pInfEng->GetQueryJPD() ;

std::cout<<" Query slice "<<slice<<std::endl;
pQueryJPD->Dump () ;

}

//Create fixed-lag smoothing (online)

int lag = 2;

pInfEng->DefineProcedure (ptFixLagSmoothing, lag);

for (slice = 0; slice < lag + 1; slicet+)

intel@ 219

Probabilistic Network Library

User Guide 2

Example 2-4 Creation of inference algorithm for DBN

pInfEng->EnterEvidence (& (pEvidences([slicel]), 1);

pInfEng->FixLagSmoothing(slice);

pInfEng->MarginalNodes (queryPrior, queryPriorSize);
pQueryJdPD = pInfEng->GetQueryJPD() ;

std::cout<<" Results of fixed-lag smoothing " << std::endl;
std::cout<<" Query slice "<<slice<<std::endl;
pQueryJPD->Dump () ;

std::cout << std::endl;

for(; slice < nTimeSlices; slice++)
{
pInfEng->EnterEvidence (& (pEvidences([slicel]), 1);
pInfEng->FixLagSmoothing(slice);

pInfEng->MarginalNodes (query, querySize);
pQuerydPD = pInfEng->GetQueryJPD() ;

std::cout<<" Query slice "<<slice<<std::endl;
pQueryJdPD->Dump () ;

}

delete pInfEng;

for(slice = 0; slice < nTimeSlices; slice++)

{

}
delete pArHMM;

delete pEvidences|[slice];

Dynamic Bayesian networks are created by BNet with 2xn nodes, that is a DBN, unrolled
in the form of two slices. Nodes with numbers from 0 to n-/ form a connected graph
corresponding to the prior slice. The topology of the prior slice may differ from the

topology of other slices with node numbers from n to 2n-1.

Evidence of every slice with n nodes is formed of nodes with numbers from 0 to n-1.

tel € 2-20

Probabilistic Network Library User Guide 2

To get inference results the query for the prior slice (slice = 0) should contain nodes
with numbers from 0 to n-1. Probability distribution for other slices is acquired from
the current i-th slice and the preceding slice i-1. In this query node numbers n...2n-1
correspond to the nodes of the current slice, while node numbers 0...n-1 correspond to
nodes of the preceding slice.

Learning for Bayesian and Markov Networks

Table 2-2

A graphical model can be defined by its structure and the set of parameters that are
conditional probability distributions for Dynamic and Static Bayesian networks and
potentials for Markov network. A learning task of a graphical model is a task of
estimating model factors, so they give the best explanation of information available for
the model.

Most often, the input data for the learning task is presented in a table, where columns
correspond to variables of the model and each row represents learning sample, or
observation. For example, Table 2-2 shows cases for the sprinkler model (see

Figure 2-1).
Learning Data for Sprinkler Model

Node 1 Node 2 | Node 3 | Node 4

O~ O O -~ O
- OO oo~
O~ O o~ O
Aalalo o ala

Certain variables could be unobserved, which means that their values are missing in
the learning data. The samples in the table are assumed to be independent. The
following four types of learning tasks are distinguished to correspond to different a
priori information [Introd]:

Table 2-3 Types of Learning Tasks
Type of Task Graphical Model Structure Observability of Variables
Type 1 known All variables are observed
"Ttel@ 2-21

Probabilistic Network Library User Guide 2

Table 2-3 Types of Learning Tasks (continued)
Type of Task Graphical Model Structure Observability of Variables
Type 2 known Some variables are not observed
Type 3 unknown All variables are observed
Type 4 unknown Some variables are not observed
E NOTE. Only the first three types of learning tasks are considered
e below and relative examples are given. Type 4 is not supported by the
current version of PNL.
Type 1

The algorithm used in this learning task is called ML algorithm and is based on
Maximum Likelihood Estimation [JorBish].

The method finds estimate for parameters of the graphical model maximizing the value
of likelihood function p(D|8), that is, probability of observing learning data D for
given parameters 0.

Maximum Likelihood Estimation for Bayesian Network

Discrete Case. Consider the case when all variables of the network are discrete
[JorBish]. For a given Bayesian network denote the full set of its nodes by U. For a
certain node V the set of all its parents may be denoted by T(,and @, = {v} O TI,.
Let A be an arbitrary subset of nodes 4 [J U. Then x , stands for a tuple of values for
the nodes from A. The count of observations, in which the nodes from the set 4 assume
values specified by x , tuple, may be denoted by m(x ;) . Logarithm of the previously
described likelihood function is more convenient to use instead of the function itself, in
which case the logarithm can be found as follows:

O O
(0, D) = logp(D|8) = loggl_l pixy, n|GE=

tel.

2-22

Probabilistic Network Library User Guide 2

= Z m(xy)logp(xy|8) = Z Z m(xy)logB,(xq)

Xy vVooxg
The values that maximize this function are as follows:

m(x%)

m(x)

(x| = Bulrg) =

These estimates are formed independently at each of the nodes in the graph.

Multivariate Gaussian Case. In PNL the Multivariate Gaussian case is
implemented only for a Bayesian network.

The vector ¥* may be formed as follows:* = O %f ,)9/{(, . 3k , where f},k and X are
the vectors of values of ith parent and child in the xth example of the table.

The proposed approach is to model the joint distribution over a node and its parents as
multivariate Gaussian distribution and then find its M1 estimation. The sufficient
statistics after N examples are [Murphy98], [Jordan]:

T Vv

N " 53T
=y Th 3 =y -

i=1

A

and M can be broken up into blocks corresponding to parent nodes and the child:
) Zyy Zyx ~
Z -) H = 2
2o 2w M

The result is Gaussian distribution at the child node in a moment notation:

A~

9
Hy.

A ~ A ~

intel@ 2-23

Probabilistic Network Library User Guide 2

where matrix B is broken up into individual blocks, one for each parent.

Maximum Likelihood Estimation for Markov Network

Undirected models are more flexible than their directed counterparts. Assume that all
network variables are discrete. In this case, the log likelihood is found as follows:

(6, D) = logp(D|6) = ZZm(xC) logW-(x-)—N logZ ,
Cxc

where Y-(x) is the clique potential, N is the number of evidences, and Z is the
normalization factor [JorBish], [Jirousek].

2= STt
x, C

If the potentials are defined on maximal cliques in the graph, maximum likelihood
estimates for decomposable graphs can be found by inspection in the following way:

for every clique — set the clique potential to the empirical
marginal for that clique;

for every non-empty — associate an empirical marginal with the

intersection between intersection, and divide that empirical

cliques marginal by the potential of one of the two

cliques that form the intersection.

If the graph is arbitrary, the Iterative Proportional Fitting (IPF) can be used [JorBish],
[Jirousek]. When graph is decomposable, this algorithm converges in a finite number
of iterations, updating each potential once.

The IPF process runs as follows. Denote the potential of a clique C at ith iteration by
L|fc(x ¢) and the joint probability distribution based on these parameter estimates by

pi(x) . In this notation the IPF can be written as follows:

. o m(xe) N
ljJ‘C”(xC) = qjC(xC)]TXZ) , where m(x) = m(])\cfc)

2-24

Probabilistic Network Library User Guide 2

The normalization factor Z remains constant through all iteration process, so IPF may
be presented in terms of joint probabilities:

m (x C)

Py = p"<xU)p,.(xC)

In PNL estimation of Markov network parameters is based on IPF.

Bayesian Update

Besides factor parameters with exact values (such as, mean and variance in Gaussian
distribution), there are parameters in the form of unknown variables which have their
own probability distributions with other parameters, termed superparameters.
Superparameters are variables too, thus finally there appears to be an infinite hierarchy
of parameters. The current version of PNL supports only a two-level hierarchy in
discrete tabular distributions.

Let 8 be a parameter of a probability distribution corresponding to some variable.

PO 60is a prior distribution of the parameter 6. The task of Bayesian parameter
learning is to update the distribution given data D, that is to find the conditional
distribution >8] D,

According to the Bayes formula
6| DE POD| 6P O l’

PO DO

where 0ODE I POGPOD| B0

Based on the given parameter distribution function, the distribution function for the
unknown variable x is Ox J’ POBCPON DI

The Dirichlet distribution with parametersq,, .., a, 1s a suitable prior distribution for a
discrete multinomial distribution (where a variable can give n outcomes) with
parameters 8,,..,8,,. Dirichlet parameters are interpreted in terms of pseudo counts,
where «, stands for an imaginary observed number of cases when the discrete variable
has taken the i-th value. When training data contains a small number of cases, positive

pseudo counts allow to assign to its unobserved values a non-zero probability.

2-25

Probabilistic Network Library User Guide 2

Ty

pe 2

Let training data contain N, + ..+ N, cases, and N, be a number of cases when the i-th
value is observed.

On learning these cases, a posterior distribution of 8 becomes a Dirichlet distribution
with parameters a, + N,,...a, + N,. The target distribution of x after integration through
. + N,

parameters 1S P(x = i)= p T

ZDak+NkD

This discussion applies to the case of an unconditional distribution where the

considered node of BNet does not have parents. However, you may easily extend it to

cases when the node has parents. As there are counts ~; and pseudo counts «; , that

correspond to the case when x = j, and parents of x are in configuration i, the target
e +N,

distribution of x becomes P(x = i)| parents OxF iZ n—a’u’—

z Ua; + N[O

This problem can be solved iteratively by using Expectation Maximization (EM)
algorithm [Dempster], [Jordan]. The idea of the algorithm is as follows: first, assume
the initial state of parameters 8~ and then start the iterative process alternately
repeating two steps: E-step and M-step.

Consider the process at ith iteration:

E-step For each example of the table the probability distribution of the
unobserved variable is found from the values of observed variables
and the current values of model parameters 0’ ~! The expectations
of unobserved variables are calculated for each example in the table.

M-step The new value of 0" is found that maximizes the value of the
likelihood function. E-step is repeated with the new parameter
values.

This process converges to a local maximum.

In PNL the EM learning engine is implemented for:

— Bayesian networks with discrete or multivariate Gaussian distribution

2-26

Probabilistic Network Library User Guide 2

— Markov networks with discrete distribution.

The following example considers learning of parameters for the Bayesian network
defined in the sprinkler example (see Figure 2-1). If all the nodes are observed, it is
Type 1 learning. In this case E-step, which creates an inference engine and performs
the inference procedure, does not need to be called. A learning task is of Type 2, if
some nodes are hidden. Then the procedure creates an instance of inference engine,
which is a junction tree engine by default, and uses it in the E-step.

Example 2-5 Creation of learning engine for water-sprinkler BNet

CBNet* pWSBnet = pnlExCreateWaterSprinklerBNet () ;

//create WS BNet with different matrices

std: :cout<<"Learning procedure \n ";

CGraph *pGraph = CGraph::Copy(pWSBnet->GetGraph());
CModelDomain *pMD = pWSBnet->GetModelDomain () ;

CBNet* pWSLearnBNet = CBNet::CreateWithRandomMatrices(pGraph, pMD);

//loading data from file
const char * fname = "..\\c_pgmtk\\examples\\Data\\casesForWs";

pEvidencesVector evVec;
if(! pnlLoadEvidences (fname, &evVec, pMD))
{

printf("can't open file with cases");

exit (1) ;
}
int numOfSamples = evVec.size();
std::cout<<"Number of cases for learning = "<<numOfSamples<<std::endl;

//create learning engine
CEMLearningEngine *pLearn = CEMLearningEngine::Create(pWSLearnBNet);

//set data for learning
pLlearn->SetData (numOfSamples, &evVec.front());
pLearn->Learn () ;

//get information from learned model

int nFactors = pWSLearnBNet->GetNumberOfFactors() ;
const CFactor *pCPD;

const CNumericDenseMatrix<float> *pMatForCPD;

int numOfEl;

const float *dataCPD;

intel@ 2-27

Probabilistic Network Library

User Guide 2

Example 2-5 Creation of learning engine for water-sprinkler BNet

int f;
for(£ = 0; £ < nFactors; f++)

{

}

std::cout<<std::endl<<" probability distribution for node
"<<f<<std::endl;

pCPD = pWSLearnBNet->GetFactor (f);

//all matrices are dense

pMatForCPD = static cast<CNumericDenseMatrix<float> *>
(pCPD->GetMatrix (matTable)) ;

pMatForCPD->GetRawData (&numOfEl, &dataCPD);

int j;
for(j = 0; 7 < numOfEl; J++)
{

}

std: :cout<<" "<<dataCPDI[j];

std::cout<<std::endl;

int ev;
for(ev = 0; ev < evVec.size(); ev++)

{
}

delete evVec([ev];

delete pLearn;
delete pWSBnet;
delete pWSLearnBNet;

After this procedure, the parameters of the Bayesian network assume new values that
maximize the likelihood function. The new values correspond to the array of learning

data in the best way.

A new table with cases may be used in further training in the following two ways:

Option 1. Ignore data from the previous learning. Use setbata member function to

implement the variant.

Example 2-6 Entering New Data

// entering new data and clear accumulated information.

// here pEvNew is the pointer to a newly created array of Evidences

plLearn->SetData (newNumOfCases, pEvNew)
// call learning
plearn->Learn () ;

tel e 2-28

Probabilistic Network Library User Guide 2

The parameters of the Bayesian network assume new values that correspond to the
learning data.

Option 2. Use data from the previous learning. Use 2ppendbData member function to
implement the variant.

Example 2-7 Using data from previous learning

Type 3

pLlearn->AppendData (newNumOfCases, pEvNew)
plearn->Learn () ;

The current version of PNL carries out structure learning for static and dynamic BNets
and does not support other models. The learning engine calls Maximal Likelihood
parameter learning. In this version of PNL learning is carried out under the condition
that the input data is complete, that is, when all nodes of training cases are observed.
The algorithm supports graphical models with tabular, Gaussian and conditional
Gaussian distributions.

Structure Comparison Metric

One of the solutions to the learning task in this case is the computation of joint
probability p(D, S’)for the learning data D and model structure S”:

logp(D, S") = logp(D|S") + logp(S™).

In the case of a Bayesian network with discrete variables, the first item in the above
formula is found by applying Bayesian Information Criterion (BIC) [Jordan]:

ogp(DIs") = Togp(D[6T) 5~ Zlog)

where 0 stands for network parameters, N is the number of observations, and d is the
number of network parameters. This criterion is a good approximation of the ML
criterion discussed above. In BIC the first item shows the degree of consistency of
network parameters with the modelled data, and the addend reflects the descriptive
complexity of the network. Vector 8Lcan be found from the following condition:

a0l = argmax log (p(D|B, SMHp(B|Sh)).

Structure Search Method

2-29

Probabilistic Network Library User Guide 2

The structure learning algorithm for PNL Bayesian networks employs the
hill-climbing search. It scores all neighbors of the current structure (DaG) and moves to
the neighbor with the highest score. The problem of selecting the best Bayesian
network from all the network configurations is NP hard. Among heuristic iterative
algorithms that solve this problem are Greedy Hillclimbing, Best-first, and algorithms
based on Monte Carlo methods. One of the algorithms implemented in PNL iterates
through all graph topologies that contain no

directed NN=1)

cycles. The total number of such topologies is 2 2 , where N is the number of

nodes, and the number of node permutations is N!. The total number of Bayesian

NN-1)

networks with the topology is V! [1 2 2

The hill-climbing search is local: on reaching a local maximum the learning procedure
stops. To implement search it requires an initial structure. You may choose a number
of different initial structures (starting points) and run the hill-climbing search for each
of them. You can set the search procedure to run several times for all itructures but for
the first that you specify. The system will randomly generate other legal starting points
for learning and return the best structure.

The following example considers structure learning for Bayesian network using class
CBICLearningEngine. This class is used only for learning networks with discrete
parents.

Example 2-8 Structure Learning for Bayesian Network Using PNL

// create an empty graph with number of nodes numOfNds

int numOfNds = 4;

CGraph *pGraph = CGraph::Create(numOfNds, NULL, NULL, NULL);

// here the user has to set all other variable values necessary to
//create a Bayesian network with an empty graph (the number of node
// types, actual node types, etc.)

const int numOfNdTypes = 1;

// number of node types is 1, because all nodes are of the same type
// all four are discrete and binary

new CNodeType [numOfNdTypes];
new int [numOfNds];

CNodeType *nodeTypes
int *nodeAssociation

nodeTypes[0].SetType (1, 2);// node type - discrete and binary

i ntel ® 2-30

Probabilistic Network Library User Guide 2

Example 2-8 Structure Learning for Bayesian Network Using PNL (continued)

int 1i;
for(i = 0; i < numOfNds; ++1i)
{

}

nodeAssociation[i] = 0;

pBNet = CBNet::Create(numOfNds, numOfNdTypes, nodeTypes, nodeAssociation,

pGraph);
pBNet->AllocFactors (),
for(i = 0; i < numOfNds; 1i++)

{
pBNet->AllocFactor (i) ;
pPBNet->GetFactor (i) ->CreateAllNecessaryMatrices () ;

}

// create learning engine

CBICLearningEngine *pLearn = CBICLearningEngine::Create(pBNet);

// set input data
pLearn->SetData (numOfCases, pEv);

//start learning
plearn->Learn () ;

// the output Bayesian network
const CBNet *pFinalBNet = NULL;

pFinalBNet= static_ cast<const CBNet *>(pLearn->GetGraphicalModel());
// the output graphical model is sorted topologically

// get the relation to initial node numeration
cost int *reordering = pLearn->GetOrder();

Learning for DBNs

Parameter estimation techniques for peNs coincide with Expectation Maximization
(EM) techniques used for learning BNets. Note that parameters of the model must be
tied across time-slices, so sequences of unbounded length can be modelled and the
initial state of the dynamic system can be learned independently of the transition
matrix. The expected sufficient statistics should be pooled for all the nodes that share
the same parameters.

intel@ 2-31

Probabilistic Network Library User Guide 2

See Example 2-9 of calling a parameter learning engine for DBN.

Example 2-9 Calling of parameter learning engine for DBN

CBNet *pBNetForArHMM = pnlExCreateRndArHMM() ;
CDBN *pArHMM = CDBN::Create(pBNetForArHMM);
//Create learning procedure for DBN

pEvidencesVecVector evidencesOut;

const int nTimeSeries = 500;

intVector nSlices (nTimeSeries);

//define number of slices in the every time series
pnlRand (nTimeSeries, &nSlices.front(), 3, 20);

// Generate evidences in a random way
PArHMM->GenerateSamples (&evidencesOut, nSlices);

// Create DBN for learning
CDBN *pDBN = CDBN: :Create (pnlExCreateRndArHMM ()) ;

// Create learning engine
CEMLearningEngineDBN *pLearn = CEMLearningEngineDBN::Create(pDBN);

// Set data for learning
pLearn->SetData (evidencesOut);

// Start learning
try
{

}
catch (CAlgorithmicException except)

{
}

//T1&6+41ed 04cbdHElivadia 146+aied, 1014daxdied
int nFactors = pDBN->GetNumberOfFactors();
const CTabularDistribFun* pDistribFun;

const CFactor* pCPD;

int 1i;

for(i = 0; 1 < nFactors; i++)

{

pLlearn->Learn() ;

std::cout << except.GetMessage () << std::endl;

pCPD = pArHMM->GetFactor (i) ;

int nnodes;
const int* domain;
pCPD->GetDomain (&nnodes, &domain);

std::cout<<" node "<<domain[nnodes -1]<<" hase the parents ";
int node;

i ntel . 232

Probabilistic Network Library User Guide 2

Example 2-9 Calling of parameter learning engine for DBN

for(node = 0; node < nnodes-1; node++)

{
}

std::cout<<domain[node]<<" ";

std::cout<<" Conditional probability distribution for node
"<<i<<std::endl;

std::cout<<" initial model"<<std::endl;

pDistribFun = static_cast<const
CTabularDistribFun*> (pCPD->GetDistribFun()) ;

pDistribFun->Dump () ;

std::cout<<" model after learning"<<std::endl;

pCPD = pDBN->GetFactor (i) ;

pDistribFun = static cast<const
CTabularDistribFun*> (pCPD->GetDistribFun()) ;

pDistribFun->Dump () ;

}

for(i = 0; 1 < evidencesOut.size(); 1i++)
{
int j;
for(j = 0; j < evidencesOut[i].size(); j++)

{
}

delete evidencesOut[i][j];

}
delete pDBN;
delete pArHMM;

Log Subsystem
Attachment to Output and Dumping

When a Log object is created it is automatically attached to the output. An embedded
type is dumped through Log interface. All strings dumped through 1.og have the prefix
of the first constructor argument. The second and the third constructor arguments
control filtering.

intel@ 2-33

Probabilistic Network Library User Guide 2

When a Log object is created it is automatically attached to the multiplexor and when
the object is destroyed it is automatically detached from it.

Example 2-10 Code example

Class Point {

double x, vy, z;

public:
Point (double x , double y , double z): x(x), y(y), z(z) {}
void dump () const;

b

void Point::dump () const

{
Log out (“point: “, eLOG_INFO, eLOGSRV_PNL) ;

W << x << “\n’;
N <<y << "\n’;
W << z << “\n’;

out << “x
out << Yy
out << “z

}

Point pt(1.0, 2.0, 3.0);
pt.dump () ;

Devices which ensure outputting with level eLoG_INFO and service eLOGSRV_PNL
dump the following strings:

point: x = 1.0
point: y = 2.0
point: z=3.0

Creating a Driver

When a driver is created it is automatically attached to the multiplexor. When a driver
is destroyed it is automatically detached from the multiplexor.

In the current version of PNL only one driver writes to std: :ostream:

LogDrvStream.

Example 2-11 Code example

{
LogDrvStream tempStream(“c:\\pnl add.log”, eLOG RESULT| eLOG_ SYSERR|

eLOG PROGERR,

i ntel @ 2-34

Probabilistic Network Library User Guide 2

Example 2-11 Code example

eLOGSRV_ALL) ;
Log out (“demo out: ”, eLOG RESULT|eLOG DEBUG, eLOGSRV_PNL) ;

out << “test string\n”;

The driver tempstream is created before the implementation of the function. The
driver receives the logging information that corresponds to the given level and
service. ThuS, for example, out dumps to tempStream.

Description of Log Subsystem Classes

Log Implements optimization. Has no virtual functions and does
not presuppose derivation.

LogMultiplexor Implements commutation. There is only one
LogMultiplexor and it does not have any derived classes.
Generally you do not create or destroy this class.

LogDriver Basic purely virtual class.

®* LogDrvStream. This driver outputs to std: :ostream. It
may be created by std: :ostream. In this case you
need to delete std: : ostream after destroing
LogDrvStream. [t may also be created by the file name.
In this case the std: :ostreanm is deleted by
LogDrvStream.

® LogDrvSystem. This driver resembles LogDrvStream
but is configured through configuresystem, not
through configure, so that its configuration cannot be
changed by LogMultiplexor.

Filtering Control

Filtering is controled through a pair of parameters: level and service.

* Ievel identifies a type of information outputted through Log such as, for example,
a system error message eLOG SYSERR or a message with debugging information
eLOG_DEBUG.

* service identifies a part of the system from which the information comes.

i'\tkal@ 2-35

Probabilistic Network Library User Guide 2

Table 2-4 graphically represents level and service as they specify a subset of
rectangles.

Table 2-4 Parameter graphic representation

eLOGSRV_LOG eLOGSRV_EXCEPTION HANDLING eLOGSRV_POTENTIAL
eLOG_RESULT
eLOG_SYSERR 2 2
eLOG_PROGERR 1

eLOG_WARNING
eLOG_NOTICE
eLOG_INFO
eLOG_DEBUG

hd [eLOG_PROGERR, eLOGSRV_EXCEPTION HANDLING]

d [eLOG_SYSERR|eLOG_WARNING|eLOG NOTICE,
eLOGSRV_LOG | eLOGSRV_POTENTIAL]

® [eLOG_INFO|eLOG DEBUG,
€LOGSRV_EXCEPTION HANDLING|eLOGSRV_ POTENTIAL]

i ntel . 236

Reference Manual

Graph

Class CGraph

PNLBase

Graph
Create()

Copy()
AddEdge()
RemoveEdge()
AddNodes()

Class cGraph represents the graph structure of the model and carries out some basic
graph algorithms.

Probabilistic Network Library Reference Manual 3

Public Member Functions

Create

Creates object of class.

static CGraph* CGraph::Create(int numOfNds, const int *numOfNbrs, const int
*const *nbrsList, const EneighborType *const *nbrsTypes);

static CGraph* CGraph::Create(int numOfNds, const int *const *adjMat);

static CGraph* CGraph::Create(const intVecVectoré& nbrsList,const
neighborTypeVecVector& nbrsTypesList);

static CGraph* CGraph::Create(const CMatrix<int>* pAdjMat) ;

Arguments

numOfNds Number of nodes of the graph.

numOfNbrs Array of integer, each ith integer is the number of neighbors of the ith
nodes.

nbrsList List of neighbors for a node.

nbrsTypes 2D list of neighbor types. Each element shows the type of the

corresponding neighbor from nbrsrist.

nbrsTypesList 2D list of neighbor types.

adjMat 2D array of integers, represents an adjacent matrix.
pAdjMat 2D integer matrix, represents an adjacent matrix.
Discussion

Call of this function creates an instance of class cGraph. Call of the class destructor
deletes the instance. A node may have a neighbor of the following type: ntpParent,
ntChild, ntNeighbor.

Probabilistic Network Library Reference Manual 3

Copy

Creates class object by copying.

static CGraph* CGraph::Copy(const CGraph *pGraph);

Arguments

pGraph Pointer to a cGraph object to be copied.

Discussion

Call of this function creates a new object of class cGraph by copying the input object
and returns a pointer to it. Call of the class destructor deletes the instance.

GetTopologicalOrder

Returns numbers of nodes according to their
topological order.

void CGraph:: GetTopologicalOrder (intVector *order) const;

Arguments

order Returned parameter. Numbers of nodes according
to their topological order.

Discussion

This function returns numbers of nodes according to the order of their topological
sorting.The function assumes that the graph is a DAG object.

Probabilistic Network Library Reference Manual 3

MoralizeGraph

Creates class object by moralizing.

static CGraph* CGraph::MoralizeGraph(const CGraph *pGraph);

Arguments
pGraph Pointer to a cGraph object to be moralized.
Discussion

Call of this function creates a new object of class cGraph by moralizing the input
object and returns a pointer to it. Call of the class destructor deletes the instance.

AddEdge
Adds edge to existing graph.

void CGraph::AddEdge (int startNode, int endNode, int directed);

Arguments

startNode Starting node of the edge.

endNode Ending node of the edge.

bDirected Edge orientation. The argument shows if the edge is

directed. Equals to 1 (true), if the edge is directed, and
equals to 0 (false) otherwise.

Probabilistic Network Library Reference Manual 3

ChangeEdgeDirection

Changes direction of existing graph.

void CGraph::ChangeEdgeDirection(int startNode, int endNode) ;

Arguments

startNode Starting node of the edge for which direction should be
changed.

endNode Ending node of the edge for which direction should be
changed.

GetNeighbors

Gets all neighbors for given node with
orientation vector.

int CGraph::GetNeighbors (int nodeNum, int *numOfNbrs, const int **nbrs, const
ENeighborType **nbrsTypes) const;

void CGraph: :GetNeighbors(int nodeNum, intVector* nbrsOut,
neighborTypeVector *nbrsTypesOut) const;

Arguments

nodeNum Number of the node for which neighbors should be found.

numOfNbrs Returned value, pointer to the variable that takes the value
equal to the number of neighbors for the node.

nbrs Returned value, pointer to the array of the neighbors of the
node.

nbrsoOut Returned value. Array of the neighbors of the node.

nbrsTypes Returned value, each element of which shows the type of the

corresponding neighbor from nbrs.

Probabilistic Network Library Reference Manual 3

nbrsTypesOut Returned value, each element of which shows the type of the
corresponding nieghbor from nbrsout.

GetNumberOfNeighbors

Returns number of neighbors for given node.

inline int CGraph: :GetNumberOfNeighbors (int nodeNum) const;

Arguments
nodeNum Number of the node for which the number of the neighbors
should be found.
GetNumberOfNodes

Returns number of all nodes in graph.

inline int CGraph: :GetNumberOfNodes () const;

GetNumberOfEdges

Returns number of all edges in graph.

inline int CGraph: :GetNumberOfEdges () const;

Probabilistic Network Library Reference Manual 3

IsCompleteSubgraph

Checks subset of given nodes for completeness.

int CGraph::IsCompleteSubgraph(int numOfNdsInSubgraph, const int *subgraph)
const;

int CGraph::IsCompleteSubgraph(const intVector& subGraphIn) const;

Arguments

numOfNdsInSubgraph Number of nodes in the subset.
subgraph Subset of nodes.

Discussion

This function checks whether a subset of given nodes is complete. Returns 1 if the
subset of nodes is complete, returns 0 otherwise.

IsChangeAllowed
Returns status flag for graph.

inline int CGraph::IsChangeAllowed () const;

Discussion

This function returns 1 if the change of the graph is allowed and 0 otherwise.

Probabilistic Network Library Reference Manual 3

IsExistingEdge

Returns information on edge existence.

int CGraph::IsExistingEdge(int startNode, int endNode) const;

Arguments
startNode Starting node of the edge.
endNode Ending node of the edge.
Discussion

This function returns 1 for the edge if it exists in the graph and 0 otherwise.

RemoveEdge
Removes edge from graph.

int CGraph::RemoveEdge (int startNode, int endNode) ;

Arguments
startNode Starting node of the edge.
endNode Ending node of the edge.

SetNeighbors

Sets neighbors for given node.

void CGraph::SetNeighbors(int nodeNum, int numOfNbrs, const int *nbrs, const
ENeighborType *nbrsTypes) ;

intel. 36

Probabilistic Network Library Reference Manual 3

void CGraph::SetNeighbors(int nodeNum, const intVector& nbrs,const
neighborTypeVector& nbrsTypes);

Arguments

nodeNum Number of the node for which neighbors should be set.
numOfNbrs Number of the neighbors for the node.

nbrs Array of the neighbors for the node.

nbrsTypes 1D array of types of the neighbors of the node numbered

nodeNum.

ProhibitChange

Prohibits any change of cGraph object.

inline void CGraph::ProhibitChange () const;

FormCliqueFromSubgraph

Forms a clique by connecting all the nodes of the
subgraph between each other.

void CGraph::FormCliqueFromSubgraph(int numOfNds, const int *subGraph);
void CGraph::FormCliqueFromSubgraph(const intVector& subGraph);

Arguments
numOfNds Number of nodes in subgraph of nodes.
subGraph Subgraph, all the nodes of which should be connected to

each other to form a clique.

Probabilistic Network Library Reference Manual 3

GetNumberOfParents

Returns number of parents of the node.

inline int CGraph: :GetNumberOfParents(int nodeNum) const;

Arguments

nodeNum Number of the node, for which number of parents is queried.

GetNumberOfChildren

Returns number of children of the node.

inline int CGraph: :GetNumberOfChildren(int nodeNum) const;

Arguments
nodeNum Number of the node, for which number of children is
queried.
IsDirected

Checks if the graph is directed.

inline int CGraph::IsDirected() const;

Discussion

This function returns 1, if the graph is directed, and 0, if the graph has at least one
undirected edge.

intel. 310

Probabilistic Network Library Reference Manual 3

IsUndirected
Checks if the graph is undirected.

inline int CGraph::IsUndirected() const;

Discussion

This function returns 1, if the graph is undirected, and 0, if the graph has at least one
directed edge.

GetAdjacencyMatrix

Returns adjacency matrix.

inline void CGraph::GetAdjacencyMatrix (CMatrix<int>** pAdjMatOut) const;

Arguments

pAdjMatout Returned parameter. Pointer to the adjacency martix for the
graph.

Discussion

This function returns an adjacency matrix, which corresponds to the graph described
by the related cGraph object. Note, that the adjacency matrix is not stored inside the
graph and should be formed only when the user calls this member function.

ClearGraph
Clears graph.

inline void CGraph::ClearGraph();

intel. 311

Probabilistic Network Library Reference Manual 3

Discussion

This function clears the graph by deleting lists of neighbors for all nodes and then
setting the number of nodes equal to zero.

operator ==
Checks if two graphs are identical.

inline bool CGraph::operator ==(const CGraph& rGraph) const;
Arguments
rGraph Reference to the graph, which is the right-hand-side operand

of the comparison operation.

Discussion

This function checks if two graphs are identical, and returns ‘true’, if they are, and
‘false’ otherwise.

operator ! =
Checks if two graphs are not identical.

inline bool CGraph::operator !=(const CGraphé& rGraph) const;
Arguments
rGraph Reference to the graph, which is the right-hand-side operand

of the comparison operation.

intel. 312

Probabilistic Network Library Reference Manual 3

Discussion

This function checks if two graphs are not identical, and returns ‘true’, if they are not,
and ‘false’ otherwise.

E NOTE. For the two above functions operator == and operator ! =

= the graphs are identical, if they have the same number of nodes and
nodes have the same number of neighbors, which are numbered the
same and are of the same type.

GetParents

Returns vector of parents for node.

inline void CGraph::GetParents(int nodeNum, intVector *parents) const;

Arguments
nodeNum Number of the node, for which parents are inquired.
parents Actually returned parameter. A pointer to a 1D vector of
integers that are numbers of nodes, which appear to be
parents of the node numbered nodenum.
GetChildren

Returns vector of children for node.

inline void CGraph::GetChildren(int nodeNum, intVector *children) const;

intel. 313

Probabilistic Network Library Reference Manual 3

Arguments
nodeNum Number of the node, for which children are inquired.
children Actually returned parameter. A pointer to a 1D vector of

integers that are numbers of nodes, which appear to be
children of the node numbered nodenum.

ISDAG
Checks if graph is directed acyclic graph.

int CGraph::IsDAG() const;

Discussion

This member function returns 1, if the graph is a directed acyclic graph (DAG), and 0
otherwise.

IsTopologicallySorted
Checks if graph is topologically sorted.

int CGraph::IsTopologicallySorted() const;

Discussion

This member function returns 1, if the graph is topologically sorted. Number of a
parent is always less than numbers of its children.

intgl. 14

Probabilistic Network Library Reference Manual 3

NumberOfConnectivityComponents

Returns number of graph connectivity

components.
int CGraph: :NumberOfConnectivityComponents () const;
Discussion

This function returns a number of connectivity components of the graph it has been
called for. Note that if graph has more than one connectivity components, the inference
engine throws an exception. This means that in the case of several connectivity
components all of them should be treated as separate graphical models.

GetConnectivityComponents

Returns connectivity components.

void CGraph::GetConnectivityComponents (intVecVector *decompositionOut)
const;

Arguments

decompositionOut Returned parameter. Array of connectivity components.

Discussion

This function returns connectivity components.

intel. 315

Probabilistic Network Library Reference Manual 3

operator =

Assigns new value to graph object.

CGraph& CGraph::operator =(const CGraphé& rGraph);
Arguments
rGraph Reference to a graph, which is the right-hand-side operand

of the assignment operation.

Discussion

This function assigns one existing graph to the other, so that the result is an identical
copy of the input graph.

Dump
Dumps graph.

void CGraph: :Dump () const;

Discussion

This function dumps the graph, that is, all the neighbors and neighbors types for all
nodes, to the standard output.

intel. 316

Probabilistic Network Library Reference Manual 3

GetAncestry

Finds nodes that lie outside given subgraph but
have ancestors inside.

void CGraph::GetAncestry(intVector const &subGraph, intVector *closure)

const;
Arguments
subGraph Vector of indices of the input subgraph.
closure Output vector.
Discussion

This function returns indices of nodes that do not lie but have ancestors in the given
subgraph.

GetAncestralClosure

Finds nodes that either lie inside or have
ancestors in given subgraph.

void CGraph::GetAncestralClosure(intVector const &subGraph,

intVector *closure) const;

Arguments

subGraph Vector of indices of the input subgraph.
closure Output vector.

Discussion

This function returns indices of nodes that either lie or have ancestors in the given
subgraph.

intgl. 347

Probabilistic Network Library Reference Manual 3

GetAncestralClosure

Finds nodes that either lie inside or have
ancestors in given subgraph.

void Cgraph::GetAncestralClosure(intVector const &subGraph,

boolVector *closureMask) const;

Arguments
subGraph Vector of indices of the input subgraph.

closureMask Output boolean vector-mask.

Discussion

This function finds nodes that either lie inside or have ancestors in the given subgraph
and fills the boolean mask accordingly. The i-th element of the closuremMask is set to
true only if the i-th node belongs to the ancestral closure.

GetSubgraphConnectivityComponents

Finds plain connectivity components of induced
subgraph.

void CGraph: :GetSubgraphConnectivityComponents (intVector const &subGraph,

intVecVector *decomposition) const;
Arguments
subGraph Vector of indices of the input subgraph.

decomposition Output vector of vectors with indices of the decomposition nodes.

intel. 318

Probabilistic Network Library Reference Manual 3

Discussion

This function finds plain connectivity components of the induced subgraph and fills in
the decomposition output argument accordingly.

GetDConnectionList

Finds nodes d-connected to given node.

void CGraph::GetDConnectionList (int node, intVector const &separator,
intVector *dseparationList) const;

Arguments

node Given node.

separator Separator for d-separation.
dseparationList Output vector of indices of nodes.
Discussion

This function finds nodes d-connected to the given node by the given separator. The
definition of the d-connection runs as in [CDLS]:

node A is d-connected to node B if there is a non-blocked trail between them. A trail is
blocked if it contains either a node from the separator with the trail edges meeting not
head-to-head, or a node that has descendants in the separator with the trail edges
meeting head-to-head.

GetDConnectionTable

Finds d-connection lists for all nodes of graph.

vold CGraph::GetDConnectionTable (intVector const &separator, intVecVector
*dseparationTable) const;

intel. 310

Probabilistic Network Library Reference Manual 3

Arguments

separator Separator for d-separation.
dseparationTable Output vector of vectors of indices of nodes.
Discussion

Finds d-connection lists for all nodes of the graph. The definition for the d-connection
runs as in [CDLS].

E NOTE. Using GetDConnectionTable rather than
= GetDConnectionList for finding multiple d-separation lists ensures
a much faster result.

GetReachableSubgraph

Finds nodes reachable from given subgraph if
certain pairs of edges are banned.

void CGraph::GetReachableSubgraph (intVector const &subgraph, bool *ban(],
intVector *closure) const;

void CGraph: :GetReachableSubgraph (int node, bool *ban[], intVector *closure)

const;
Arguments
subgraph Given subgraph.
ban Three-dimensional boolean mask.
closure Output vector of indices of nodes.
Discussion

For every node i ban[i] should be a conventional two-dimesional boolean array.

3-20

Probabilistic Network Library Reference Manual 3

The entry ban[1][J] [K] is true if and only if a pair of edges <5, i>, <i, k> is banned
for acceptable trails.

Function fills in the output vector closure with indices of nodes accessible from the
subgraph with an acceptable trail.

E NOTE. Using this method is not recommended. This method was
= designed for internal use only in older versions of the d-connection
related methods.

3-21

Probabilistic Network Library Reference Manual 3

Class CDAG

PNL Base

Graph
Create()
Copy()
AddEdge()
RemoveEdge()
AddNodes()

DAG
Create()
Clone()

CreateAncestorMatrix()

Class cpaG represents the structure of a Dag with its ancestor matrix being a variable of
the class.

intel@ 3-22

Probabilistic Network Library Reference Manual 3

Public Member Functions

Create

Creates class object.

static CDAG* CDAG: :Create(int numOfNds, const int *numOfNbrsIn,
const int *const *nbrsListIn, const ENeighborType *const *nbrsTypesIn);

static CDAG* CDAG::Create(int numOfNds, const int *const *adjMatIn);
static CDAG* CDAG::Create(const CMatrix<int>* pAdjMat) ;
static CDAG* CDAG::Create (const CGraphé& pGraph);

Arguments

numOfNds Number of nodes of the DAG.

numOfNbrsIn Array of integer, each ithinteger is the number of neighbors of the ith
nodes.

nbrsListIn List of neighbors for a node.

nbrsTypesIn 2D list of neighbor types. Each element shows the type of the
corresponding neighbor from nbrsristIn.

adjMatIn 2D array of integers, represents an adjacent matrix.
pAdjMat 2D integer matrix, represents an adjacent matrix.
pGraph Reference to a cGraph Instance.

Discussion

This function creates a CDAG object.

i ntel ® 3-23

Probabilistic Network Library Reference Manual 3

Change

Changes DAG object.

CDAG* CDAG: :Change (int iStartNode, int iEndNode, EDAGChangeType iChangeType) ;

Arguments
iStartNode ID of the node from which the directed edge comes.
iEndNode ID of the node at which the directed edge points.

iChangeType One of three operations: addition, deletion or reversing of the
direction of the edge.

Discussion

This function allows to add, to delete or to reverse an edge of a DAG object. The
function returns nurz if the change did not occur, otherwise returns the new cpac
object.

ClearContent

Deletes ancestor matrix of DAG.

void CDAG: :ClearContent () ;

Discussion

This function deletes the ancestor matrix of the DaAG object.

intel. 324

Probabilistic Network Library Reference Manual 3

Clone

Creates replica of DAG.

CDAG* CDAG: :Clone () ;

Discussion

This function copies the DAG object and thus creates its replica.

CreateAncestorMatrix

Creates ancestor matrix for DAG

void CDAG: :CreateAncestorMatrix():;

Discussion

This function creates the ancestor matrix for a DAG object.

CreateMinimalSpanningTree

Creates minimal spanning tree for given weight
matrices.

CDAG* CDAG::CreateMinimalSpanningTree (const CMatrix<float>* pWeightMatrix,
const CMatrix<float>* pWeightMatrixZ2);

Arguments

pWeightMatrix N*N 2D weight matrix, the primary weight. Element /1,5
connects node i to node 7.

pWeightMatrix2 N*N 2D weight matrix, the secondary weight.

intel. 325

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a CDAG instance for the minimal spanning tree.

DoMove
Changes DAG object.

bool CDAG::DoMove (int iStartNode, int iEndNode, EDAGChangeType iChangeType);

Arguments
iStartNode ID of the node from which the directed edge comes.
iEndNode ID of the node at which the directed edge points.

iChangeType One of three operations: addition, deletion or reversing of the
direction of the edge.

Discussion

This function changes the DAG object by addition, deletion or reversing of an object
edge. This function returns ‘true’ when the change of the bAG object was permitted
and the object was changed, returns ‘false’ otherwise.

GetAllEdges

Gets all edges of DAG object.

void CDAG::GetAllEdges (EDGEVECTOR* pvOutput);

Arguments

pvoutput EDGE vector which is used to store all the edges of the pac.

intel@ 3-26

Probabilistic Network Library Reference Manual 3

Discussion

This function gets all the edges of the baG. EDGE is a data structure which contains two
integers: node ID from which the edge comes and node ID at which the edge points.

GetAlINeighbours

Generates all valid neighbour DaGs for object.

void CDAG: :GetAllNeighbours (POINTVECTOR &vNeighbours, EDGEOPVECTOR &vOPs,

bool

(*IsValid) (CDAG* pDAG));

Arguments

vNeighbors Vector of void* which stores all valid neighbors of the paG
object.

vOPs EDGEOP vector which stores all valid changes to the pac
object.

IsValid(CDAG* pDAG) External function called to check if a paAG is valid.

Discussion

This function generates all neighbor pacs of the given class object that satisfy the
conditions of the Tsvalid function.

EDGEOP 1is a data structure which contains three fields: the start node ID, the end node
ID and an edge change type: add, delete or reverse.

If vNeighbours and vops have the corresponding relationship, that is if the
DoMove(vOPs [1]) is carried out , we can get vNeighbours[i].

This function generates all neighbor paGs of the given DaG and later eliminates all the
neighbors that do not satisfy the condition of the Tsvalid() function, that is all the
neighbors for which the 1svalid () function returns ‘false’. If the T1svalid () is not
applied the function generates all legal neighbor pacs of the object.

3-27

Probabilistic Network Library Reference Manual 3

GetAllValidMove

Generates all valid moves for DAG.

void CDAG::GetAllValidMove (EDGEOPVECTOR *pvOutput, intVector*
pvAncesstorVector, intVector* pvDescendantsVector, intVector*
pvNotParents, intVector* pvNotChild));

Arguments
pvOutput EDGEOP vector. Stores all valid changes to the DAG.
pvAncesstorVector Integer vector.

pvDescendantsVector Integer vector.

pvNotParent Integer vector.
pvNotChild Integer vector.
Discussion

This function generates all valid moves for the pac. This function is carried out under
the condition that the pvbescendantsvector nodes of a generated DAG are not
ancestors of pvancesstorvVector nodes and that pvNotParent nodes are not
ancestors of pvNotchild nodes.

GetEdgeDirection
Gets direction of edge.

int CDAG: :GetEdgeDirect (int startNode, int endNode) ;

Arguments
startNode Node ID from which the edge comes.
EndNode Node ID at which the edge points.

intel@ 3-28

Probabilistic Network Library Reference Manual 3

Discussion

This function learns the direction of the edge. The function returns
1 if the edge is directed from startNode to EndNode

-1 if the edge is directed from EndNode to startNode

0 if there is no edge between the two nodes.

GetMaxFanlIn

Computes MaxFanln for DaG and returns it to
object.

int CDAG: :GetMaxFanIn () ;

GetSubDAG

Gets part of DAG

CDAG* CDAG: :GetSubDAG(intVector &vSubNodesSet);

Arguments
vSubNodesSet Integer vector which stores the node IDs that are to be
extracted from the pac.
IsEquivalent

Compares two DAGS.

bool CDAG::IsEquivalent (CDAG *pDAG);

intel@ 3-29

Probabilistic Network Library Reference Manual 3

Arguments

PDAG1 DAG instance compared to the given paG.

Discussion

This function compares two objects of the class. The function returns ‘true’ if the pacs
are identical, returns ‘false’ otherwise.

IsValidMove

Checks if move generates non-paG object.

bool CDAG::IsValidMove (int iStartNode, int iEndNode, EDAGChangeType

iChangeType) ;
Arguments
iStartNode Start node ID of the move.
1EndNode End node ID of the move.
iChangType One of the following operations: add, delete, reverse.
Discussion

This function checks if the move can generate a non-pac object. The function returns
‘true’ if the move generates a DAG, returns ‘false’ if the move generates a non-DaG.

MarkovBlanket
Computes Markov Blanket for node.

void CDAG: :MarkovBlanket (int nNodeNumber, intVector *pvOutPut) ;

i ntel ® 3-30

Probabilistic Network Library Reference Manual 3

Arguments

nNodeNumber Node ID for which Markov Blanket is to be computed.

pvOutPut Pointer to the integer vector which stores the computed Markov
Blanket.

Discussion

This function computes the Markov Blanket for a node.

RandomCreateADAG

Creates random DAG

CDAG* CDAG: :RandomCreateADAG (int iNodeNumber, const intVector &vAncesstor,
const intVector &vDescendants, intVector* pvNotParent, intVector*

pvNotChild) ;

Arguments

iNodeNumber Number of nodes in generated DAG.

vAncesstor, vDescendants Integer vectors.Make sure that among
vDescendants nodes of the generated DAG there
are no ancestors of vancestor nodes.

pvNotParent, pvNotChild Integer vectors. Make sure that among
pvNotParent nodes of the generated DAG there are
no ancestors of pvNotchild nodes.

SetSubDAG

Replaces part of DAG by input sub-DAG

bool CDAG::SetSubDag (intVector &vSubNodeSet, CDAG *pSubDAG) ;

intel. 331

Probabilistic Network Library

Reference Manual 3

Arguments
vSubNodeSet

pSubDAG

Discussion

Integer vector. Stores node IDs that are to be modified.

DAG that is to replace a part of the given pac.

This function replaces a part of the given pac by a sub-pac. The function returns ‘true’
if the replacement has been successful, otherwise returns ‘false’.

SymmetricDifference

Compares structures of two DAGS.

int CDAG::SymmetricDifference (const CDAG* pDAG) const;

Arguments

PDAG

Discussion

Pointer to a DAG to be compared with the given pac.

This function compares structures of two class objects.

TopologicalCreateDAG

Creates replica DAG

CDAG* CDAG: :TopologicalCreateDAG(intVector& vNodesMap);

Arguments

vNodesMap

Integer vector. Preserves the map of the node ID of the given pac for
new node IDs. As a result, the :“” node of the newly created pac
corresponds to the node vNodesMap/i] of the given pDaG.

tel.

3-32

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a replica of the given pac. Node ID of the new paG is provided by
the input integer vector.

TopologicalSort

Sorts nodes of DAG topologically.

bool CDAG::TopologicalSort (intVector* pvOutput);

Arguments

pvOutput Integer vector. Preserves the map of the node ID of the given paG for
new node IDs. As a result the i“” node of the newly created pac
corresponds to the node pvoutput[i] of the given DAG.

Discussion

This function classifies a DAG object according to its topological order.

i ntel ® 3-33

Probabilistic Network Library Reference Manual 3

Node Types

Class CNodeType

PNLBase

NodeTy pe
SetTy pe()
IsDiscrete()
GetNodeSize()

Class cNodeType represents node types for the model. By default model nodes are
binary and discrete.

Public Member Functions

IsDiscrete

Returns information on node discreteness.

inline int CNodeType::IsDiscrete() const;

Discussion

This function returns 1 if the node is discrete, returns 0 otherwise.

intel. 334

Probabilistic Network Library Reference Manual 3

GetNodeSize

Returns node size.

inline int CNodeType::GetNodeSize () const;

SetType
Sets node type.|

inline void CNodeType::SetType(bool isDiscrete, int ndSize);

Arguments

isDiscrete Type of node value. Equals to true if the node is discrete,
equals to false if the node is continuous.

ndSize New node size.

Discussion

This function sets the type of the given node.

operator==

Compares operands.

inline bool operator==(const CNodeType &ntIn) const;
Arguments
ntIn CNodeType object.

intel. 335

Probabilistic Network Library Reference Manual 3

Discussion

This function compares two operands. Returns ‘true’ if the operands are equal, returns
‘false’ otherwise.

operator!=

Compares two operands.

inline bool operator!=(const CNodeType &ntIn) const;
Arguments
ntIn CNodeType object.
Discussion

This function compares two operands. The function returns ‘true’ if the operands are
not equal; returns ‘false’ otherwise.

Model Domain

Model domain is a set of nodes that define a graphical model. Multiple graphical
models can have one model domain. This object keeps all information about the types
of variables, or nodes. For example, you can create a new graphical model using the
description of model variables from the model domain.

intel@ 3-36

Probabilistic Network Library Reference Manual 3

Class CModelDomain

PNLBase
ModelDomain

ReferenceCounter
AddRef()
Release()

ModelDomain
Create()
GetVariable Type()
ReleaseFactor()

This class contains information on the variable types of all nodes to be used for
creating a graphical model, as well as on the node types for nodes to become observed
on entering evidence during inference. A graphical model keeps the pointer to the
CMode1Domain on which it was created and learns from it the information on node
types.

This class also stores temporary CFactor objects that are not attached to any graphical
model. Such objects appear during inference and learning procedures. When the
CModelDomain is destroyed they are deleated form it automatically.

This class is derived from the CReferenceCounter class. It keeps pointers to

CGraphicalModels that are based on the cModelDomain. The class cannot be deleted
until any Graphical Model referres to it.

intel. 337

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

static CModelDomain* CModelDomain::Create(const nodeTypeVectors
variableTypes, const intVector& variableAssociation, CGraphicalModel*
pCreaterOfMD = NULL) ;

static CModelDomain* CModelDomain::Create (int numVariables, const CNodeTypeé&

commonVariableType = CNodeType (1l,2), CGraphicalModel* pCreaterOfMD =
NULL) ;

Arguments
variableTypes Vector of different node types.

variableAssociation Vector of variable association with the variable types.

pCreatorOfMD Pointer to the graphical model which creates a model
domain.
numVariables Number of variables in the model domain.

CommonVariableType Variable type.

Discussion

Two function versions are available.The first creates a model domain with different
variable types, the association for every node pointing at a node type.The second
creates a model domain with all variables of the same type.

AttachFactor

Attaches factor to model domain.

int CModelDomain: :AttachFactor(const CFactor *pFactor);

intel@ 3-38

Probabilistic Network Library Reference Manual 3

Arguments

pFactor Pointer to the factor to be attached.

Discussion

Returns the number of this factor in array of pointers to the factors on the model
domain.

ReleaseFactor

Releases attached factors from model domain.

void CModelDomain::ReleaseFactor(const CFactor *pFactor);

Arguments

pFactor Pointer to the factor which is to be released from the model domain.
IsAFactorOwner
Checks if model domain keeps pointer to query

factor.

bool CModelDomain::IsAFactorOwner (const CFactor *pFactor);

Argument

pFactor Pointer to the factor which is to be released from the model domain.

Discussion

The function returns the value of 1 if the model domain keeps a pointer to the query
factor, that is, if the model domain is the owner of the query factor. Otherwise, returns

3-39

Probabilistic Network Library Reference Manual 3

GetVariableType

Returns pointer to node type of query variable.

const CNodeType* CModelDomain::GetVariableType(int varNumber) const;

Arguments

Frumpier Number of variables.

Get Variable Types

Returns variable types for query variables.

void CModelDomain: :GetVariableTypes (intVector& vars, pConstNodeTypeVector*
varTypes) const;

Arguments
vars Vector of number of variables.

varTypesReturned parameter. Types of variables.

Discussion

This function fills in the input vector varTypes by const pointers to variable types.

GetObsGauVarType

Returns pointer to observed Gaussian variable
type.

inline const CNodeType* CModelDomain: :GetObsGauVarType () const;

intel. 340

Probabilistic Network Library Reference Manual 3

Discussion

This function returns a pointer to the observed Gaussian variable type.

GetObsTabVarType

Returns pointer to observed Tabular variable
type.

inline const CNodeType* CModelDomain: :GetObsTabVarType () const;

Discussion

This function returns the pointer to the observed Tabular variable type.

GetNumberOfVariableTypes

Returns number of different variable types.

inline int CModelDomain: :GetNumberOfVariableTypes () const;

Discussion

This function returns a number of different variable types.

GetVariableTypes

Returns all variable types.

void CModelDomain: :GetVariableTypes (pConstNodeTypeVector* varTypes)const;
void CModelDomain: :GetVariableTypes (nodeTypeVector* varTypes)const;

intel. 241

Probabilistic Network Library Reference Manual 3

Arguments

varTypes Returned parameter. Vector of node types.

Discussion
The function is available in two versions.
The first returns the vector of pointers to const node types.

The second creates objects and places them into the returnable vector.

GetNumberVariables

Returns number of variables of model domain.

inline int CModelDomain: :GetNumberVariables () const;

Discussion

This function returns number of variables of the model domain.

GetVariableAssociations

Returns association to variable types.

void CModelDomain: :GetVariableAssociations(intVector* variableAssociation)
const;

inline const int* CModelDomain: :GetVariableAssociations ()const;

Arguments

variableAssociation Returned parameter. Vector of associations of variables to
variable types.

intel. 342

Probabilistic Network Library Reference Manual 3

Discussion

The function is available in two versions.The first adopts and fills the vector, the
second returns the pointer to the association.

GetVariableAssociation

Returns variable association.

inline int CModelDomain: :GetVariableAssociation (int variable)const;

Arguments

variable Number of a variable in the model domain.

Evidences

Class CNodeValues

PNLBase

NodeValues
Create()
GetNumberObsNodes()
SetData()
GetValueBySerialNumber()

Class cNodevalues is intended for storing values of variables. Values of discrete nodes
are represented by integers, while values of continuous nodes — by # floats, where 7 is
Nodesize of a corresponding node type.

intel. 343

Probabilistic Network Library Reference Manual 3

A node can be observed either potentially or actually.

When a node is potentially observed, it can be observed and its observed value is at
CNodevalues object, but the node is not actually observed. To make it actually
observed, the corresponding observability flag needs to be changed to true value.

Creation of evidences for the model is simplified in this way. The user can create
evidence for all nodes, set observability flag for some of them to false, and start
inference with such evidence. To start inference with other observed nodes, the user
can just toggle node observability states for some of them.

Class cNodevalues is basic for Model Domain and contains information about
observed values of certain variables without indicating the numbers of these variables
in the graphical model. Model Domain contains information on correspondence
between the variables and the graphical model nodes.

Public destructor ~CNodevalues () deletes an object of the class.

Create

Creates class object.

static CNodeValues* CNodeValues::Create(int nObsNds, const CNodeType* const*
obsNdsTypes, const valueVectoré& obsValues);

static CNodeValues* CNodeValues::Create(const pConstNodeTypeVectoré&
obsNdsTypes, const valueVector& obsValues);

Arguments

noObsNds Number of the observed nodes.
obsNdsTypes Node types of observed nodes.
obsValues Values of the observed nodes.
Discussion

This function returns objects of class cNodevalues. All nodes of any created object are
actually observed.

3-44

Probabilistic Network Library Reference Manual 3

GetValueBySerialNumber

Returns pointer to value.

inline Value const* CNodeValues::GetValueBySerialNumber (int SerialNumber)
const;

inline Value* CNodeValues::GetValueBySerialNumber (int SerialNumber);

Arguments

SerialNumber Serial number of the observed variable.

Discussion

Both the functions return pointer to the value of the observed node. The const
function solely provides observation of the observed node value. The non-const
function enables user to change the value of the observed node in accordance with the
returned pointer.

GetNumberObsNodes

Returns total number of observed nodes.

int CNodeValues: :GetNumberObsNodes () const;

Discussion

This function returns the total number of both potentially and actually observed nodes.

intgl. 345

Probabilistic Network Library Reference Manual 3

GetObsNodesFlags

Returns pointer to array of observability flags.

const int * CNodeValues::GetObsNodesFlags () const;

Discussion

This function returns constant pointer to the array of observability flags for nodes of
CNodevalues class objects.

GetRawData

Returns array of values.

void CNodeValues::GetRawData (valueVector* values) const;

Arguments

values Array of values.

Discussion

This function returns array of values.

GetOffset

Returns offsets in array of observed nodes.

const int * CNodeValues::GetOffset () const;

intel. 346

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the pointer to the array of offsets in the array of the values of
observed variables. When the value of ith node needs to be found, the array of raw
data should be addressed with the offset corresponding to the ith value in the array of
the offsets.

SetData

Replaces old values with new values.

void CNodeValues::SetData(const valueVectoré& data);

Arguments
data Array of new values.

GetNodeTypes

Returns array of pointers to node types.

const CNodeType *const* CNodeValues::GetNodeTypes () const;

Discussion

This function returns pointer to the array of pointers to CNodeType class objects
corresponding to the node types of observed variables.

intgl. 347

Probabilistic Network Library Reference Manual 3

MakeNodeHiddenBySerialNum

Changes observation flag from actually observed
to hidden.

inline void CNodeValues: :MakeNodeHiddenBySerialNum(int seriallNum);

Arguments

serialNum Number of an observed node, the state of which is to be
changed.

MakeNodeObservedBySerialNum

Changes observation flag from hidden to actually
observed.

inline void CNodeValues::MakeNodeObservednBySerialNum(int serialNum) ;

Arguments

serialNum Number of a hidden node, the state of which is to be
changed.

ToggleNodeStateBySerialNumber
Toggles observability type.

void CNodeValues::ToggleNodeStateBySerialNumber (int numOfNds, int *nodeNums) ;

void CNodeValues::ToggleNodeStateBySerialNumber (const intVector& nodeNums) ;

intel. 348

Probabilistic Network Library Reference Manual 3

Arguments

numOfNds Number of the nodes that require change of the state.

nodeNums Serial numbers of the observed variables that require change
of state.

Discussion

This function changes the state of the variables from potentially observable to actually
observable and vice versa.

Class CEvidence

PNLBase

NodeValues
Create()
GetNumberObsNodes()
SetData()
GetValueBySerialNumber()

Evidence
Create()
ToggleNodeState()
ReleaseFactor()
GetValue()
GetObsNodesWithValues()

Class cEvidence contains information on observed variables of graphical model: what
nodes are observed and what values are taken. Class CEvidence is based on Class
CNodevalues, which contains information on types and actual values of certain
variables. Class CEvidence proper stores the array of numbers of observed variables in

intel. 340

Probabilistic Network Library Reference Manual 3

a graphical model, along with methods of getting information about an observed node
or a set of observed nodes in a model. All the methods consist in establishing
correspondence between numbers of the model nodes and their serial numbers within a
CNodevalues object, as well as in calling the corresponding member functions of that
class.

Public Member Functions

Create

Returns class object.

static CEvidence* CEvidence::Create(const CModelDomain* pMD,const intVectoré&
obsNodes, const valueVectoré& obsValues);

static CEvidence* CEvidence: :Create(const CNodeValues* values,const
intVector& obsNodes, const CModelDomain* pMD,int takeIntoObservationFlags
=0);

static CEvidence* CEvidence::Create(const CGraphicalModel* pGrModel,const
intVector& obsNodes, const valueVectoré& obsValues);

static CEvidence* CEvidence::Create(const CModelDomain *pMD, int nObsNodes,
const int *obsNodes, const valueVector& obsValues);

static CEvidence* CEvidence: :Create (const CGraphicalModel *pGrModel,
int nObsNodes, const int *obsNodes, const valueVector& obsValues);

static CEvidence* CEvidence::Create(const CNodeValues *values,int nObsNodes,
const int *obsNodes, const CModelDomain* pMD, int takeIntoObservationFlags

=0);
Arguments
pMD Pointer to the model domain.
pGrModel Pointer to a graphical model.
nObsNds Number of the observed nodes or variables.
obsNodes Array of observed nodes in the graphical model or

observed variables it the model domain.

intel. 350

Probabilistic Network Library Reference Manual 3

obsValues Array of the observed values listed in the same
order as in the array obsNodes.

takeIntoObservationFlags Flag makes all nodes or variables actually
observed if takeIntoObservationFlag=0 or
puts the same flags as in pNodevalues object if
takeIntoObservationFlag= 1.

Discussion

This function creates a CEvidence object.

ToggleNodeState
Toggles observability type.

void CEvidence::ToggleNodeState(int numOfNds, int *nodeNums) ;

void CEvidence::ToggleNodeState (const intVector& nodeNums) ;

Arguments

numOfNds Number of the nodes that require change of the state.

nodeNums Numbers of the observed nodes that require change of the
state.

Discussion

This function changes the state of the nodes from potentially observable to actually
observable and vice versa.

intel. 351

Probabilistic Network Library Reference Manual 3

GetValue

Returns pointer to value of observed node.

const Value* CEvidence::GetValue(int nodeNum) const;

Value* CEvidence::GetValue(int nodeNum) ;

Arguments

nodeNum Serial number of the observed node in the model.

Discussion

Both the functions return pointer to the value of the observed node by its serial number
in the graphical model. The const function solely provides observation of the
observed node value. The non-const function enables you to change the value of the
observed node in accordance with the returned pointer.

GetAllObsNodes

Returns pointer to array of numbers of observed
nodes.

const int * CEvidence::GetAllObsNodes () const;

Discussion

This function returns pointer to the array of numbers of observed nodes. To get the
number of observed nodes, use the function GetNumberObsNodes of basic CEvidence
class.

intel. 352

Probabilistic Network Library Reference Manual 3

IsNodeObserved

Returns current observability status of the node.

int CEvidence: :IsNodeObserved(int nodeNum) const;

Arguments

nodeNum Number of the node in the graphical model.

Discussion

This function returns 1, if node is actually observed, and 0 otherwise.

MakeNodeObserved

Changes observation flag for node to actually
observed.

void CEvidence: :MakeNodeObserved(int nodeNum) ;

Arguments

nodeNum Number of the node in the graphical model.

Discussion

This function makes the node actually observed, if it was hidden, and throws an
exception, if it is already actually observed.

intel. 353

Probabilistic Network Library Reference Manual 3

MakeNodeHidden

Changes observation flag for node to hidden.

void CEvidence: :MakeNodeHidden (int nodeNum) ;

Arguments

nodeNum Number of the node in the graphical model.

Discussion

This function makes the node hidden, if it was actually observed, and throws an
exception, if it is already hidden.

GetObsNodesWithValues

Returns pointer to vector of actually observed
nodes and their values.

void CEvidence: :GetObsNodesWithValues (intVector* pObsNds, pConstValueVector*
pObsValues,pConstNodeTypeVector* pNodeTypes = NULL) const;

Arguments

pPObsNds Pointer to the vector that contains numbers of actually
observed nodes from the graphical model.

pObsValues Pointer to the vector of pointers to raw data of actually
observed values. The order of these values corresponds to
the order at pobsnds.

pNodeTypes Pointer to the vector that contains pointers to the node types

of observed nodes. The order of these values corresponds to
the order at pobsnds.

intgl. 354

Probabilistic Network Library Reference Manual 3

Discussion

The function takes pointers to vectors and fills these vectors with requested
information.

CModelDomain

Returns model domain.

inline const CModelDomain* CEvidence::GetModelDomain () const;

Dump

Dumps evidence content.

void CEvidence::Dump () const;

Save

Saves evidences to file.

static bool CEvidence::Save (const char *fname, pConstEvidenceVectoré& evVec);

Arguments

fname File name.

evVec Array of evidences.
Discussion

This function saves evidences created for the static graphical model into a file. This
function returns ‘true’ if the evidence is saved, returns ‘false’ otherwise.

intel. 355

Probabilistic Network Library Reference Manual 3

Save

Saves evidences to file.

static bool CEvidence::Save (const char *fname, pConstEvidenceVecVectoré&

evVec) ;
Arguments
fname File name.
evVec Array of evidences.
Discussion

This function saves evidences created for the dynamic graphical model into a file. This
function returns ‘true’ if the evidence is saved, returns ‘false’ otherwise.

Load

Loads evidences from file.

static bool CEvidence::Load(const char *fname, pEvidencesVector* evVec,
const CModelDomain *pMD);

Arguments

fname File name.

evVec Empty vector which is to store evidences.
pMD Pointer to the model domain.
Discussion

This function reads data from the file and creates evidences for the static graphical
model.

intel. 356

Probabilistic Network Library Reference Manual 3

Load

Loads evidences to file.

static bool CEvidence::Load(const char *fname, pEvidencesVecVector* evVec,
const CModelDomain *pMD) ;

Arguments

fname File name.

evVec Array of evidences.

pMD Pointer to the model domain.
Discussion

This function reads data from the file and creates evidences for DBN.

Graphical Models

Class CGraphicalModel

PNLBase
GraphicalModel

ModelDomain

GraphicalModel
AllocFactors()

AllocFactor()
AttachFactor()
AttachFactors()

intgl. 357

Probabilistic Network Library Reference Manual 3

Class cGraphicalModel represents a graphical model, which consists of the graph
and of factors that are set for the graph nodes. Class cGraphicalModel is a parent to
two classes: Class CStaticGraphicalModel and Class

CDynamicGraphicalModel.

NOTE. No instances of this class can be created, as the class is
abstract.

Public Member Functions

AllocFactor

Allocates factor for domain.

int CGraphicalModel::AllocFactor(int number);
int CGraphicalModel::AllocFactor(int numOfNdsInDomain, int *domain);

int CGraphicalModel::AllocFactor(const intVectoré& domain);

Arguments

number Index of the domain for which the factor should be
allocated.

numOfNdsInDomain Number of nodes in the domain for which the factor should
be allocated.

domain Domain for which the factor is allocated.

Discussion

This function allocates a factor for a domain. The domain is specified either by its
index or by the nodes from this domain. a11ocFactor is a virtual function
implemented separately for class CMNet, Class CBNet,and Class CMRF2.

intel. 58

Probabilistic Network Library Reference Manual 3

AllocFactors
Allocates space for all factors of model.

int CGraphicalModel::AllocFactors();

Discussion

This function allocates space for all the factors of the model, that is, creates an object
of the class cFractors and attaches it to the model. AllocFactors is a virtual
function implemented separately for class CMNet, Class CBNet, and Class CMRF2.

AttachFactor

Attaches factor to model.

int CGraphicalModel::AttachFactor(CFactor *pFactor);

Arguments

pFactor Pointer to the factor to be attached to the model.

Discussion

This function attaches a factor to the model if the factor has an existing domain in
terms of the graphical model. AttachFactor is a virtual function implemented
separately for Class CMNet, Class CBNet,and Class CMRF2.

3-59

Probabilistic Network Library Reference Manual 3

AttachFactors

Attaches set of new factors and returns set of old
factors for destruction.

CFactors* CGraphicalModel::AttachFactors(CFactors *pFactors);

Arguments

pFactors New factors to be attached to the model instead of the old
factors.

Discussion

This function attaches a set of factors stored in the class CFactors object and
returns the set of old factors for the user to destroy them.

GetGraph

Returns non-constant pointer to class object.

inline CGraph* CGraphicalModel: :GetGraph() const;

Discussion

This function returns a non-constant pointer to the cGraph class object, which is
attached to the model.

GetModelType
Returns type of model.

inline CModelTypes CGraphicalModel: :GetModelType () const;

i ntel ® 3-60

Probabilistic Network Library Reference Manual 3

GetNodeAssociations

Returns constant pointer to array of node
associations for all nodes of model.

inline const int* CGraphicalModel::GetNodeAssociations () const;

GetNodeType

Returns constant pointer to class object for
specified node number.

inline const CNodeType* CGraphicalModel: :GetNodeType (int nodeNum) const;

Arguments

nodeNum Number of the node for which the node type is inquired.

Discussion

This function returns a constant pointer to the Class CNodeType object for the
specified node number.

GetNodeTypes

Provides access to all node types of model.

inline void CGraphicalModel: :GetNodeTypes (nodeTypeVector* nodeTypes) const;

inline void CGraphicalModel: :GetNodeTypes (pConstNodeTypeVector* nodeTypes)
const;

intel. 361

Probabilistic Network Library Reference Manual 3

Arguments
nodeTypes Returned parameter. Array of all cNodeType objects
attached to the model.
GetNumberOfNodes

Returns number of nodes for model.

inline int CGraphicalModel: :GetNumberOfNodes () const;

Discussion

This function returns the whole number of nodes for the static graphical model and
returns the number of the nodes per slice for the dynamic graphical model.

GetNumberOfNodeTypes

Returns number of node types for model.

inline int CGraphicalModel: :GetNumberOfNodeTypes () const;

GetNumberOfFactors

Returns number of factors attached to model.

inline int CGraphicalModel: :GetNumberOfFactors () const;

intel@ 3-62

Probabilistic Network Library Reference Manual 3

GetFactor

Returns non-constant pointer to class object for
specified domain number.

CFactor* CGraphicalModel::GetFactor (int domainNumber);

Arguments

domainNumber Number of domain for which the factor needs to be found.

Discussion

This function returns a non-constant pointer to the Class CFactor object for the
specified domain number.

GetFactors

Returns all factors attached to specified subset of
nodes.

int CGraphicalModel: :GetFactors(int nNodes, const int* nodes, 1int *nFactors,
CFactor ***factors);

virtual void CGraphicalModel::GetFactors(int nNodes, const int* nodes, int
*nFactors, CFactor ***factors) const = 0;

virtual int CGraphicalModel::GetFactors(int nNodes, const int* nodes,
pFactorVector *factors) const = 0;

virtual int CGraphicalModel::GetFactors(const intVector& nodes, pFactorVector
*factors) const;
Arguments

nodes Subset of nodes for which all the attached factors need to be
found.

i ntel ® 3-63

Probabilistic Network Library Reference Manual 3

nNodes Number of nodes in a subset for which the attached factors
need to be found.

nFactors Returned parameter. Pointer to the variable that specifies the
number of factors attached to the subset of nodes.

factors Factors attached to the subset of nodes specified in the
input.

Discussion

This function enables the user to receive all the factors attached to the specified subset
of' nodes. Several factors may be attached to the same subset if the subset is a common
part of several domains.

GetModelDomain

Returns model domain.

inline CModelDomain* CGraphicalModel: :GetModelDomain () const;

IsValid

Checks validity of graphical model.

virtual bool CGraphicalModel::IsValid(std::string* descriptionOut = NULL)
const = 0;

Arguments

descriptionOut Error message.

Discussion

This function checks the validity of the function. The function returns ‘true’ if the
model is valid, returns ‘false’ otherwise.

3-64

Probabilistic Network Library

Reference Manual 3

Class CStaticGraphicalModel

PNLBase

GraphicalModel
AllocFactors()

AllocFactor()
AttachFactor()
AttachFactors()

StaticGraphicalModel

Class cstaticGraphicalModel is a parent to two subclasses: Class CBNet and

Class CMNet.

E NOTE. No instances of this class can be created, as the class is
_

abstract.

3-65

Probabilistic Network Library Reference Manual 3

IsValid

Checks validity of model for creation of dynamic
model.

bool CStaticGraphicalModel::IsValidAsBaseForDynamicModel (std::string*
descriptionOut = NULL) const;

Arguments

descriptionOut Error message.

Discussion

This function checks if the model is valid for the creation of the dynamic graphical
model.

intel@ 3-66

Probabilistic Network Library

Reference Manual 3

Class CBNet

PNLBase

GraphicalModel
AllocFactors()
AllocFactor()
AttachFactor()
AttachFactors()

StaticGraphicalModel

Public Member Functions

Create

Creates class object.

static CBNet* CBNet::Create(int numberOfNodes, int numberOfNodeTypes,const

CNodeType *nodeTypes,const int *nodesAssociation,

CGraph *pGraph);

intel. 367

Probabilistic Network Library

Reference Manual 3

static CBNet* CBNet::Create (
nodeTypes,

)

static CBNet* CBNet::Create(

Arguments
numberOfNodeTypes
nodeTypes
nodesAssociation
pGraph
numberOfNodes

pMD

Discussion

int numberOfNodes,const nodeTypeVectoré&
const intVectoré& nodesAssociation, CGraph *pGraph

CGraph *pGraph, CModelDomain* pMD) ;

Number of all node types.

Array of node types.

Array for nodes association with node types.
Graph structure of the model.

Number of nodes.

Model domain.

This function creates a class object.

Copy

Creates new object by copying.

static CBNet* CBNet::Copy(const CBNet* pBNet) ;

Arguments

pBNet

Discussion

Pointer to a cBNet object to be copied.

This function creates a new CBNet object by copying the input object and returns a
pointer to it. Call of the class destructor deletes the instance.

3-68

Probabilistic Network Library Reference Manual 3

CreateWithRandomMatrices

Creates BNet object with random matrices.

static CBNet* CBNet::CreateWithRandomMatrices(CGraph* pGraph, CModelDomain*

pMD) ;
Arguments
pGraph Graph structure.
pMD Model domain.
Discussion

This function creates a Bnet object with dense random matrices. Coverings matrices of
a Gaussian distribution are matrix units.

ConvertToSparse

Converts object with dense matrices into object
with sparse matrices.

CBNet* CBNet::ConvertToSparse () const;

Discussion

This function converts a BNet object with dense matrices into a BNet object with
sparse matrices.

intel@ 3-69

Probabilistic Network Library Reference Manual 3

ConvertToDense

Converts object with sparse matrices into object
with dense matrices.

CBNet* CBNet::ConvertToDense () const;

Discussion

This function converts a BNet object with sparse matrices into a BNet object with
dense matrices.

CreateTabularCPD
Creates valid tabular CPD.

void CBNet::CreateTabularCPD(int childNodeNumber, const floatVectoré&
matrixData) ;

Arguments

childNodeNumber Factor number.
matrixData Array of matrix data.
Discussion

This function creates a tabular CPD using the given data.

FindMixtureNodes

Finds numbers of mixture nodes.

void CBNet::FindMixtureNodes (intVector* mixureNds);

intel. 370

Probabilistic Network Library Reference Manual 3

Arguments

mixureNds Input parameter. Empty vector of mixture nodes.

Discussion

This function finds numbers of mixture nodes of the mixture Gaussian distribution.

GenerateSamples

Generates random evidences for BNet given
evidence.

virtual void CBNet::GenerateSamples (pEvidencesVector* evidences, int
nSamples,const CEvidence* pEv = NULL) const;

Arguments

evidences Input-output parameter. An empty vector of evidences to be created.
nSamples Input parameter. Number of samples.

PEV Given evidence.

Discussion

This function generates samples from the static graphical model.

IsValid
Checks model validity.

bool CBNet::IsValid(std::string* descriptionOut = NULL) const;

Arguments

descriptionOut Output argument with an error message.

intgl. 371

Probabilistic Network Library

Reference Manual 3

Discussion

This function checks the validity of the model. Returns ‘true’ if the model is valid,

returns ‘false’ otherwise.

Class CMNet

PNLBase

GraphicalModel
AllocFactors()

AllocFactor()
AttachFactor()
AttachFactors()

StaticGraphicalModel

MNet
Create()

Copy ()
GetClique()

intel. 372

Probabilistic Network Library Reference Manual 3

Public Member Functions

Create

Creates object of subclass.

static CMNet* CMNet:: Create (int numberOfCliques, const int *cliqueSizes,
const int **cliques, CModelDomain* pMD);

static CMNet* CMNet::Create(const intVecVector& cliques, CModelDomain* pMD

static CMNet* CMNet::Create (int numberOfNodes, int numberOfNodeTypes,
const CNodeType *nodeTypes, const int *nodesAssociation, int
numberOfCliques, const int *cliqueSizes, const int **cliques);

static CMNet* CMNet::Create (int numberOfNodes,const nodeTypeVector& nodeTypes,
const intVector& nodesAssociation, const intVecVectoré& cliques);

Arguments

numberOfCliques Number of cliques in the model.
cliqueSizes Array of clique sizes.

cliques Cliques.

pMD Model domain.

numberOfNodes Number of nodes in the model.
numberOfNodeTypes Number of node types in the model.
nodeTypes Array of node types.

nodesAssociation Array of nodes association with node types.

intel. 373

Probabilistic Network Library Reference Manual 3

CreateWithRandomMatrices

Creates object with random matrices.

static CMNet* CMNet::CreateWithRandomMatrices(int numberOfCliques,const int
*cliqueSizes,const int **cliques, CModelDomain* pMD) ;

staticCMNet*CMNet: :CreateWithRandomMatrices (constintVecVector&cliques,
CModelDomain* pMD) ;

Arguments

numberOfCliques Number of cliques.
cliqueSizes Array of clique sizes.
cliques Cliques .

pMD Model domain.
Discussion

This function creates a class object with dense random matrices. Covariance matrices
of the Gaussian distribution are matrix units.

GetClique

Returns clique nodes.

inline void CMNet::GetClique(int cIqNum, int *clgSize, const int **clqg)const;

inline void CMNet::GetClique(int clgNum, intVector *clqg) const;

Arguments

clgNum Number of the clique.

clgSize Returned parameter. Number of clique nodes.
clg Returned parameter. Array of clique nodes.

intgl. 374

Probabilistic Network Library Reference Manual 3

Discussion

This function returns clique nodes.

ConvertFromBNet

Creates class object by converting input BNet .

static CMNet* CMNet::ConvertFromBNet (const CBNet *pBNet) ;

Arguments

pBNet Bayesian network.

Discussion

This function creates a class object by converting the input BNet.

ConvertFromBNetUsingEvidence

Creates object by converting input BNet using
given evidence.

static CMNet* CMNet: :ConvertFromBNetUsingEvidence (const CBNet *pBNet,
const CEvidence *pEvidence);

Arguments

pBNet Bayesian network.
pEvidence Evidence.
Discussion

This function creates a class object by converting the input BNet.

intgl. 375

Probabilistic Network Library Reference Manual 3

Copy

Creates object by copying input MNet.

static CMNet* CMNet::Copy(const CMNet *pMNet) ;

Arguments

PMNet Markov network.

Discussion

This function creates a new class object by copying the input Myet.

CreateTabularPotential

Allocates factor and creates matrix.

void CMNet::CreateTabularPotential (const intVector& domain,

const floatVectoré& data);

Arguments

domain Array of nodes.
data Given data.
Discussion

This function allocates a factor and creates a new matrix with the given data.

intel. 376

Probabilistic Network Library Reference Manual 3

ComputeLogLik
Computes logarithm of likelihood.

virtual float CMNet::ComputeLogLik(const CEvidence *pEv) const;

Arguments

PEV Evidence.

Discussion

This function computes the logarithm of likelihood.

GetClgsNumsForNode

Gets cliques containing node.

inline void CMNet::GetClgsNumsForNode (int node, intVector *clgs) const;

Arguments

node Node number.

clgs Cliques containing the node.
Discussion

This function gets numbers of cliques that contain the given node.

intgl. 377

Probabilistic Network Library Reference Manual 3

GetNumberOfCliques

Returns number of cliques of model.

inline int CMNet: :GetNumberOfCliques () const;

GenerateSamples

Generates random evidence.

virtual void CMNet::GenerateSamples (pEvidencesVector* evidences, int
nSamples, const CEvidence *pEvIn = NULL) const;

Arguments

evidences Input-output parameter. An empty vector of evidences that will be
created by this method.

nSamples Input parameter. Number of samples.

PEVIn Input parameter. Pointer to evidence.

Discussion

This function generates random evidences from MNet.

intel. 378

Probabilistic Network Library Reference Manual 3

Class CMRF2

PNLBase

GraphicalModel
AllocFactors()
AllocFactor()
AttachFactor()
AttachFactors()

StaticGraphicalModel

MNet
Create()

Copy ()
GetClique()

Class CMNet is a superclass for subclass cMRF2 that represents a pairwise Markov
network. This subclass implements cMnet virtual functions, so that the implementation
takes into account that all the cliques consist of only two nodes.

intel. 379

Probabilistic Network Library

Reference Manual 3

Public Member Functions

Create

Creates class object.

static CMRF2* CMRF2::Create(int numberOfCliques, const int *cliqueSizesIn,

const int **cliquesIn,

CModelDomain* pMD) ;

static CMRF2* CMRF2::Create(const intVecVector& clgsIn, CModelDomain* pMD) ;

static CMRF2* CMRF2: :Create (int numberOfNodes, int numberOfNodeTypes,
const CNodeType *nodeTypesIn,const int *nodeAssociationIn, int
numberOfCliques,const int *cliqueSizesIn, const int **cliquesIn);

static CMRF2* CMRF2::Create(int numberOfNodes, const nodeTypeVectoré&
nodeTypesIn,const intVector& nodeAssociationIn, const intVecVectors
cliquesIn);

Arguments
numberOfCliques
cliqueSizesIn
cliquesIn

prMD
numberOfNodes
numberOfNodeTypes
nodeTypesIn

nodeAssociationIn

Number of cliques.

Returned parameter. Sizes of cliques.
Cliques.

Model domain.

Number of nodes.

Number of node types.

Node types.

Association of nodes.

3-80

Probabilistic Network Library Reference Manual 3

CreateWithRandomMatrices

Creates object with random matrices.

static CMRF2* CMRF2::CreateWithRandomMatrices(int numberOfCliques,const int
*cliqueSizesIn,const int **cliquesIn,CModelDomain* pMD) ;

static CMRF2* CMRF2::CreateWithRandomMatrices(const intVecVector& clquesIn,
ModelDomain* pMD) ;

Arguments

numberOfCliques Number of cliques.
cliqueSizesIn Clique size.
cliquesIn Cliques.

pMD Model domain.

intel. 381

Probabilistic Network Library Reference Manual 3

Class CFactorGraph

PNLBase

GraphicalModel
AllocFactors()

AllocFactor()
AttachFactor()
AttachFactors()

StaticGraphicalModel

FactorGraph
Create()

Copy ()
GetNbrFactor()

Factor graph is a graphical representation of the factorized distribution. All factors of
the distribution are represented by factor-nodes, which are connected to variable-nodes
lying in the factor domain. The resulting graph of the distribution is called the factor
graph.

The cFactorGraph class is a graphical model which consists of a set of factors. The
set of factors constitutes a probability distribution. All the factors are potentials.

intel@ 3-82

Probabilistic Network Library Reference Manual 3

Public Member Functions

Create

Creates class object.

static CFactorGraph* CFactorGraph::Create(CModelDomain* pMD, const CFactors*

pFactors);
Arguments
pMD Pointer to the model domain.
pFactors Pointer to the cFactors object which contains all factors
describing the factor graph object.
Discussion

This function creates a factor graph out of all factors of the model domain.

Create

Creates class object.

static CFactorGraph* CFactorGraph::Create (CModelDomain* pMD, int numFactors);

Arguments

pMD Pointer to the model domain.
numFactors Number of factors in the factor graph.
Discussion

This function creates a factor graph of several allocated factors.

i ntel ® 3-83

Probabilistic Network Library Reference Manual 3

Copy

Creates replica of input object.

static CFactorGraph* CFactorGraph::Copy(const CFactorGraph* pFG);

Arguments

pFG Pointer to the cFactorGraph object.

Discussion

This function creates a new CFactorGraph object by copying the input object.

Shrink

Creates factor graph with given evidence by
shrinking all potentials of given factor.

CFactorGraph* CFactorGraph::Shrink(const CEvidence* pEvidence)const;

Arguments

pEvidence Pointer to the Evidence object.

Discussion

This function creates a factor graph with the given evidence by shrinking all the
potentials of the given factor.

intel. 384

Probabilistic Network Library Reference Manual 3

GetNumFactorsAllocated

Returns numbers of allocated factors.

inline int CFactorGraph::GetNumFactorsAllocated () const;

ConvertFromBNet

Creates class object by converting Bnet object.

static CFactorGraph* CFactorGraph::ConvertFromBNet (const CBNet* pBNet);

Arguments

pBNet Pointer to a cBNet object to be converted.

Discussion

This function creates a CFactorGraph object by converting the given BNet object.

ConvertFromMNet

Creates class object by converting MNet object.

static CFactorGraph* CFactorGraph::ConvertFromMNet (const CMNet* pMNet) ;

Arguments

pMNet Pointer to a cunet object to be copied

Discussion

This function creates a CFactorGraph object by converting MNet object.

intel. 385

Probabilistic Network Library Reference Manual 3

IsValid
Checks validity of function.

bool CFactorGraph::IsValid(std::string* descriptionOut = NULL) const;

Arguments

descriptionOut Error message.

GetNbrFactors

Returns numbers of factors.

inline void CFactorGraph: :GetNbrFactors(int node, intVector* nbrsFactorsOut)

const;
Arguments
node Node.
nbrsFactors Numbers of factors.
Discussion

This function returns numbers of factors neighboring to the node.

GetNbrFactors

Returns factors neighboring to given node.

inline void CFactorGraph::GetNbrFactors(int node, intVector* nbrsFactors)
const;

intel@ 3-86

Probabilistic Network Library Reference Manual 3

Arguments
node Number of the node.
nbrsFactors Returned parameter.Vector of numbers of factors neighboring to the

node factors.

Discussion

This function returns factors neighboring to the given node. A factor is called
neighboring to the node if the latter lies in the factor domain.

GetNumNbrFactors

Returns number of factors neighboring to given
node.

inline int CFactorGraph::GetNumNbrFactors(int node) const;

Arguments

node Number of the node.

Discussion

This function returns the number of factors neighboring to the given node.

intel. 367

Probabilistic Network Library

Reference Manual 3

Class CJunctionTree

PNLBase

GraphicalModel
AllocFactors()
AllocFactor()
AttachFactor()
AttachFactors()

StaticGraphicalModel

JunctionTree
Create()
Copy ()

InitCharge()

ClearCharge()

This class represents the structure of a Junction tree. It is used in the Junction Tree
Inference Engine for internal local computations. A Junction tree instance is created on

the creation of the JtreeInfEngine.

intel@ 3-88

Probabilistic Network Library Reference Manual 3

Public Member Functions

Create

Creates Junction tree.

static CJunctionTree* CJunctionTree::Create(const CStaticGraphicalModel*
pGrModel,const intVecVector& subGrToConnect = intVecVector ());

static CJunctionTree* CJunctionTree::Create(const CStaticGraphicalModel
*pGrModel, int numOfSubGrToConnect = 0,const int *subGrToConnectSizes =
NULL, const int **subGrToConnect = NULL);

Arguments
pGrMode 1 Graphical model from which the tree is to be
constructed.
numOfSubGrToConnect Number of subgraphs to be connected to the tree.
subGrToConnectSizes Sizes of subgraphs to be connected to the tree.
subGrToConnect Subgraphs the user wants to appear in the tree.
Copy
Creates replica of input Junction tree.
const CJunctionTree* pJTree
Arguments
pJTree Junction tree to be copied.
Discussion

This function copies the input Junction tree.

intel@ 3-89

Probabilistic Network Library Reference Manual 3

GetNodeContent

Returns clique of Junction tree.

inline void CJunctionTree: :GetNodeContent (int nodeNumber, int *nodeContentSz,
const int **content) const;

Arguments

nodeNumber Number of the clique.

nodeContentSz Returned parameter. Size of the clique.
content Returned parameter.Pointer to the clique.
Discussion

This function returns the Junction tree clique with the number of nodenumber.

GetNodesConnectedByUser

Returns set of connected nodes.

inline void CJunctionTree: :GetNodesConnectedByUser (int nodeSetNum, int
*numOfNds, const int **nds) const;

Arguments

nodeSetNum Number of the set of nodes.

numOfNds Return parameter. Size of the set of nodes.
nds Return parameter. Pointer to the set of nodes.
Discussion

This function returns the set of nodes which were connected when the Junction tree
was created.

i ntel ® 3-90

Probabilistic Network Library Reference Manual 3

GetFactorAssignmentToClique

Returns arrays of indices that show assignment of
input model factors to Junction tree cliques.

inline void CJunctionTree::GetFactorAssignmentToClique (int *numberOfFactors,

const int **factorAssign) const;
Arguments
numberOfFactors Return parameter. Number of factors of the input
model.
factorAssign Return parameter. Pointer to an array of indices.
Discussion

This function returns arrays of indices that show to what cliques of the Junction tree
input model factors are assigned.

GetSeparatorDomain

Returns domain of separator between two cliques
of Junction tree.

inline void CJunctionTree: :GetSeparatorDomain(int firstCIlgNum, int
secondClgNum, int *domSize, const int **domain) const;

Arguments

firstClgNum Number of the first clique.

secondClgNum Number of the second clique.

domSize Return parameter.Size of the domain on the
separator.

domain Return parameter.Pointer to the separator.

intel. 301

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the domain of the separator which is located between two
cliques of the Junction tree.

GetNodePotential

Returns pointer to potential defined for Junction
tree clique.

inline CPotential* CJunctionTree::GetNodePotential (int nodeNum) ;

Arguments

nodeNum Number of the clique of the Junction tree.

Discussion

This function returns the pointer to the potential that is defined for a clique of the
Junction tree.

GetSeparatorPotential

Returns pointer to potential defined for separator
between two cliques.

inline CPotential* CJunctionTree::GetSeparatorPotential (int firstClgNum, int
secondClgNum) ;

Arguments
firstClgNum Number of the first clique.
secondCIlgNum Number of the second clique.

intel@ 3-92

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the pointer to the potential that is defined for the separator
between two cliques.

GetClgNumsContainingSubset

Returns numbers of Junction tree cliques with
common subset of nodes.

inline void CJunctionTree::GetClgNumsContainingSubset (int numOfNdsInSubset,

const int *subset, int *numOfClgs, const int **clgsContSubset) const;
Arguments
numOfNdsInSubset Size of the subset.
subset Pointer to the subset of nodes.
numOfClgs Return parameter. Number of cliques with a

common subset.

clgsContSubset Pointer to the array of numbers of cliques with a
common subset.
Discussion

This function returns numbers to the Junction tree cliques that have a common subset
of nodes.

InitCharge

Initializes charge for Junction tree.

void CJunctionTree::InitCharge(const CStaticGraphicalModel *pGrModel, const
CEvidence *pEvidence, int sumOnMixtureNode = 1);

i ntel ® 3-93

Probabilistic Network Library Reference Manual 3

Arguments

pGrModel Pointer to the input graphical model.

pEvidence Pointer to the evidence to be taken into account.

sumOnMixtureNode Shows if the distribution for the mixture node is to
be computed during inference.

Discussion

This function initializes charge for the Junction tree. The Junction tree charge
comprises both potentials for cliques and potentials for separators.

ClearCharge

Clears charge.

void CJunctionTree::ClearCharge () ;

operator=

Performs initialization.

CJdunctionTree& CJunctionTree::operator=(const CJunctionTree &JTree);
Arguments
JTree RHS of the assignment operator.
Discussion

This function performs initialisation by copying potentials of one tree to another tree
under the condition that the structures of Junction trees are identical.

intel. 304

Probabilistic Network Library Reference Manual 3

GetNumberOfNodes

Returns numbers of Junction tree nodes.

inline int CJunctionTree: :GetNumberOfNodes () const;

Discussion

This function returns numbers of Junction tree nodes. The node numbers correspond to
the numbers of the Junction tree cliques.

DumpNodeContents

Dumps Junction tree cliques to outstream.

inline void CJunctionTree: :DumpNodeContents () const;

Discussion

This function dumps Junction tree cliques out to the outstream. Standard output of the
outstream is set by default but may be redirected.

intel. 305

Probabilistic Network Library Reference Manual 3

Class CDynamicGraphicalModel

raphicalM
AllocFactors()
AllocFactor()
AttachFactor()

AttachFactors()

— —~

DynamicGraphicalModel
/CreatePriorSIiceGrModeI()

GetinterfaceNodes() <
\ UnrollDynamicModel()

AN /')

N /_
-~

Class cDynamicGraphicalModel is a superclass for all classes that implement
dynamic graphical models.

Public Member Functions

CreatePriorSliceGrModel

Creates static graphical model.

virtual CStaticGraphicalModel*
CDynamicGraphicalModel: :CreatePriorSliceGrModel () const = 0;

Discussion

This function creates a static graphical model corresponding to the prior slice of the
dynamic graphical model.

intel@ 3-96

Probabilistic Network Library Reference Manual 3

UnrollIDynamicModel

Creates static graphical model by unrolling of
dynamic graphical model.

CStaticGraphicalModel* CDynamicGraphicalModel: :UnrollDynamicModel (int
numOfSlices);

Arguments
numOfSlices Number of slices.
Discussion

This member function unrolls a dynamic graphical model as a number of slices and
thus constructs a static graphical model.

GetlInterfaceNodes

Returns numbers of interface nodes.

inline void CDynamicGraphicalModel: :GetInterfaceNodes (intVector*
interfaceNds) const;

inline void CDynamicGraphicalModel::GetInterfaceNodes(int *numOfNds, const
int **interfaceNds) const;

Arguments

numOfNds Returned parameter. Number of interface nodes.
interfaceNds Returned parameter. Array of interface nodes.
Discussion

This function returns numbers of interface nodes.

intel. 307

Probabilistic Network Library Reference Manual 3

GetStaticModel

Returns a pointer to static graphical model.

inline CStaticGraphicalModel* CDynamicGraphicalModel: :GetStaticModel () const;

Discussion

This member function returns a pointer to the static graphical model used for creating a
dynamic graphical model.

Class CDBN

PNLBase

GraphicalModel
AllocFactors()

AllocFactor()
AttachFactor()
AttachFactors()

— — \\
Dy namicGraphicalModel
&reatePriorSIiceGrModeI()

(GetlnterfaceNodes()
UnrollDy namicModel()

\ /\.—-
DBN

Create()

CDBN is a subclass of Class CDynamicGraphicalModel and implements virtual
functions of the parent class.

intel@ 3-98

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

static CDBN* CDBN::Create(CStaticGraphicalModel *pGrModel);

Arguments

pGrModel Pointer to BNet, which is to represent a DBN unrolled for
first two time-slices.

Discussion

Thi function creates a CDBN object.

GenerateSamples
Generates samples from DBN.

void CDBN::GenerateSamples (pEvidencesVecVector* evidences,const intVectors
nSlices) const;

Arguments

evidences Output parameter. Generated evidence.

nSlices Input parameter. Number of slices for which evidence is generated.
Discussion

Generates samples from the dynamic graphical model.

intel@ 3-99

Probabilistic Network Library

Reference Manual 3

Distribution Functions

Class CDistribFun

PNLBase

DistribFun
AllocMatrix()
AttachMatrix()
MarginalizeData()
MultiplylnSelfData()
DividelnSelfData()
ShrinkObservedNodes()
ExpandData()
Clone()
CloneWithSharedMatrices()
ConvertCPDDistribFunToPot()

IsEqual()

operator=

Assigns data to object from input distribution

Sfunction.

virtual CDistribFun& CDistribFun::operator

Arguments

rDistrFun Reference to the cpistribFun object.

const CDistribFuné& rDistrFun);

intel.

Probabilistic Network Library Reference Manual 3

Discussion

This function assigns data from the input factor to the object for which it is called only
when both of them are of the same size and type.

GetNodeTypesVector

Returns node types to nodes for which it was
created.

inline const pConstNodeTypeVector CDistribFun::*GetNodeTypesVector () const;

Discussion

This function returns node types to the nodes for which it was created.

SetVariableType

Sets position for node type in distribution.

inline void CDistribFun::SetVariableType(int position, const CNodeType*
varType) ;

Arguments

position Order number.
varType Pointer to node types.
Discussion

This function sets a certain position for the given node type in the distribution.

"Ttel@ 3-101

Probabilistic Network Library Reference Manual 3

IsValid

Checks validity of distribution function.

virtual bool CDistribFun::IsValid(std::string* discription = NULL) const = 0;

Arguments

discription Error message.

Discussion

This function checks if the distribution function is valid.

AllocMatrix

Creates matrix and allocates it to factor.

virtual void CDistribFun::AllocMatrix(const float *data, EMatrixType mType,

int numberOfWeightMatrix = -1, const int *parentIndices = NULL);
Arguments
data Array that corresponds to a certain part of the distribution.
mType Type of matrix allocated to the factor.

numberOfWeightMatrix Number of the matrix called if several matrices of a given
type are associated with the factor.This argument is omitted
if only one matrix is involved.

parentIndices Array of values of discrete parents.

Discussion

This function creates a new matrix and allocates it to the distribution function.

| ntel e 3-102

Probabilistic Network Library Reference Manual 3

AttachMatrix

Enters data in matrix and associates matrix with
distribution function.

virtual void CDistribFun::AttachMatrix(CMatrix<float> *pMatrix, EMatrixType

mType, 1int numberOfWeightMatrix = -1, const int *parentIndices = NULL) =
0;

Arguments

pMatrix Pointer to the cMultibMatrix object.

mTypes Matrix type.

numberOfWeightMatrix Number of the matrix called if several matrices of

a given type are associated with the factor. The
argument is optional. It is omitted when one matrix
is involved.

parentIndices Array of values of discrete parents.
Discussion
This function enters data into the matrix and associates the matrix with the distribution
function.
GetMatrix

Returns pointer to matrix attached to factor.

virtual CMatrix<float> CDistribFun::*GetMatrix(EMatrixType mType, int

numWeightMat = -1, const int *parentIndices = NULL) const = 0;
Arguments
mType Type of the matrix called.

| ntel e 3-103

Probabilistic Network Library Reference Manual 3

numWeightMat Number of the matrix called among several matrices of the
given type. The argument is omitted when only one matrix
is involved.

paretnIndices Array of values of discrete parents.

Discussion

This function returns the pointer to a matrix attached to the factor. The function
identifies one of the following matrix types: matTable, matMean, matCov,
matWeights, math, and matk.

GetNumberOfNodes

Returns size of distribution function domain.

inline int CDistribFun::GetNumberOfNodes () const;

Discussion

This function returns the size of the domain corresponding to the distribution function.

IsDistributionSpecific
Checks whether distribution is specific.

virtual inline int CDistribFun::IsDistributionSpecific() const = 0;

Discussion
This function checks whether the distribution is specific and returns:

* 0 - if the distribution is full. It may be Tabular, Gaussian, Conditional Gaussian,
non-delta, non-uniform, non-mixed.

To check the validity of the function call 7sva1id function.

intel. 3104

Probabilistic Network Library Reference Manual 3

« 1 - if the distribution is uniform. A distribution is uniform if it has no attached
matrices. A uniform distribution has the flag indicating its type.

* 2 - if the distribution is delta function. A delta function has only one mean matrix.
To check if the function is valid call Tsvalid function.

* 3 - if the distribution is mixed. A distribution is mixed if it is created by
multiplication of a certain distribution by delta function in some distribution
dimensions. A mixed distribution is an intermediate distribution representation.

GetStatisticalMatrix

Returns statistical matrix.

virtual CMatrix<float>* CDistribFun::GetStatisticalMatrix
(EStatisticalMatrixType mType,int *parentIndices = NULL) const = 0;

Arguments

mType Matrix type.

parentIndices Array of values of discrete parents.
Discussion

This function returns the pointer to the matrix attached to the factor. It identifies one of
the fOllOWing matrix types: stMatTable, stMatMu, stMatSigma, stMatCoeff.

MarginalizeData

Marginalizes object.

virtual void CDistribFun::MarginalizeData (const CDistribFun *pOldData, const
int *DimsOfKeep, int NumDimsOfKeep, int maximize) = 0;

| ntel e 3-105

Probabilistic Network Library

Reference Manual 3

Arguments
pOldData

DimsOfKeep

NumDimsOfKeep

maximize

Discussion

Pointer to the distribution function.

Pointer to an array of numbers of the dimensions that should
constitute the domain of the returned marginalized object.

Size of the returned object domain.

Flag of the marginalization type:

- for discrete variables:

* 0 stands for simple summation;

* 1 stands for finding maximum value.
- for continuous variables:

* both are integration operations.

This function converts the source object to a new ChistributionFunction object that
is generated either by adding or by integrating the source object referring to the nodes
that do not lie in the returned object domain. The returned object domain should be a
subset of the source domain.

MultiplyInSelfData

Multiplies and puts result into distribution
function.

virtual void CDistribFun::MultiplyInSelfData(const int *pBigDomain, const int

*pSmallDomain, const CDistribFun *pOtherData) = 0;
Arguments
pBigDomain Dimensions numbers of the domain of the larger distribution
function for which the function is called.
pSmallDomain Dimensions numbers of the domain of the smaller
distribution function.
pOtherData Reference to the multiplier of cDistribFun type.

3-106

Probabilistic Network Library Reference Manual 3

Discussion

This function changes the object, for which it is called, by changing its data matrices.

DividelnSelfData

Divides object.

virtual void CDistribFun::DivideInSelfData(const int *pBigDomain, const int
*pSmallDomain, const CDistribFun *pOtherData);

Arguments

pPBigDomain Domain of the divident.

pSmallDomain Domain of the divisor.

pOtherData Pointer to the denominator of cpistribFun type.
Discussion

This function changes the object, for which it is called, by changing its data

matrices.

ShrinkObservedNodes

Creates new distribution function by shrinking
dimensions corresponding to observed nodes.

virtual void CDistribFun::ShrinkObservedNodes (const CDistribFun* pOldData,
const int *pDimsOfObserved, const Value* const* pObsValues, int numObsDim,
const CNodeType* pObsTabNT, const CNodeType* pObsGauNT) ;

Arguments
pOldData Pointer to the source data.

| ntel e 3-107

Probabilistic Network Library

Reference Manual 3

pDimsOfObserved
pObsValues
numObsDim
pObsTabNT

pObsGauNT

Discussion

Array of observed dimensions.

Array of observed values.

Number of observed dimensions.

Pointer to the observed Tabular node type.

Pointer to the observed Gaussian node type.

This function creates a new distribution function with the same number of nodes as in
the domain of the source distribution function but with modified observed nodes. Due
to the change of values of the observed nodes the joint probability distribution changes

too.

ExpandData

Expands dimensions corresponding to

observation.

virtual void CDistribFun::ExpandData(const int* pDimsToExpand, int
numDimsToExpand, const Value* const* valuesArray, const CNodeType* const
*allFullNodeTypes, int UpdateCanonical = 1);

Arguments
pDimsToExpand
numDimsToExpand
valuesArray

allFullNoodeTypes

UpdateCanonical

Array of dimensions to expand.
Number of dimensions to expand.
Array of observed values.

Array of pointers of node types of variables in the
distribution.

Flag used for Gaussian distributions:
1 — updates the canonical form of the distribution,
0 — does not update the canonical form of the distribution.

3-108

Probabilistic Network Library Reference Manual 3

Discussion

This function expands the probability distribution by filling empty spaces with zeros.

ClearStatisticalData

Sets to zero all elements of matrices used in
learning process.

virtual void CDistribFun::ClearStatisticalData() = 0;

Discussion

This function sets to zero all elements of the matrices which are used in the learning
process.

UpdateStatisticseEM
Updates statistical data.

virtual void CDistribFun::StatisticalDataEM(const CDistribFun* infData, const
CEvidence *pEvidence = NULL, float weightingCoeff = 1.0f, const int* domain

= NULL) = 0;
Arguments
InfData Pointer to the distribution function inference result.
pEvidence Pointer to an Evidence object.
WeightingCoeff Weighting coefficient.
domain Domain node numbers.
Discussion

This function estimates factors and updates statistical data.

| ntel e 3-109

Probabilistic Network Library Reference Manual 3

UpdateStatisticsML

Gathers statistical data.

virtual void CDistribFun::StatisticalDataML(const CEvidence* const*
pEvidences, int EvidenceNumber,const int *domain, float weightingCoeff =

1.0f) = 0;
Arguments
pEvidences Array of evidences.
EvidenceNumber Number of evidences.
domain Numbers of domain nodes.
WeightingCoeff Weighting coefficient.
Discussion

This function estimates factors and updates statistical data.

SetStatistics

Sets statistical data.

virtual void CDistribFun::SetStatistics(const CMatrix<float>* pMat,

EStatisticalMatrix matrixType, const int* parentsComb = NULL) = 0;
Arguments
pMat Input parameter. Matrix with statistical data.
matrixType Type of matrix.

parentsComb Combination of discrete parents.

"Ttel@ 3-110

Probabilistic Network Library Reference Manual 3

Discussion

This function sets statistical data for learning.

GetNormalized

Normalizes distribution function.

virtual CDistribFun* CDistribFun::GetNormalized() const = 0;

Discussion

This function creates a new distribution function by normalizing the given distribution
function.

ProcessingStatisticalData

Updates distribution function after gathering
statistical data.

virtual float CDistribFun::ProcessingStatisticalData(float numEvidences) =
0;

Arguments
numEvidences Number of evidences.
Discussion

This function performs factor estimation and updates the distribution function with the
newly acquired statistical data.

"Ttel@ 3-111

Probabilistic Network Library Reference Manual 3

Clone

Creates replica of distribution function.

virtual CDistribFun* CDistribFun::CloneDistribFun() const = 0;

CloneWithSharedMartices

Creates replica of distribution function.

virtual CDistribFun* CDistribFun::CloneWithSharedMatrices () const = 0;

Discussion

This function creates a replica of the distribution function so that the newly created
distribution function shares its matrices with the source distribution function.

GetMultipliedDelta

Returns delta distributions that are multiplied by
given distribution.

virtual int CDistribFun::GetMultipliedDelta(const int **positions, const

float **values, const int **offsets) const = 0;
Arguments
positions Returned parameter. Array of positions multiplied by delta
distribution.
values Returned parameter. Mean values of delta distributions.
offsets Returned parameter. Array of offsets to next mean values.

"Ttel@ 3-112

Probabilistic Network Library Reference Manual 3

Discussion

This function returns delta distributions that are multiplied by the distribution. The
returned integer value is the number of positions multiplied by delta distributions.

ConvertCPDDistribFunToPot

Converts distribution function for CPD into
distribution function for potential.

virtual CDistribFun CDistribFun::*ConvertCPDDistribFunToPot ()const = 0;

Discussion

Converts the distribution function which was created for use in a Conditional
Probability Distribution (CPD) into the distribution function for use in a potential.

CPD_to_pi

Computes pi message for Pearl inference.

virtual CDistribFun CDistribFun::*CPD _to pi(CDistribFun *const*
allPiMessages, int *multParentIndices, int numMultNodes, int

posOfExceptParent, int maximizeFlag = 0)const = 0;
Arguments
allPiMessages Array of all pi messages received by the current distribution.
multParentIndices Indices of parent nodes.
numMultNodes Number of parent nodes.
posOfExceptParent Position of the parent which is not to be multiplied.
maximizeFlag Flag of maximization in multiplication process.

"Ttel@ 3-113

Probabilistic Network Library Reference Manual 3

Discussion

This function computes pi messages for Pearl inference.

CPD _to_lambda

Computes lambda message for Pearl inference.

virtual CDistribFun CDistribFun::*CPD_to lambda(const CDistribFun *lambda,
CDistribFun *const* allPiMessages, int *multParentIndices, int
numMultNodes, int posOfExceptNode, int maximizeFlag = 0);

Arguments

lambda Received Lambda message.

allPiMessages Array of all pi messages received by the current distribution.

multParentIndices Indices of parent nodes.

numMultNodes Number of parent nodes.

posOfExceptNode Position of the parent that is not to be multiplied.

maximizeFlag Flag of maximisation in multiplication process.
Normalize

Normalizes distribution function.

virtual CDistribFun* CDistribFun::Normalize () ;

Discussion

This function normalizes distribution function.

intel. 3114

Probabilistic Network Library Reference Manual 3

GetDistributionType

Returns distribution type.

EDistributionType CDistribFun::GetDistributionType () const;

Discussion

This function returns one of the following distribution types: dtTabular, dtGaussian
Or dtCondGaussian.

IsEqual

Compares distributions.

virtual int CDistribFun::IsEqual(const CDistribFun *dataToCompare, float
epsilon, int withCoeff = 1) const = 0;

Arguments

dataToCompare Pointer to the distribution function for comparison.

epsilon Float value of accuracy to compare.

WithCoeff Flag of the type of comparison. Normalizing constants for
Gaussian and Conditional Gaussian distribution are
compared if it is equal to 0.

Discussion

This function returns 1 if the compared distributions are of the same size, type and
have the same floating point matrices, returns 0 otherwise.

"Ttel@ 3-115

Probabilistic Network Library Reference Manual 3

GetMPE

Returns maximum probability explanation.

virtual CNodeValues* CDistribFun::GetMPE() = 0;

Discussion

This function returns maximum probability explanation of the distribution function.

ConvertToSparse

Converts distribution with dense matrices into
distribution with sparse matrices.

virtual CDistribFun* CDistribFun::ConvertToSparse() const = 0;

Discussion

This function converts the distribution with dense matrices into the distribution with
sparse matrices.

ConvertToDense

Converts distribution with sparce matrices into
distribution with dense matrices.

virtual CDistribFun* CDistribFun::ConvertToDense () const = 0;

Discussion

This function converts the distribution with sparse matrices into the distribution with
dense matrices.

"Ttel@ 3-116

Probabilistic Network Library Reference Manual 3

IsSparse

Checks if distribution matrices are sparce.

virtual int CDistribFun::IsSparse() const = 0;

Discussion

This function checks if the matrices of the distribution are sparce.

IsDense

Checks if distribution matrices are dense.

virtual int CDistribFun::IsDense () const = 0;

Discussion

This function checks if the matrices of the distribution are dense.

ResetNodeTypes

Replaces node types of model domain by node
types of distribution function.

inline void CDistribFun::ResetNodeTypes (pConstNodeTypeVector &nodeTypes);

Arguments

nodeTypes Array of CNodeTypes objects.

"Ttel@ 3-117

Probabilistic Network Library Reference Manual 3

Discussion

This function replaces node types of the model domain by identical node types from
another model domain.

CreateDefaultMatrices

Allocates default matrices to distribution
function.

virtual void CDistribFun::CreateDefaultMatrices(int isRandom = 1);

Arguments

isRandom Type of matrix data.

Discussion

This function creates default matrices and allocates them to the distribution function.

GetMatricesValidityFlag

Checks validity of matrices.

inline bool CDistribFun::GetMatricesValidityFlag() const;

Dump

Dumps content of object.

virtual void CDistribFun::Dump () const = 0;

"Ttel@ 3-118

Probabilistic Network Library Reference Manual 3

Class CTabularDistribFun

PNLBase

DistribFun
AllocMatrix()
AttachMatrix()
MarginalizeData()
MultiplylnSelfData()
DividelnSelfData()
ShrinkObservedNodes()
ExpandData()
Clone()
CloneWithSharedMatrices()
ConvertCPDDistribFunToPot()
IsEqual()

TabularDistribFun
Create()
CreateUnitFunctionDistribution(

Copy()

j-—]

"Ttel@ 3-119

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

static CTabularDistribFun* CTabularDistribFun::Create(int NodeNumber, const
CNodeType *const* NodeTypes, const float *data, int allocMatrices = 0, int

asDense = -1);
Arguments
NodeNumber Number of nodes in the domain.
NodeTypes Pointer to the array of cNodeTypes of the nodes in the domain.
data Pointer to the array of float values of probabilities.

allocMatrices Flag of matrix allocation.

asDense Type of the martix created.

Discussion

This function creates a class object.

CreateUnitFunctionDistribution

Creates unit-function distribution.

static CTabularDistribFun* CTabularDistribFun::CreateUnitFunctionDistribution
(int NumberOfNodes, const CNodeType *const*nodeTypes, int asDense = 1);

Arguments

NumberOfNodes Number of nodes in the domain.

nodeTypes Pointer to the array of cNodeTypes of the domain nodes.
asDense Distribution function with dense matrices.

"Ttel@ 3-120

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a class object in the form of a unit-function distribution.

Copy

Creates class object by copying input object.

static CTabularDistribFun* CTabularDistribFun: :Copy(const CTabularDistribFun*
pInpDistr);

BayesUpdateFactor
Updates statistical data.

void CTabularDistribFun: :BayesUpdateFactor (const CEvidence* const*
pEvidences, int nEv, const int* domain);

Arguments

pEvidences Array of evidences.
nEv Number of evidences.
domain Array of nodes.
Discussion

This function updates statistical data by using priors.

"Ttel@ 3-121

Probabilistic Network Library Reference Manual 3

PriorToCPD

Converts pseudo counts to probability.|

void CTabularDistribFun: :PriorToCPD() ;

CPDToPi

Computes pi message for Pearl inference.

void CTabularDistribFun::CPDToPi(CDistribFun *const* allPiMessages, int
*multParentIndices, int numMultNodes, int posOfExceptParent, int

maximizeFlag = 0) const;
Arguments
allPiMessages Array of all pi messages received by the current distribution.
multParentIndices Indices of parent nodes.
numMul tNodes Number of parent nodes.
posOfExceptParent Position of the parent which is not to be multiplied.
maximizeFlag Flag of maximization in multiplication process.
Discussion

This function computes pi messages for Pearl inference.

"Ttel@ 3-122

Probabilistic Network Library Reference Manual 3

CPDToLambda

Computes lambda message for Pearl inference.

void CTabularDistribFun: :CPDToLambda (const CDistribFun *lambda, CDistribFun
const allPiMessages, int *multParentIndices, int numMultNodes, int

posOfExceptNode, int maximizeFlag = 0) const;
Arguments
lambda Received Lambda message.
allPiMessages Array of all pi messages received by the current distribution.
multParentIndices Indices of parent nodes.
numMul tNodes Number of parent nodes.
posOfExceptNode Position of the parent that is not to be multiplied.
maximizeFlag Flag of maximisation in multiplication process.
Discussion

This function computes lambda message for Pearl inference.

IsMatrixNormalizedForCPD
Checks if martix is normalized for CPD.

bool CTabularDistribFun::IsMatrixNormalizedForCPD(float eps = le-5f) const;

Arguments

eps Accuracy .

Discussion

This function checks if the matirx is normalized for CPD.

"Ttel@ 3-123

Probabilistic Network Library Reference Manual 3

Marginalize

Marginalizes object.

virtual void CTabularDistribFun::MarginalizeData (const CDistribFun *pOldData,

const int *DimsOfKeep, int NumDimsOfKeep, int maximize) = 0;
Arguments
pOldData Pointer to the distribution function.
DimsOfKeep Pointer to an array of numbers of the dimensions that should
constitute the domain of the returned marginalized object.
NumDimsOfKeep Size of the returned object domain.
maximize Flag of the marginalization type.

For discrete variables:

* 0 stands for simple summation

* 1 stands for finding maximum value.
For continuous variables:

* both are integration operations.

Discussion

This function marginalizes the source object. The object is marginalized in itself and
thus should have an appropriate size.

3-124

Probabilistic Network Library Reference Manual 3

Class CGaussianDistribFun

PNLBase

DistribFun
AllocMatrix()
AttachMatrix()
MarginalizeData()
MultiplyInSelfData()
DividelnSelfData()
ShrinkObservedNodes()
ExpandData()

Clone()
CloneWithSharedMatrices()
ConvertCPDDistribFunToPot()
IsEqual()

GaussianDistribFun
CreatelnMomentForm()
CreatelnCanonicalForm()
CreateDeltaDistribution()
CreateUnitFunctionDistribution
Copy
UpdateMomentForm

CreateInMomentForm

Creates class object in moment form.

"Ttel@ 3-125

Probabilistic Network Library

Reference Manual 3

static CGaussianDistribFun* CGaussianDistribFun::CreateInMomentForm(int

isPot,
*dataMean,

Arguments

isPot

NumberOfNodes
NodeTypes
dataMean

dataCov

dataWeight

Discussion

int NumberOfNodes, const CNodeType *const* NodeTypes, const float
const float *dataCov, const float **dataWeight = NULL);

Flag of the desired Gaussian distribution use:

1 - distribution is created for use in potential

0 - distribution is created for use in CPD.

Number of nodes in the domain.

Pointer to the array of cNodeTypes of nodes in the domain.
Pointer to the array of float values of data for matrix mean.

Pointer to the array of float values of data for covariance
matrix.

Pointers to weights of distributions.

This function creates cGaussianDistribFun class object in the moment form.

CreatelnCanonicalForm

Returns class object in canonical form.

static CGaussianDistribFun* CGaussianDistribFun::CreateInCanonicalForm(int
numberOfNodes, const CNodeType *const* nodeTypes, const float *dataH, const
float *dataK, float g = 0.0f);

Arguments
numberOfNodes
nodeTypes
dataH

datakK

Number of nodes in domain.
Pointer to the array of cNodeTypes of nodes in domain.
Pointer to the array of float values of data for matrix H.

Pointer to the array of float values of data for matrix K.

3-126

Probabilistic Network Library Reference Manual 3

g Float value of normalisation constant in the canonical form.

Discussion

This function creates a cGaussianDistribFun object in the canonical form.

CreateDeltaDistribution

Creates class object of special form.

static CGaussianDistribFun* CGaussianDistribFun: :CreateDeltaDistribution(int

numberOfNodes, const CNodeType *const* nodeTypes, const float *dataMean,
int isMoment =1);

Arguments

numberOfNodes Number of nodes in the domain.

nodeTypes Pointer to the array of cNodeTypes of nodes in the domain.
dataMean Pointer to the array of float values of data for matrix mean.
isMoment Flag of the desired form of Gaussian distribution:

1 - moment form,
0 - canonical form.

Discussion

This function creates a class object of the special form.

"Ttel@ 3-127

Probabilistic Network Library Reference Manual 3

CreateUnitFunctionDistribution

Creates class object of special form.

static CGaussianDistribFun*
CGaussianDistribFun: :CreateUnitFunctionDistribution (int numberOfNodes,
const CNodeType *const*nodeTypes, int isPotential = 1, int isCanonical =

1);
Arguments
numberOfNodes Number of nodes in the domain.
nodeTypes Pointer to the array of cNodeTypes of nodes in the domain.
isPotential Flag of the desired use of the Gaussian distribution:

1 — distribution is created for use in potential,
0 - distribution is created for use in CPD

isCanonical Flag of the desired form of Gaussian distribution:
0 - moment form,
1 - canonical form.

Discussion

This function creates a class object of the special form.

Copy

Creates replica of given class object.

static CGaussianDistribFun* CGaussianDistribFun::Copy(const
CGaussianDistribFun* pInpDistr);

Arguments

pInpDistr Pointer to the cGaussianDistribFun object to be copied.

"Ttel@ 3-128

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a new cGaussianDistribFun class object by means of copying
the input object.

CheckMomentFormValidity

Checks if function is valid in moment form.

int CGaussianDistribFun::CheckMomentFormValidity() ;

CheckCanonicalFormValidity

Checks if function is valid in canonical form.

int CGaussianDistribFun::CheckCanonicalFormValidity () ;

GetCanonicalFormFlag

Checks if distribution function is canonical.

inline int CGaussianDistribFun::GetCanonicalFormFlag() const;

Discussion

This function checks if the function is canonical. The function returns 1 if the
distribution function is canonical, returns 0 otherwise.

"Ttel@ 3-129

Probabilistic Network Library Reference Manual 3

GetMomentFormFlag

Checks if distribution function is in moment form.

Inline int CGaussianDistribFun::GetMomentFormFlag () const;

Discussion

This function returns 1 if the distribution function is in moment form, returns 0
otherwise.

SetCoefficient

Sets normalization coefficient.

void CGaussianDistribFun::SetCoefficient(float coeff, int isCanonical = 1);
Arguments
coeff Coefficient value.

isCanonical Flag of distribution form.

Discussion

This function sets the normalization coefficient for the Gaussian distribution.

GetFactorFlag

Checks if function is for use in potential.

inline int CGaussianDistribFun::GetFactorFlag() const;

| ntel e 3-130

Probabilistic Network Library

Reference Manual 3

UpdateMomentForm

Updates moment form of distribution function.

void CGaussianDistribFun: :UpdateMomentForm() ;

UpdateCanonicalForm

Updates canonical form of distribution function.

void CGaussianDistribFun: :UpdateCanonicalForm() ;

1ComputeProbability

Computes probability of data setting.

double CGaussianDistribFun: :CoputeProbability(const
C2DNumericDenseMatrix<float>* pMatVariable, int asLog = 1, int
numObsParents = 0, const int* obsParentsIndices = NULL,
C2DNumericDenseMatrix<float>* const* pObsParentsMats = NULL) const;

Arguments
pMatVariable
asLog
numObsParents
obsParentsIndices

pObsParentsMats

Pointer to the matrix with the given data.
Flag of taking the logarithm.

Number of observed parents.

Indices.

Matrices with the given data.

3-131

Probabilistic Network Library

Reference Manual 3

Discussion

This function computes likelihood of the given data.

Class CCondGaussianDistribFun

PNLBase

DistribFun
AllocMatrix()
AttachMatrix()
MarginalizeData()
MultiplyInSelfData()
DividelnSelfData()
ShrinkObservedNodes()
ExpandData()

Clone()
CloneWithSharedMatrices()
ConvertCPDDistribFunToPot()
IsEqual()

CondGaussianDistribFun
Create()

Copy()
SetDistribFun()
AllocDistribFun()
EnterDiscreteEvidence()
EnterFullContinuousEvidence()
GetDiscreteParentsindices()
GetMatrixWithDistribution()

| ntel e 3-132

Probabilistic Network Library Reference Manual 3

Create

Returns cCondGaussianDistribFun class object
in moment form.

static CCondGaussianDistribFun* CCondGaussianDistribFun::Create(int isPot,
int nNodes, const CNodeType *const* nodeTypes, int asDenseMatrix = 1,
CGaussianDistribFun* const pDefaultDistr = NULL);

Arguments
isPot Flag of the desired use of the Gaussian distribution:
1 - distribution is created for use in potential,
0 - distribution is created for use in CPD.
nNodes Number of nodes in the domain.
nodeTypes Pointer to the array of cNodeTypes of nodes in the domain.
asDenseMatrix Flag of the desired form of matrices of Gaussian
distribution:
1 - dense
0 - sparse.
pDefaultDistr Pointer to the Gaussian distribution, if it is used for all

combinations of parents with the same matrices.

Copy

Creates class object by copying input object.

static CCondGaussianDistribFun* CCondGaussianDistribFun::Copy(const
CCondGaussianDistribFun* pInputDistr);

Arguments

pInpDistr Pointer to ccondGaussianDistribFun object.

| ntel e 3-133

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a new CCondGaussianDistribFun class object by copying the
input object.

EnterDiscreteEvidence

Enters discrete evidence and creates new
distribution function.

CCondGaussianDistribFun* CCondGaussianDistribFun::EnterDiscreteEvidence(int
nDiscrObsNodes, const int* discrObsNodes, const int *discrValues, const
CNodeType* pObsTabNodeType) const;

Arguments

nDiscrObsNodes Number of discrete observed nodes.
discrObsNodes Positions of discrete observed nodes.
discrValues Array of discrete values.
pObsTabNodeType Pointer to the observed Tabular node type.
Discussion

This function creates a new distribution function entering discrete evidence.

EnterFullContinuousEvidence

Enters continuous evidence and creates new
tabular distribution.

CTabularDistribFun* CCondGaussianDistribFun::EnterFullContinuousEvidence(int
nContObsParents, const int* contObsParentsIndices, const
C2DNumericDenseMatrix<float>* obsChildValue, C2DNumericDenseMatrix<float>*
const* obsValues, const CNodeType* pObsGauNodeType) const;

intel. 3154

Probabilistic Network Library

Reference Manual 3

Arguments
nContObsParents
contObsParentsIndices
obsChildValue
obsValues

pObsGauNodeType

Discussion

Number of observed continuous parents.
Positions of observed continuous parents.
Value of the observed child node.

Array of values of observed parents.

Pointer to the observed Gaussian node type.

Creates a new tabular distribution by means of entering continuous evidence.

GetDiscreteParentsindices

Returns discrete parent indices.

inline void CCondGaussianDistribFun::GetDiscreteParentsIndices(intVector*

const discrParents) const;

Arguments

discrParents Output parameter.Node numbers of discrete parents in the domain.

Discussion

This function returns indices of discrete parents.

GetContinuousParentsindices

Returns continuous parent indices.

inline void CCondGaussianDistribFun::GetContinuousParentsIndices(intVector*

const contParents) const;

intel.

3-135

Probabilistic Network Library Reference Manual 3

Arguments

contParents Output parameter.Node numbers of continuous parents in the
domain.

Discussion

This function returns indices of continuous parents.

GetMatrixWithDistribution

Returns matrix with Gaussian distribution
Sfunction.

inline CMatrix<CGaussianDistribFun*>*
CCondGaussianDistribFun: :GetMatrixWithDistribution () ;

Discussion

This function returns the coefficient for the input parent combination of the Gaussian
distribution.

SetCoefficient

Sets normalization coefficient.

void CCondGaussianDistribFun::SetCoefficient(float coeff, int
isCanonical,const int* pParentCombination);

Arguments
coeff Coefficient to be set.
isCanonical Flag of the distribution form.

pParentCombination Pointer to the combination of discrete parents.

| ntel e 3-136

Probabilistic Network Library Reference Manual 3

Discussion

This function sets normalization coefficient.

GetCoefficient

Gets value of normalization coefficient.

float CCondGaussianDistribFun::GetCoefficient(int isCanonical, const int*
pParentCombination);

Arguments
isCanonical Flag of distribution form.

pParentCombination Pointer to combination of parents.

Discussion

This function gets the value of the normalization coefficient.

GetMatrixNumEvidences

Returns matrix with number of evidences of
discrete parents.

inline CDenseMatrix<float>* CCondGaussianDistribFun::GetMatrixNumEvidences () ;

Dump

Dumps content of object.

void CCondGaussianDistribFun: :Dump () ;

| ntel e 3-137

Probabilistic Network Library Reference Manual 3

Class ScalarDistribFun

PNLBase

DistribFun
AllocMatrix()
AttachMatrix()
MarginalizeData()
MultiplyInSelfData()
DividelnSelfData()
ShrinkObservedNodes()
ExpandData()

Clone()
CloneWithSharedMatrices()
ConvertCPDDistribFunToPot()
IsEqual()

ScalarDistribFun
Create()
Copy()

Create

Creates class object.

static CScalarDistribFun* CScalarDistribFun::Create(int NodeNumber, const
CNodeType *const* NodeTypes, int asDense = 1);

Arguments

NodeNumber Number of nodes.

| ntel e 3-138

Probabilistic Network Library Reference Manual 3

NodeTypes Array of node types.
asDense Flag.
Discussion

This function creates a class object.

Copy

Creates replica of input object.

static CScalarDistribFun* CScalarDistribFun::Copy(const CScalarDistribFun
*pInpDistr);

Arguments

pInpDistr Pointer to the input distribution.

Discussion

This function creates a replica of the input object.

Dump

Dumps content of object.

void CScalarDistribFun: :Dump () ;

| ntel e 3-139

Probabilistic Network Library Reference Manual 3

Class CTreeDistribFun

PNLBase

DistribFun
AllocMatrix()
AttachMatrix()
MarginalizeData()
MultiplylnSelfData()
DividelnSelfData()
ShrinkObservedNodes()
ExpandData()

Clone()
CloneWithSharedMatrices()
ConvertCPDDistribFunToPot()
IsEqual()

TreeDistribFun
Create()

Copy()
IsRegression()

Create

Creates class object.

static CTreeDistribFun* TreeDistribFun::Create(int nodeNumber, const
CNodeType *const* nodeTypes, const SCARTParams* params = 0);

intel. 3140

Probabilistic Network Library Reference Manual 3

Arguments

nodeNumber Number of nodes in the domain.

nodeTypes Pointer to the array of cnodeTypes nodes in the domain.

params Parameters for underlying CART. The value nULL sets the
parameter to default values.

Discussion

This function creates a class object.
SCARTParams contains the following structure members.

is cross val indicates whether to apply cross validation in calculation of the best
pruning step for the tree. The faise value designates test sample estimation. The
default value is true.

cross val folds isthe number of cross validation folds equal to the number of
additional subtrees built during cross validation. The default value is 5.

learn sample par is the number of samples for learning in the test sample
estimation. This parameter is set to 0.6 by default.

priors is optional priors in cases when the child node is discrete. This parameter is
used to weight classes. The default value is NULL.

Copy

Creates class object by copying input object.

static CTreeDistribFun * TreeDistribFun::Copy(const CTreeDistribFun *
pInputDistr);

Arguments

pInputDistr Pointer to the input distribution.

intel. 3141

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a new class object by copying the input object.

Factors

Class cractors and its child subclasses cPotential, CCPD, CTabularPotential,
CGaussianPotencial, CTabularCPD, and CGaussianCPD store graphical model
factors related to one or several nodes, that is, a factor domain. The cPotential, CCPD,
and cTabularFactor subclasses are abstract. See Figure 3-1 for their hierarchy.

Figure 3-1 Class cFactors and child subclasses

PNLBase

Eactor
AllocMatrix()
AttachMatrix()

GetMatrix()
GetDomain
IsFactorsdistribFunEqual()
UpdateStatisticsEM()
Potential CloneWithSharedMatrices()
Multiply() Clone() CPD
Marginalize() NormalizeCPD()
Normalize() ConvertToPotential()

operator *=()
operator /=()
ShrinkObservedNodes()
ExpandObservedNodes()

ConvertWithEvidenceToPotential()

MixtureGaussianCPD
Create()

Copy()
AllocDistribution()

TabularCPD
Create()
CreateUnitFunctionCPD(

ScalarPotential

. Create() Copy() TreeCPD
TabularPotential Copy()) Create()
Create() GaussianCPD Copy()
CreateUnitFunctionDistribution() Create()
Copy() CreateUnitFunctionCPD()
Copy()

g ianP)
Create()
CreateUnitFunctionDistribution()
CreateDeltaFunction()
Copy()

AllocDistribution()

intel. 3102

Probabilistic Network Library Reference Manual 3

The factor stores joint probability distribution for a cFactor object, and conditional
distribution for a ccpp object. Both types of distribution are implemented with class
CMultiDMatrix objects, the number of which depends on whether the distribution is
discrete or continuous. All distribution type specific member functions are localized in
the internal class cbata.

Class CFactor

PNLBase

IsFactorsdistribFunEqual()
UpdateStatisticsEM()
CloneWithSharedMatrices()

Factor
AllocMatrix()
AttachMatrix()
GetMatrix()
GetDomain

Clone()

AllocMatrix

Creates matrix and allocates it to factor.

void CFactor::AllocMatrix(float *data, EMatrixType mType, int MatrixNum = -1,
const int *discrParentValuesIndices = NULL);

tel.

3-143

Probabilistic Network Library

Reference Manual 3

Arguments

data

mType

MatrixNum

discrParentValuesIndices

Discussion

Array that corresponds to a specific part of
distribution.

Type of the matrix that is allocated for the factor.

Number of a matrix, if several matrices of given
type are associated with the factor. Optional
argument that may be omitted, if only one matrix
is involved.

Array of values of discrete parents.

This function enters data into a matrix and associates the matrix with the factor.

AttachMatrix

Attaches matrix to factor.

void CFactor::AttachMatrix (

CMultiDMatrix *matrix, EMatrixType mType, int

MatrixNum = -1, const int *discrParentValuesIndices = NULL);
Arguments
matrix Pointer to cMultibMatrix object.
mType Matrix type.
MatrixNum Number of a matrix, if several matrices of given

discrParentValuesIndices

Discussion

type are associated with the factor. Optional
argument that may be omitted, if only one matrix
is involved.

Array of values of discrete parents.

This function enters data into a matrix and associates the matrix with the factor.

3-144

Probabilistic Network Library Reference Manual 3

GetFactorType

Returns factor type.

inline EFactorType CFactor::GetFactorType () const;

Discussion

Factor type may be either pt Factor or ptCPD.

GetDistributionType

Returns distribution type.

inline EDistributionType CFactor::GetDistributionType () const;

Discussion

Factor type may be either dtTabular, dtGaussian Or dtCondGaussian.

GetDomain

Returns pointer to factor domain and domain
size.

void CFactor::GetDomain(int *DomainSize, const int **domain) const;

void CFactor::GetDomain(intVector* domain) const;

Arguments

DomainSize Returned parameter, pointer to the integer that specifies
domain size.

intel. 3145

Probabilistic Network Library Reference Manual 3

domain Returned parameter. Array of numbers that specify serial
numbers of the graphical model nodes associated with the
factor domain.

GetDomainSize

Returns size of factor domain.

inline int CFactor::GetDomainSize () const;

Discussion

This function returns number of the nodes associated with the factor.

GetMatrix

Returns pointer to matrix attached to factor.

CMatrix<float>* CFactor::GetMatrix(EMatrixType mType, int matrixNum = -1,
const int *discrParentValuesIndices = NULL) const;
Arguments
mType Type of the matrix called.
matrixNum Number of a matrix called among several matrices

of a given type. Optional argument that may be
omitted, if only one matrix is involved.

discrParentValuesIndices Array of values of discrete parents.

Discussion

This function returns the pointer to the matrix by matrix type if the matrix of this type
has been attached to the factor. Matrix may be of the following types: matTab1le,
matMean, matCov, matWeights, math, and matk.

intel. 3146

Probabilistic Network Library Reference Manual 3

operator =
Assigns data from input factor to the object.

CFactoré& CFactor::operator =(const CFactor& rInputFactor);
Arguments
rInputFactor Reference to the cFactor object.
Discussion

This function assigns data from input factor to the object for which it is called, only if
both of them are of the same size and type.

IsValid
Checks factor validity.

virtial bool CFactor::IsValid(std::string* discription = NULL) const;

Arguments
discription Error message.
Discussion

This function checks martix validity. The function returns ‘true’ if matrices are
allocated, returns ‘false’ otherwise.

intel. 3147

Probabilistic Network Library Reference Manual 3

IsFactorsDistribFunEqual

Compares distributions.

int CFactor::IsFactorsDistribFunEqual (const CFactor *pFactor, float eps, int
withCoeff = 1) const;

Arguments

pFactor Pointer to the factor to compare.

eps Float value of accuracy to compare.

withCoeff Flag of type of comparison: if it is equal to 0, normalizing
constants for Gaussian and Conditional Gaussian
distribution should be compared.

Discussion

This function returns 1, if distributions on factors are of the same type and size, with
the same floating point matrices representing distributions.

TieDistribFun

Sets input factor distribution for object.

void CFactor::TieDistribFun(CFactor *pFactor);

Arguments
pFactor Pointer to the cFactor object.
Discussion

This function sets the distribution for an object only if both factors are of the same
form, and throws an exception otherwise.

intel. 3148

Probabilistic Network Library Reference Manual 3

IsDistributionSpecific
Checks whether distribution is specific.

int CFactor::IsDistributionSpecific() const;

Discussion

This function checks whether the distribution is specific or not and returns:

* (- if distribution is full (Tabular or Gaussian or Conditional Gaussian, non-delta,
non-uniform, non-mixed; may be invalid, call 1svalid function to check the
status).

® 1 - the distribution is uniform: it has no matrices attached to it. It has the flag,
which shows that the distribution is uniform.

* 2 -the distribution is delta function: it has only mean matrix (to check if the form is
valid or not, use Isvalid function).

* 3 - mixed distribution, that is, product of some distribution multiplied by delta
function in some of distribution dimensions. It is an intermediate distribution
presentation.

GenerateSample

Draws random sample from factor using
information from current evidence.

void CFactor::GenerateSample (CEvidence* evidences,int maximize = 0)const = 0;
Arguments
evidences Input-Output parameter.Pointer to the current evidence.
maximize Flag of maximization.

intel. 3149

Probabilistic Network Library Reference Manual 3

Discussion

Generates a sample from the factor.

CopyWithNewDomain

Copies the input object and creates new factor
with new domain and model domain.

static CFactor* CFactor::CopyWithNewDomain (const CFactor *factor, intVector
&domain, CModelDomain *pModelDomain, const intVector& obsIndices =

intVector ());
Arguments
factor Pointer to the cFactor object.
domain Node numbers in the domain.

pModelDomain Pointer to the new model domain.

obsIndices Indices of the observed nodes.

Discussion

Copies the factor and changes the domain for which it was created.

Clone

Creates replica of object.

virtual CFactor* CFactor::Clone() const = 0;

| ntel e 3-150

Probabilistic Network Library Reference Manual 3

CloneWithSharedMartices

Creates replica of factor.

virtual CFactor* CFactor::CloneWithSharedMatrices () const = 0;

Discussion

This function creates a replica of the factor so that the newly created factor shares its
matrices with the source factor.

CreateAllINecessaryMatrices

Creates matrices necessary to make factor valid.

virtual void CFactor::CreateAllNecessaryMatrices (int typeOfMatrices = 1);
Arguments
typeOfMatrices Flag of the type of matrix generation.

If it equals to 1 all matrices are random.

Discussion

This function creates all matrices which are necessary to make a factor valid.
Covariance matrix for the Gaussian distribution is the matrix unit.

GetNumInHeap

Returns factor number in factor heap.

int CFactor::GetNumInHeap () const;

"Ttel@ 3-151

Probabilistic Network Library

Reference Manual 3

Discussion

This function is applied for ModelDomain.

ChangeOwnerToGraphicalModel

Releases model domain from factor.

void CFactor::ChangeOwnerToGraphicalModel () const;

IsOwnedByModelDomain

Checks if factor is owner of model domain.

bool CFactor::IsOwnedByModelDomain () const;

GetModelDomain

Returns pointer to model domain.

inline CModelDomain* CFactor::GetModelDomain () const;

GetArgType

Returns pointers to node types of domain nodes.

const pConstNodeTypeVector CFactor::*GetArgType () const;

| ntel e 3-152

Probabilistic Network Library

Reference Manual 3

ConvertToSparse

Converts factor distribution function with dense
matrices into distribution function with sparce
matrices.

void CFactor::ConvertToSparse () ;

Discussion

This function converts a factor distribution function with dense matrices into a

distribution with sparse matrices.

ConvertToDense

Converts factor distribution with sparce matrices
into distribution with dense matrices.

void CFactor::ConvertToDense () ;

Discussion

This function converts a factor distribution with sparse matrices into a distribution

with dense matrices.

IsSparse

Checks if distribution matrices are sparse.

virtual int CFactor::IsSparse() const = 0;

| ntel e 3-153

Probabilistic Network Library Reference Manual 3

Discussion

This function checks if the matrices of the factor distribution are sparse.

IsDense

Checks if distribution matrices are dense.

virtual int CFactor::IsDense() const = 0;

Discussion

This function checks if the matrices of the distribution are dense.

GetObsPositions

Returns observed positions of domain.

inline void CFactor::GetObsPositions(intVector* obsPosOut) const;

Arguments

obsPosOut Observed positions of the domain.

GetDistribFun

Returns pointer to distribution function.

inline CDistribFun* CFactor::GetDistribFun () const;

intel. 3154

Probabilistic Network Library Reference Manual 3

SetDistribFun

Sets distribution function into factor.

void CFactor::SetDistribFun(const CDistribFun* data);

Arguments

data Pointer to cDistribFun object.

Discussion

This function releases the old distribution function and creates a new factor
distribution by copying the input data.

MakeUnitFunction

Transfers distribution function into unit function
distribution.

void CFactor::MakeUnitFunction();

ConvertStatisticToPot

Creates potential on the basis of statistical data
of distribution function.

virtual CPotential* CFactor::ConvertStatisticToPot (int numOfSamples)
const = 0;

Arguments

numOfSamples Number of samples.

I ntel e 3-155

Probabilistic Network Library Reference Manual 3

UpdateStatisticsEM

Updates statistical data.

virtual void CFactor::StatisticalDataEM(const CPotential* infData, const

CEvidence *pEvidence = NULL) = 0;
Arguments
infData Inference result.
pEvidence Pointer to an Evidence object.
Discussion

This function estimates factors and updates statistical data.

UpdateStatisticsML

Gathers statistical data.

virtual void CFactor::StatisticalDataML(const CEvidence* const* pEvidences,
int evidenceNumber);

virtual void CFactor::StatisticalDataML(const pConstEvidenceVectoré&

pEvidences);
Arguments
pEvidences Array of evidences.
EvidenceNumber Number of evidences.
Discussion

This function estimates factors and updates statistical data.

| ntel e 3-156

Probabilistic Network Library Reference Manual 3

SetStatistics

Sets statistical data.

virtual void CFactor::SetStatistics(const CMatrix<float>* pMat,

EStatisticalMatrix matrixType, const int* parentsComb = NULL) = 0;
Arguments
pMat Input parameter. Matrix with statistical data.
matrixType Type of matrix.

parentsComb Combination of discrete parents.

Discussion

This function sets statistical data for learning.

ProcessingStatisticalData

Updates factor distribution function after
gathering statistical data.

virtual float CFactor::ProcessingStatisticalData(float numEvidences) = 0;

Arguments

numEvidences Number of evidences.

Discussion

This function performs factor estimation and updates a factor distribution function
with the newly acquired statistical data.

I ntel e 3-157

Probabilistic Network Library Reference Manual 3

GetLogLik

Returns likelihood of input data.

virtual float CFactor::GetLogLik(const CEvidence* pEv, const CPotential*
pShrinfRes = NULL) const = 0;

Arguments

PEV Evidence.

pShrInfRes Inference result. This parameter is needed if the domain contains
unobserved nodes.

Discussion

This function returns the logarithm of likelihood.

AreThereAnyObsPositions
Checks if factor has observed nodes.

inline int CFactor::AreThereAnyObsPositions () const;

| ntel e 3-158

Probabilistic Network Library Reference Manual 3

Class CCPD

PNLBase

Factor
AllocMatrix()
AttachMatrix()
GetMatrix()
GetDomain
IsFactorsdistribFunEqual()
UpdateStatisticsEM()
CloneWithSharedMatrices()
Clone()

CPD
NormalizeCPD()
ConvertToPotential()
ConvertWithEvidenceToPotential()

ConvertToPotential

Converts class object to potential and returns
pointer to that potential.

CPotential * CCPD::ConvertToPotential ();

Discussion

This function converts a cCCPD object to a CPotential object and returns a new
CPotential object.

| ntel e 3-159

Probabilistic Network Library Reference Manual 3

ConvertWithEvidenceToPotential

Converts CPD to potential using evidence.

CPotential* CCPD::ConvertWithEvidenceToPotential (const CEvidence* pEv, int
flagSumOnMixtureNode = 1) const;

Arguments
PEV Evidence.

flagSumonMixtureNode Flag of mixture node summation.

Discussion

This function converts CPD to Potential using evidence. This function can change
distribution type of CPD, unlike combination of ConvertToPotential and
ShrinkObservedNodes.

NormalizeCPD
Normalizes CPD.

virtual void CCPD: :NormalizeCPD() = 0;

"Ttel@ 3-160

Probabilistic Network Library Reference Manual 3

Class CTabularCPD

PNLBase

Factor

AllocMatrix()
AttachMatrix()
GetMatrix()
GetDomain
IsFactorsdistribFunEqual()
UpdateStatisticsEM()
CloneWithSharedMatrices()
Clone()

CPD
NormalizeCPD()
ConvertToPotential()
ConvertWithEvidenceToPotential()

TabularCPD
Create()
CreateUnitFunctionCPD({
Copy()

Create

Returns class object.

static CTabularCPD* CTabularCPD::Create(const intVector& domain,

CModelDomain* pMD, const floatVector& data = floatVector()):;

static CTabularCPD* CTabularCPD::Create(const int* domain, int nNodes,

CModelDomain* pMD, const float* data = NULL);

"Ttel@ 3-161

Probabilistic Network Library Reference Manual 3

Arguments
domain Array of numbers of domain nodes.
nNodes Number of nodes in domain.
data Array of data.
pMD Pointer to the model domain.
Copy
Creates new Tabular CPD as copy of input
object.

static CTabularCPD* CTabularCPD: :Copy(const CTabularCPD* pTabCPD);

Arguments

pTabCPD Pointer to the cTabularcpp object.

CreateUnitFunctionCPD

Creates CPD that becomes Unit function after
conversion to potential.

static CTabularCPD* CTabularCPD::CreateUnitFunctionCPD(const intVectoré&
domain, CModelDomain* pMD) ;

static CTabularCPD* CTabularCPD: :CreateUnitFunctionCPD(const int* domain,
CModelDomain* pMD) ;

Arguments
domain Array of numbers of domain nodes.
pMD Pointer to the modail domain.

"Ttel@ 3-162

Probabilistic Network Library Reference Manual 3

Discussion

This function creates CPD as a unit function by converting the function to the
potential.

Class CGaussianCPD

PNLBase

Factor
AllocMatrix()
AttachMatrix()
GetMatrix()
GetDomain
IsFactorsdistribFunEqual()
UpdateStatisticsEM()
CloneWithSharedMatrices()
Clone()

CPD
NormalizeCPD()
ConvertToPotential()
ConvertWithEvidenceToPotential()

GaussianCPD
Create()
CreateUnitFunctionCPD()

Copy()
AllocDistribution()

"Ttel@ 3-163

Probabilistic Network Library Reference Manual 3

Create

Returns class object.

static CGaussianCPD* CGaussianCPD::Create(const intVectoré& domain,
CModelDomain* pMD) ;

static CGaussianCPD* CGaussianCPD: :Create(const int* domain, int nNodes,
CModelDomain* pMD) ;

Arguments

domain Array of numbers of domain nodes.
nNodes Number of nodes in domain.

pMD Pointer to the modail domain.

CreateUnitFunctionCPD

Creates CPD that becomes Unit function after
conversion to potential.

static CGaussianCPD* CGaussianCPD::CreateUnitFunctionCPD(const intVector&
domain, CModelDomain* pMD) ;

static CGaussianCPD* CGaussianCPD: :CreateUnitFunctionCPD(const int* domain,
CModelDomain* pMD) ;

Arguments

domain Array of numbers of domain nodes.
pMD Pointer to the modail domain.
Discussion

This function creates CPD as a unit function by converting the function to the
potential.

intel. 3164

Probabilistic Network Library Reference Manual 3

Copy

Creates new Gaussian CPD by copying input
CPD.

static CGaussianCPD* CGaussianCPD: :Copy(const CGaussianCPD* pGaussCPD);

Arguments

pGaussCPD Pointer to cGaussianCPD object.

AllocDistribution

Allocates Gaussian distribution on Gaussian
child node.

void CGaussianCPD::AllocDistribution(const float* pMean, const float* pCov,
float normCoeff, float* const* pWeights, const int* parentCombination);

void CGaussianCPD::AllocDistribution(const floatVector& meanIn, const
floatVectoré& covin,

float normCoeff,const floatVecVector& weightsIn,const intVectoré&
parentCombination = intVector ());

Arguments

pMean Data for the mean matrix.

pCov Data for the covariance matrix which is inputted rowwise.
normCoeff Float value of normalization constant.

pWeights Data for weight matrices.

parentCombination Array of values of discrete parents.

"Ttel@ 3-165

Probabilistic Network Library Reference Manual 3

Discussion

This function allocates a Gaussian distribution on a Gaussian child node with Gaussian
parents and the given discrete parent combination.

SetCoefficient

Sets normalization constant to Gaussian CPD
object.

void CGaussianCPD::SetCoefficient(float coeff, const int* parentCombination =

NULL) ;
Arguments
coeff Float value of normalization constant.
parentCombination Pointer to the array of values of discrete parents.

GetCoefficient

Gets value of normalization constant.

float CGaussianCPD: :GetCoefficient (const int* parentCombination = NULL);

Arguments

parentCombination Pointer to the array of values of discrete parents.

"Ttel@ 3-166

Probabilistic Network Library Reference Manual 3

Class CMixtureGaussianCPD

Create

Returns class object.

static CMixtureGaussianCPD* CMixtureGaussianCPD: :Create(const intVector&
domain, CModelDomain* pMD, const floatVector& sumCoeff);

static CMixtureGaussianCPD* CMixtureGaussianCPD: :Create(const int* domain,
int nNodes, CModelDomain* pMD, const float* sumCoeff);

Arguments

domain Array of numbers of domain nodes.
nNodes Number of nodes in the domain.
pPMD Pointer to the modail domain.
sumCoeff Mixture coefficient.

Copy

Creates new mixture Gaussian CPD by coying
input CPD.

static CMixtureGaussianCPD* CMixtureGaussianCPD::Copy(const CGaussianCPD*
pGaussCPD) ;

Arguments

pGaussCPD Pointer to cMixtureGaussianCPD object.

"Ttel@ 3-167

Probabilistic Network Library Reference Manual 3

AllocDistributionVec

Allocates mixture Gaussian distribution.

void CMixtureGaussianCPD::AllocDistributionVec (const floatVector& meanlIn,
const floatVector& covIn, float normCoeff,const floatVecVectoré&
weightsIn,const intVectoré& parentCombination);

Arguments

pMean Data for the mean matrix.

pCov Data for the covariance matrix which is inputted rowwise.
normCoeff Float value of normalization constant.

plWeights Data for weight matrices.

parentCombination Array of values of discrete parents.

Discussion

This function allocates a mixture Gaussian distribution for the given discrete parent
combination.

SetCoefficient

Sets normalization constant to mixture Gaussian
CPD.

void CMixtureGaussianCPD: :SetCoefficient(float coeff, const int*
parentCombination);

Arguments
coeff Float value of the normalization constant.
parentCombination Pointer to the array of values of discrete parents.

"Ttel@ 3-168

Probabilistic Network Library Reference Manual 3

GetCoefficient

Gets value of normalization constant.

float CMixtureGaussianCPD: :GetCoefficient (const int* parentCombination);

Arguments

parentCombination Pointer to the array of values of discrete parents.

SetCoefficientVec

Sets normalization constant to mixture Gaussian
CPD.

void CMixtureGaussianCPD: :SetCoefficientVec (float coeff, const intVectoré&
parentCombination) ;

Arguments
coeff Float value of the normalization constant.
parentCombination Pointer to the array of values of discrete parents.

GetCoefficientVec

Gets value of normalization constant.

float CMixtureGaussianCPD: :GetCoefficientVec(const intVectoré&
parentCombination);

Arguments

parentCombination Pointer to the array of values of discrete parents.

"Ttel@ 3-169

Probabilistic Network Library Reference Manual 3

GetProbabilities

Returns vector of probabilities of mixture node.

inline void CMixtureGaussianCPD: :GetProbabilities(loatVector* probabilities)
const;

Arguments

probabilities Returned parameter.Vector of probabilities.

Discussion

This function returns the vector of probabilities of the mixture node.

Class CTreeCPD

Create

Returns class object.

static CTreeCPD* CTreeCPD::Create(const intVector& domain, CModelDomain* pMD,
const floatVectoré& data = floatVector());

static CTreeCPD* CTreeCPD::Create(const int* domain, int nNodes,
CModelDomain* pMD, const float* data = NULL) ;

Arguments

domain Array of numbers of domain nodes.
nNodes Number of nodes in domain.

data Array of data.

pMD Pointer to the modail domain.

"Ttel@ 3-170

Probabilistic Network Library Reference Manual 3

Copy

Creates new Tree CPD as copy of input object.

static CTreeCPD* CTreeCPD: :Copy(const CTreeCPD* pCPD);

Arguments

pPCPD Pointer to the cTreecPD object.

Class CPotential

Class crotential implements basic operations with factors. To perform an operation
witha Class ccpp object, first ConvertToPotential function should be used and
then appropriate member functions should be called for the generated potential.

Operations that can be performed with a crPotential object are as follows:
— multiplication and division of CPotential objects
— normalization
— marginalization
— factor shrinking in cases when factor nodes are observed

— factor expansion to the original size.

Multiply

Multiplies two factors and returns product.

CPotential* CPotential::Multiply(const CPotential *pOtherFactor) const;

Arguments

pOtherFactor Pointer to the multiplier factor.

"Ttel@ 3-171

Probabilistic Network Library Reference Manual 3

Discussion

This function returns pointer to a new Cpotential object, which is the product of two
CPotential objects.

operator *=

Provides multiplication and puts result to
potential.

CPotential& CPotential::operator *=(const CPotential &rSmallPotential);

Arguments
rSmallPotential Reference to the right-hand-side multiplier of cPotential
type.
Discussion
This function changes the object, for which it was called, by changing its data
matrices.
operator /=

Provides division and puts result to potential.

CPotential& CPotential::operator /=(const CPotential &rSmallPotential);

Arguments
rSmallPotential Reference to the denominator of cPotential type.

"Ttel@ 3-172

Probabilistic Network Library Reference Manual 3

Discussion

This function changes the object, for which it was called, by changing its data
matrices.

GetNormalized

Creates new normalized potential.

CPotential* CPotential::GetNormalized () const;

Discussion

This function returns pointer to a new normalized cPotential object with domain that
is the same as domain of the object, for which this function is called.

Normalize

Normalizes potential for which it was called.

void CPotential::Normalize () ;

Marginalize

Marginalizes object.

CPotential * CPotential:: Marginalize(const int *pSmallDom, int domSize, int
maximize = 0) const ;

CPotential * CPotential:: Marginalize(const intVector& pSmallDom, int
maximize = 0) const ;

"Ttel@ 3-173

Probabilistic Network Library Reference Manual 3

Arguments
pSmallDom Array of numbers of nodes that should constitute a domain
of the returned marginalized object.
domSize Size of the returned object domain.
maximize Flag of the marginalization type.
For discrete variables:
* 0 stands for simple summation;
* 1 stands for finding maximum value.
For continuous variables:
* both are integration operations.
Discussion

This function returns pointer to a new CPotential object that is generated from the
source object by either adding or by integrating of the source object referring to the
nodes that are not part of the returned object domain. The returned object domain
should be a subset of the source domain.

ShrinkObservedNodes

Creates new factor without dimensions
corresponding to observed nodes.

CPotential * CPotential::ShrinkObservedNodes (const CEvidence* pEv) const;

Arguments

PEV Pointer to the given evidence.

Discussion

This function creates a new factor with the same domain as the domain of the source
factor but with modified observed nodes. Joint probability distribution also changes
reflecting the modified values of the observed nodes.

intel. 3174

Probabilistic Network Library Reference Manual 3

ExpandObservedNodes
Expands dimensions corresponding to observed
nodes.
CPotential * CPotential::ExpandObservedNodes (const CEvidence* pEv. int
updateInCanonical = 1) const;
Arguments
PEV Pointer to the given evidence.
updateInCanonical Flag of distribution form.
Discussion

This function expands the probability distribution by filling empty spaces with zeros.

GetMultiplyedDelta

Returns delta functions by which Gaussian
distribution was multiplied.

int CPotential::GetMultiplyedDelta(const int** positions, const float**
values, const int** offsets) const;

int CPotential::GetMultiplyedDelta (intVector* positions, floatVector* values,
intVector* offsets) const;

Arguments

positions Array of distribution positions which are multiplied by
Delta distribution.

values Array of values.

offsets Returned parameter. Offsets of values.

"Ttel@ 3-175

Probabilistic Network Library Reference Manual 3

Discussion

This function returns delta functions by which Gaussian distribution, for which it was
called, was multiplied. Multiplication by delta distributions is an internal part of the
library implementation of inference. Inference engines should return result in
non-specified form, that is, without multiplied Delta distribution. The function is
planned to be deleted from the final release of the library.

Divide

Divides factor by another and returns result.

CPotential * CPotential::Divide(const CPotential *pOtherFactor) const;

Arguments
pOtherFactor Pointer to the divisor factor.

Discussion

This function divides the factor for which it is called by the argument and returns the
result, that is, pointer to a newly generated factor.

Dump

Dumps object content.

void CPotential: :Dump () const;

Discussion

This function dumps the cPotential content, that is, domain, factor type, and
distribution matrix to std: : cout.

"Ttel@ 3-176

Probabilistic Network Library Reference Manual 3

MarginalizelnPlace

Marginalizes input object.

void CPotential::MarginalizeInPlace(const CPotential* pOldPot, const int*
corrPositions = NULL, int maximize = 0);

Arguments

pOldPot Pointer to the old potential.
corrPositions Positions for marginalisation.

maximize Flag of marginalisation with maximization.
Discussion

This function marginalizes an input object and stores the result in the given object.

GetMPE

Returns maximum probability explanation.

CEvidence* CPotential::GetMPE () const;

3-177

Probabilistic Network Library Reference Manual 3

Class CTabularPotential

Create

Returns class object.

static CTabularPotential* CTabularPotential::Create(const intVectoré& domain,
CModelDomain* pMD, const float* data, const intVector& obsIndices =
intVector ());

static CTabularPotential* CTabularPotential::Create(const int* domain, int
nNodes, CModelDomain* pMD, const float* data = NULL, const intVectors&

obsIndices = intVector());

Arguments
domain Array of numbers of domain nodes.
nNodes Number of nodes in domain.
data Array of data.
pMD Pointer to the modail domain.
obsIndices Indices of observed nodes of the domain.

Copy

Creates new tabular potential as copy of input

object.

static CTabularPotential* CTabularPotential::Copy(const CTabularCPD* pTabCPD) ;

Arguments

pTabCPD Pointer to the cTabularCpD object.

"Ttel@ 3-178

Probabilistic Network Library Reference Manual 3

CreateUnitFunctionDistribution

Creates potential in form of unit function.

static CTabularPotential* CTabularPotential::CreateUnitFunctionCPD(const
intVector& domain, CModelDomain* pMD, int asDense = 1, const intVectors&
obsIndices = intVector ());

static CTabularPotential* CTabularPotential::CreateUnitFunctionCPD(const int*

domain, int nNodes, CModelDomain* pMD, int asDense = 1, const intVectoré&
obsIndices = intVector());

Arguments

domain Array of numbers of domain nodes.

pMD Pointer to the model domain.

asDense Flag of matrix type.

obsIndices Numbers of observed positions.

nNodes Number of nodes in the domain.

Discussion

This function creates a potential as a unit function.

Class CGaussianPotential

Create

Creates class object.

static CGaussianPotential* CGaussianPotential::Create(const intVectoré&

domain,CModelDomain* pMD, int inMoment = -1, const floatVector& Vec =
floatVector (), const floatVector& Mat = floatVector(),float normCoeff =
0.0f, const intVectoré& obsIndices = intVector ());

"Ttel@ 3-179

Probabilistic Network Library

Reference Manual 3

static CGaussianPotential* CGaussianPotential::Create(const int *domain, int
nNodes, CModelDomain* pMD, int inMoment=-1, float const* pVec=NULL,
float const* pMat
obsIndices = intVector()):;

Arguments
domain
nNodes

inMoment

if inMoment =1,
pVec

pMat
normCoefft
ifianmentZZO,
pVec

pMat
normCoefft
obsIndices

pMd

float normCoeff = 0.0f, const intVector&

Numbers of domain nodes.

Number of nodes in the domain.

Flag of the desired form of a Gaussian potential:
1 - moment form

0 - canonical form.

This flag defines the interpretation of the next three
arguments.

Array for Mean value matrix data.
array for Covariance matrix data.

Value of normalization constant in the moment form.

Array for H matrix data.

array for K matrix data.

Value of normalization constant in the canonical form.
Indices of observed nodes of the domain.

Pointer to the model domain.

Copy

Creates new class object as copy of input object.

static CGaussianPotential* CGaussianPotential::Copy(const CGaussianPotential
*pGauPot) ;

intel.

3-180

Probabilistic Network Library Reference Manual 3

Arguments

pGauPot Pointer to the CGaussianPotential object.

CreateDeltaFunction

Creates Delta function as CGaussianPotential.

static CGaussianPotential* CGaussianPotential::CreateDeltaFunction(const int
domain, int nNodes, CModelDomain pMD, const float *mean, int isInMoment =
1, const intVectoré& obsIndices = intVector ());

static CGaussianPotential* CGaussianPotential::CreateDeltaFunction(const
intVector& domain, CModelDomain* pMD, const floatVector& mean, int

isInMoment = 1, const intVectoré& obsIndices = intVector ());
Arguments
domain Numbers of domain nodes.
nNodes Number of nodes in the domain.
mean Pointer to float values of the mean matrix.
isInMoment Flag of the form of the resulting Potential:

1 - moment form (mean, covariance matrices, and
normalization constant)

0 - canonical form (canonical matrices g, H, K).
pMD Pointer to the model domain.

obsIndices Indices of observed nodes of the domain.

"Ttel@ 3-181

Probabilistic Network Library Reference Manual 3

CreateUnitFunctionDistribution

Creates CGaussianPotential object to represent
unit function distribution.

static CGaussianPotential* CGaussianPotential::CreateUnitFunctionDistribution
(const int *domain, int nNodes,CModelDomain* pMD,int isInCanonical = 1,
const intVector& obsIndices = intVector()):;

static CGaussianPotential* CGaussianPotential::CreateUnitFunctionDistribution
(const CNodeType*const *nodeTypes, const int *domain, int numOfNds, int

isInCanonical = 1, const intVector& obsIndices = intVector());
Arguments
domain Numbers of domain nodes.
nNodes Number of nodes in the domain.
isInCanonical Flag of the desired form of Unit function:

1 - canonical form

0 - moment form.

obsIndices Indices of the observed domain nodes.
pMd Model domain.
Discussion

Creates a class object in the form of a unit function distribution.

SetCoefficient

Sets normalization constant to
CGaussianPotential object.

void CGaussianPotential::SetCoefficient(float coeff, int isForCanonical);

| ntel e 3-182

Probabilistic Network Library

Reference Manual 3

Arguments
coefft

isForCanonical

Float value of normalization constant.
Flag of distribution type to set the coefficient:
1 - canonical form

0 - moment form.

GetCoefficient

Gets value of normalization constant.

float CGaussianPotential::GetCoefficient(int isforCanonical);

Arguments

isforCanonical

Class CFactors

Flag of distribution type to get the coefficient:
1 - canonical form

0 - moment form.

Class cractors represents a complete set of factors for a graphical model. The class is
intended for storing an array of pointers to Class CFactor objects. It is separated
from the model to enable user to create factors separately from the model and attach all
of them to the existing model in a single move.

Create

Creates Cractors class object.

friend CFactors* CFactors::Create(int NumOfFactors);

intel.

3-183

Probabilistic Network Library Reference Manual 3

Arguments

numOfFactors Maximal number of factors in the factor array; equal to the
number of nodes for BNet and to the number of cliques for
all the Markov models.

Public Member Functions

GetNumberOfFactors

Returns current number of factors in factor array.

inline int CFactors::GetNumberOfFactors () const;

GetFactor

Returns pointer to factor:

inline CFactor* CFactors::GetFactor(int factorNum) const;

Arguments
factorNum Factor index in the array of factors.

Discussion

This function returns pointer to the factor with the index equal to factornum.

intel. 3184

Probabilistic Network Library Reference Manual 3

AddFactor
Adds new factor to graphical model.

inline int CFactors::AddFactor(CFactor *factor);

Arguments

factor Pointer to the factor to be set in the factor array.

Discussion

This function adds a factor to the graphical model. The function returns the index of
the factor in the factors array.

ShrinkObsNdsForAllFactors

Shrinks all factors stoved in CFactors class using
input evidence.

void CFactors::ShrinkObsNdsForAllFactors(const CEvidence *pEvidence);

Arguments

pEvidence Evidence.

Discussion

This function shrinks all the factors stored in cFactors class using the input evidence.

| ntel e 3-185

Probabilistic Network Library Reference Manual 3

Class CMatrix

Reference

“Counter

AddRef() S— :

Release() E Matrix<Type>
Clone()
GetRanges()

GetElementBylIndices()
SetElementBylndices()

ReduceOp()

ExpandDims() R _
nseMatrix SetClamped() s T SparseMatrix
Create() MultiplyInSelf() : Create()

. GetRawData() DjvideInSeIf() GetDefaultValue()
GetElementByOffset(GetlndicesOfMaxValue()
SetElementByOffset() SumaAill()

NormalizeAll()

GetBlocks()

NumericSparseMatrix
Create()
CombineMatrices()

NumericDenseMatrix
Create()
CombineMatrices()

2DNumericDenseMatrix
Create()
Transpose()
Inverse()
IslliConditioned()
Multiply()

Template class cMatrix<Type> is an abstract class that declares basic operations with
a multidimensional matrix of any type.The operations are used with various types of
probability distributions. This class has two main derived subclasses: ChenseMatrix
and CSparseMatrix.

Class cMatrixIterator is convenient for operations with matrix elements.

| ntel e 3-186

Probabilistic Network Library Reference Manual 3

CreateEmptyMatrix

Creates empty multidimensional matrix with data
of default value.

virtual CMatrix<Type>* CMatrix::CreateEmptyMatrix(int dim, const int *range,
int Clamp, Type defaultVal = Type(0))const = 0;

Arguments
dim Number of matrix dimensions.
range Array of lengths of matrix dimensions.
Clamp Status flag:

* 1 means no change is allowed

* 0 means change is allowed.
defaultVal Default value to be set for the matrix.
Discussion

This function creates a multidimensional matrix with the default value data and returns
the pointer to the matrix.

SetDataFromOtherMatrix

Assigns data from input matrix to object.

virtual void CMatrix::SetDataFromOtherMatrix(const CMatrix<Type>* matInput)
= 0;

Arguments

matInput Pointer to the cMatrix object to be copied.

| ntel e 3-187

Probabilistic Network Library

Reference Manual 3

Discussion

This function assigns data from the input matrix to the matrix, for which it is called,

only if both the matrices are of the same size.

Clone

Returns pointer to new matrix.

virtual CMatrix<Type>* CMatrix::Clone() const = 0;

GetNumberDims

Returns number of matrix dimensions.

virtual inline int CMatrix::GetNumberDims () const = 0;

GetRanges

Returns pointer to array of dimensions and
number of matrix dimensions.

virtual inline void CMatrix::GetRanges(int *numOfDimsOut,
**rangesOut) const = 0;

Arguments

const int

numOfDimsout Returned parameter. Number of matrix dimensions.

rangesoOut Returned parameter. Pointer to the array of the matrix dimensions.

| ntel e 3-188

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the number of matrix dimensions and the pointer to the array of
the dimensions.

GetMatrixClass

Returns matrix class name.

virtual EMatrixClass CMatrix::GetMatrixClass () const;

Discussion

This function returns the class name of the martix. A matrix may belong to one of the
following classes: mcBase, mcSparse, mcDense, mcNumericDense, mcNumericSparse,

mc2DNumericDense, mc2DNumericSparse.

ConvertToDense

Creates new matrix by conversion of given matrix
to dense matrix.

virtual CDenseMatrix<Type>* CMatrix::ConvertToDense() const = 0;

Discussion

This function creates a new matrix by conversion of the given matrix to a dense
matrix. The new matrix contains the same data as the matrix corresponding to the
function but has another another form. When called for a dense matrix the function
creates its replica.

| ntel e 3-189

Probabilistic Network Library Reference Manual 3

ConvertToSparse

Creates new matrix by conversion of given matrix
to sparse matrix.

virtual CSparseMatrix<Type>* CMatrix::ConvertToSparse() const = 0;

Discussion

This function creates a new matrix by conversion of the given matrix into a sparce
matrix. The new matrix contains the same data as the matrix corresponding to the
function but has another form. When called for a sparce matrix the function creates its
replica.

GetElementBylIndices

Returns value of matrix element by
multidimensional indices.

virtual inline Type CMatrix::GetElementByIndices (const int *multidimindices)

const = 0;
Arguments
multidimindices Pointer to the array of multidimensional indices of the
addressed matrix element. The array length is equal to the
number of matrix dimensions.
Discussion

This function returns the value of a multidimensional matrix element by
multidimensional indices.

| ntel e 3-190

Probabilistic Network Library Reference Manual 3

SetElementBylIndices

Sets new value for matrix element by
multidimensional indices.

virtual inline void CMatrix::SetElementByIndices(Type value, const int

*multidimindices) = 0;
Arguments
value Value to be set.
multidimindices Pointer to the array of multidimensional indices of the
addressed matrix element. The array length is equal to the
number of matrix dimensions.
Discussion

This function sets a new value for a matrix element by multidimentional matrices.

ReduceOp

Collapses dimensions of multidimensional
matrix.

virtual CMatrix<Type>* CMatrix::ReduceOp(const int *pDimsOfInterest, int
numDimsOfInterest, int action = 2, const int *pObservedValues = NULL,
CMatrix< Type > *output = NULL, EAccumType accumType = PNL ACCUM TYPE STORE

) const = 0;
Arguments
pDimsOfInterest Pointer to the array of dimensions to be preserved in the new
matrix.
NumDimsOfKeep Number of dimensions to be preserved.

"Ttel@ 3-191

Probabilistic Network Library Reference Manual 3

action Type of matrix reduction:
action =0 - sum of all the dimensions except
pDimsOfInterest
action =1 -selection of the maximum of the dimensions
action =2 - selection of the given value of a node.

pObservedValues Pointer to an array of pointers to the values.

output Pointer to the matrix to which the result of Reduceop is to be
passed.

accumType Value of EAccumType class.

Discussion

This function collapses dimensions of a multidimensional matrix.

This function is used by Marginalize and ShrinkObservedNodes functions. In
Marginalize function the action flag is either O or 1 and no pointers to the values are
required. In shrinkObservedNodes function the action flag is equal to 2 and the
pointer pobsvalues is required.

EAccumType provides the following values: PNL ACCUM TYPE STORE,
PNL_ACCUM TYPE ACCUMULATE, PNL ACCUM TYPE SUM, PNL ACCUM TYPE ADD,
PNL ACCUM TYPE MAX, PNL ACCUM TYPE MUL.

The default value of PNL_accuM TypPE sTORE is valid in all cases, which means that
the previous content of the output matrix, if any, is ignored. If the output matrix was
not explicitly given, PNL_AccuM TYPE_ STORE is the only allowed value for accumType.
If output matrix was given (output != NULL) the list of allowed values for accumType
depends on the action.

If action =0, accumType assumes one of the following values:
PNL_ACCUM TYPE STORE, PNL ACCUM TYPE ACCUMULATE, PNL ACCUM TYPE SUM,
PNL ACCUM TYPE ADD. PNL ACCUM TYPE STORE is the default value. The other values
stand for a pair-wise summation of the previous content of the output matrix and the
content of the marginalized objects.

If action=1 accumType assumes one of the following values:
PNL_ACCUM TYPE STORE, PNL ACCUM TYPE ACCUMULATE, PNL ACCUM TYPE MAX.
PNL_ACCUM TYPE STORE is the default value. The other values stand for a pair-wise
maximum of previous content of output matrix and the content of the marginalized

3-192

Probabilistic Network Library Reference Manual 3

objects.

If action = 2 accumType assumes one of the following values:

PNL ACCUM TYPE STORE, PNL ACCUM TYPE SUM, PNL ACCUM TYPE ADD,

PNL ACCUM TYPE MAX, PNL ACCUM TYPE MUL. PNL ACCUM TYPE STORE is the
default value while pNL_aAccuM TYPE suMand PNL_AccuM TYPE ADD stand for a
pair-wise summation of previous content of output matrix and the content of the
shrinkage objects. PNL_AccuM TYPE MaXx stands for a pair-wise maximum of the
previous content of output matrix and the content of shrinked objects.
PNL_ACCUM TYPE MUL stands for a pair-wise multiplication of the previous content of
the output matrix and the content of shrinked objects.

ExpandDims

Creates new matrix by expanding specified
dimensions.

virtual CMatrix<Type> CMatrix::*ExpandDims (const int *dimsToExtend,
const int *keepPosOfDims,const int *sizesOfExpandDims,int numDimsToExpand)

const = 0;

Arguments

dimsToExtend Pointer to an array of dimensions that should be expanded in
the new matrix.

keepPosOfDims Number of dimensions to be expanded.

sizesOfExpandDims Pointer to an array of variables in the expanded dimensions
that preserve their original values.

numDimsToExtend Pointer to the array of new sizes of the expanded matrix.

Discussion

This function creates a new matrix by expanding specified dimensions. It expands
dimensions specified in dims only when their size before the expansion is equal to 1.
Dimensions are expanded to the size specified in sizesofExpandDims by adding zeros

3-193

Probabilistic Network Library Reference Manual 3

at the matrix points in dims. Variables at the matrix points specified in keepPosOfDims
do not change their values.This function is used by the ExpandobservedNodes
function.

ClearData

Sets all matrix elements to zero.

virtual inline void CMatrix::ClearData() = 0;

Discussion

This function sets all matrix elements to zero.This function is used in learning process.

SetUnitData

Sets all elements of numeric matrix to ones.

virtual inline void CMatrix::SetUnitData() = 0;

Discussion

This function sets all elements of the numeric matrix to ones. This function is used to
get a matrix that does not change another matrix during multiplication.

SetClamp

Forbids matrix change in learning process.

inline int CMatrix::SetClamp(int Clamp);

intel. 3104

Probabilistic Network Library Reference Manual 3

Arguments
Clamp Status flag:

* 1 means no change is allowed

* 0 means change is allowed

* 0 means previous flag value is retained.
Discussion

This function sets a flag which prevents matrix change. On setting a new value the
function returns the value of the flag.

GetClampValue

Returns clamp value.

inline int CMatrix::GetClampValue() const;

Discussion

This function returns 1 if no change of the matrix is allowed in the learning process,
and returns 0 if change is allowed.

MultiplyInSelf

Performs multiplication and puts result in matrix.

virtual void CMatrix::MultiplyInSelf(const CMatrix<Type>* matToMult, int
numDimsToMult, const int* indicesToMultInSelf, int isUnifrom = 0, const
Type uniVal = Type(0));
Arguments

matToMult Pointer to the matrix to be multiplied.

| ntel e 3-195

Probabilistic Network Library

Reference Manual 3

numDimsToMult

indicesToMultInSelf

isUniform

uniVal

Discussion

Number of positions for multiplication. Should be the same
as the number of dimensions in matToMult.

Numbers of dimensions of the small matrix in the big
matrix.

Flag about matrix data. Returns 1 when the matrix does not
contain any data and its values are equal to unival, returns
0 otherwise.

Input parameter. Value.

This function performs multiplication for numeric matrices only.

The multiplication is performed element by element under the conditions that the
matToMult matrix dimensions form a subset of dimensions of the matrix for which the
function was called and do not differ from the function dimensions in size.

To perform multiplication in an empty matrix use isuniform flag.

DividelnSelf

Performs division and puts the result in the

matrix.

virtual void CMatrix::DivideInSelf(const CMatrix<Type>* matToDiv, int
numDimsToDiv, const int* indicesToDivInSelf);

Arguments
matToDiv

numDimsToDiv

indicesToDivInSelf

Pointer to the matrix for division.

Number of positions for division. Should be the same as the
number of dimensions in matToMult.

Positions of dimensions of the small matrix in the big
matrix.

3-196

Probabilistic Network Library Reference Manual 3

Discussion

This function performs division for numeric matrices only. The division is performed
element by element under the condition that the dimensions of the matTopiv matrix

form a subset of dimensions of the matrix for which the function is called and do not
differ from the function dimensions in size.

GetindicesOfMaxValue

Returns vector of indices of max value.

virtual void CMatrix::GetIndicesOfMaxValue (intVector* indicesOut) const;

Arguments

indicesOut Returned vector of indices of max value.

Discussion

This function returns the vector of indices of the max value for numeric matrices only.

NormalizeAll

Creates new matrix by normalizing matrix
elements.

virtual CMatrix<Type>* CMatrix::NormalizeAll() const;

Discussion

This function returns the pointer to a new matrix with the sum of all elements equal to
1.

| ntel e 3-197

Probabilistic Network Library Reference Manual 3

Normalize

Normalizes matrix elements.

virtual void CMatrix::Normalize();

Discussion

This function changes values of matrix elements dividing them by their sum.

SumAll

Returns sum of all matrix elements.

virtual Type CMatrix::SumAll (int byAbsValue) const;

Arguments
ByAbsValue Summation flag:
1 stands for the summation in absolute values;
0 stands for simple summation.
Inititerator

Initializes matrix iterator.

virtual CMatrixIterator<Type>* CMatrix::InitlIterator() const = 0;

| ntel e 3-198

Probabilistic Network Library Reference Manual 3

Next

Moves iterator to next value.

virtual void CMatrix::Next(CMatrixIterator<Type>* current) const = 0;
Arguments
current Pointer to the matrix iterator.

Value

Returns pointer to value pointed out by iterator.

virtual const Type* CMatrix::Value(CMatrixIterator<Type>* current) const

0;
Arguments
current Pointer to the matrix iterator.
IsValueHere
Returns information on existence of next value in
matrix.
virtual int CMatrix::IsValueHere(CMatrixIterator<Type>* current) const = 0;
Arguments
current Pointer to the matrix iterator.

| ntel e 3-199

Probabilistic Network Library Reference Manual 3

Discussion

This function returns information on the existence of a next value in the matrix.

Index

Returns indices of value of multidimensional
matrix pointed out by iterator.

virtual void CMatrix::Index(CMatrixIterator<Type>* current,intVector* index)

const = 0;
Arguments
current Pointer to the matrix iterator.
index Output vector containing indices of the value pointed out by the
iterator.
Discussion

This function returns indices of the value of the multidimensional matrix which is
pouinted out by the iterator.

Class CDenseMatrix

This class implements virtual functions declared in cMatrix class and adds some
functionality relevant to its dense entity.

Create

Creates multidimensional dense matrix.

static CDenseMatrix<Type> *CDenseMatrix<Type>::Create(int dim, const int
*range, const Type *data,int Clamp = 0);

| ntel e 3-200

Probabilistic Network Library

Reference Manual 3

Arguments
dim
range

data

Clamp

Discussion

Number of matrix dimensions.
Array of lengths of matrix dimensions.

Data array for the matrix. Array length is the product of matrix
dimension lengths.

Status flag:
* 1 means no change is allowed
* 0 means change is allowed.

This function creates a multidimensional dense matrix and returns the pointer to it.

Copy

Creates input matrix replica.

static CDenseMatrix<Type> *CDenseMatrix<Type>::Copy(CDenseMatrix<Type>*const

inputMat);

Arguments

pInputMat

Pointer to cDenseMatrix<Type> object to be copied.

GetRawData

Returns matrix data and data length.

void *CDenseMatrix<Type>::GetRawData (int *dataLength, const Type **data)

const;

intel.

3-201

Probabilistic Network Library Reference Manual 3

Arguments

dataLength Returned parameter. Data length.

data Returned parameter. Pointer to the data array.
Discussion

This function returns the data of the matrix and the data length.

GetRawDatalLength

Returns size of raw data array.

inline int *CDenseMatrix<Type>::GetRawDatalLength () const;

SetData

Sets new data for matrix.

void *CDenseMatrix<Type>::SetData(const Type* NewData);

Arguments

NewData Pointer to the new data array.

Discussion

This function sets new data for the matrix. Size of new data array should be equal to
the raw data length, which is the product of all matrix dimensions.

| ntel e 3-202

Probabilistic Network Library Reference Manual 3

GetVector

Returns pointer to vector with matrix data.

const pnlVector<Type>* GetVector () const;

ConvertMultiDimIndex

Returns offset in data array to element of dense
matrix by multidimensional indices.

inline int *CDenseMatrix<Type>::ConvertMultiDimIndex (const int*
multidimindexes) const;

Arguments

multidimindices Pointer to the array of multidimensional indices of the
addressed matrix element. The array length is equal to the
number of matrix dimensions.

GetElementByOffset

Returns value of multidimensional matrix element
by offset in data array.

inline Type *CDenseMatrix<Type>::GetElementByOffset (int Iinearindex) const;

Arguments

linearindex Offset in data array to element of dense matrix.

| ntel e 3-203

Probabilistic Network Library Reference Manual 3

SetElementByOffset

Sets new value for matrix element by offset in
data array.

inline void CDenseMatrix<Type>::SetElementByOffset (Type value, int offset);

Arguments
value Value to be set.
offset Offset in data array to the element of the dense matrix

Class CSparseMatrix

The class implements virtual functions declared in cMatrix class and adds some
functionality relevant to its sparse entity. This class is based on CvsparseMat
implemented in OpenCv library and uses the core of this library. It also keeps the
default value of a sparse matrix. By default this value is equal to 0.

Create

Creates multidimensional sparse matrix.

static CSparseMatrix<Type>* CSparseMatrix<Type>::Create(int dim, const int
*range, const Type defaultValue, int Clamp = 0);

Arguments
dim Number of the matrix dimensions.
range Array of lengths of the matrix dimensions.

defaultvalue Default value of the sparse matrix. The default value is assumed by
all the values that are not specified by setElementByIndices()
function.

intel. 3204

Probabilistic Network Library Reference Manual 3

Clamp Status flag:
* 1 means no change is allowed
* 0 means change is allowed.

Discussion

This function creates a sparse multidimensional matrix and returns the pointer to it.

Copy

Creates replica of input matrix.

static CSparseMatrix<Type>* CSparseMatrix<Type>::Copy(CSparseMatrix<Type>*
const pInputMat);

Arguments

pInputMat Pointer to the csparseMatrix<Type> object to be copied.

GetDefaultValue

Returns default value of matrix.

inline const Type CSparseMatrix<Type>::GetDefaultValue() const;

IsExistingElement

Returns information on element existence at
sparse matrix.

inline bool CSparseMatrix<Type>::IsExistingElement (const int *multidimindices)
const;

| ntel e 3-205

Probabilistic Network Library Reference Manual 3

Arguments

multidimindices Pointer to the array of multidimensional indices of the
addressed matrix element. The array length is equal to the
number of matrix dimensions.

Discussion

The function returns ‘true’ if the element is kept in a sparse matrix, returns ‘false’
otherwise.

Class CNumericDenseMatrix

Create

Creates numeric multidimensional dense matrix.

static CNumericDenseMatrix<Type>* CNumericDenseMatrix<Type>::Create(int dim,
const int *range, const Type *data, int Clamp = 0);

Arguments

dim Number of matrix dimensions.

range Array of lengths of matrix dimensions.

data Data array for the matrix. Array length is the product of matrix
dimension lengths.

Clamp Status flag:
* 1 means no change is allowed
* 0 means change is allowed.

Discussion

This function creates a multidimensional matrix of numeric data which is instantiated
for float and double only and returns the pointer to it.

3-206

Probabilistic Network Library Reference Manual 3

Class CNumericSparseMatrix

Create

Creates multidimensional sparse matrix.

static CNumericSparseMatrix<Type>* CNumericSparseMatrix<Type>::Create(int
dim, const int *range, int Clamp = 0);

Arguments
dim Number of matrix dimensions.
range Array of lengths of matrix dimensions.
Clamp Status flag:

* 1 means no change is allowed

* 0 means change is allowed.
Discussion

This function creates a sparse multidimensional matrix of numeric data which is
instantiated for f1oat and double and returns the pointer to it. The default value used
by sparse matrices is set to 0.

Class C2DNumericDenseMatrix

Create

Creates plain numeric dense matrix.

static C2DNumericDenseMatrix<Type> *C2DNumericDenseMatrix<Type>::Create(const
int* lineSizes, const Type *data, int Clamp = 0);

| ntel e 3-207

Probabilistic Network Library

Reference Manual 3

Arguments

lineSizes

data

Clamp

Discussion

Array of two integers, the first one is the number of rows of 2D
matrix and the second one is the number of columns in the matrix.

Array of float matrix data in rows.

Flag of clamping:
1 means that no change is permitted
0 means that change is permitted.

This function creates a plain two-dimensional numeric dense matrix and returns the

pointer to it.

Copy

Creates plain matrix by copying input matrix.

static C2DNumericDenseMatrix<Type>* C2DnumericDenseMatrix<Type>::Copy(const
iC2DNumericDenseMatrix* pInpMat);

Arguments

pInpMat

Discussion

Pointer to the input c2DNumericDenseMatrix matrix.

This function creates a plain matrix by copying the input martix.

3-208

Probabilistic Network Library Reference Manual 3

CreateldentityMatrix

Creates matrix unit.

static C2DNumericDenseMatrix<Type>*
C2DnumericDenseMatrix<Type>::CreateldentityMatrix(int lineSize);

Arguments
lineSize Number of rows and columns of the matrix.
Discussion

This function creates a matrix unit. All elements of this matrix are equal to 0 except the
elements of the leading diagonal which are equal to unity.

IsSymmetric

Checks square matrix for symmetry.

int C2DnumericDenseMatrix<Type>::IsSymmetric(Type epsilon) const;

Arguments
epsilon Precision of matrix cells comparison.
Discussion

This function checks whether the square matrix is symmetrical. This function is called
for square matrices only.

3-209

Probabilistic Network Library Reference Manual 3

Trace

Returns trace of matrix.

Type C2DnumericDenseMatrix<Type>::Trace() const;

IslliConditioned

Checks if matrix is ill-conditioned.

int C2DnumericDenseMatrix<Type>::IsIllConditioned(Type conditionRatio)

const;
Arguments
conditionRatio Limit on ratio between the largest and the smallest singular
values.
Discussion

This function checks the condition of the matrix comparing the ratio between the
largest and the smallest singular values. If the ratio is bigger than the input ratio the
member function returns 1, returns 0 otherwise.

Determinant

Returns matrix determinant.

Type C2DnumericDenseMatrix<Type>::Determinant () const;

Discussion

This function returns the determinant of a plain square matrix.

"Ttel@ 3-210

Probabilistic Network Library Reference Manual 3

Inverse

Returns pointer to inverse matrix.

C2DNumericDenseMatrix<Type>* C2DnumericDenseMatrix<Type>::nverse () const;

Discussion

This function returns the pointer to the matrix inverse to the given flat square
matrix.The function throws exception if the matrix is ill-conditioned.

Transpose

Transposes matrix.

C2DNumericDenseMatrix<Type>* C2DnumericDenseMatrix<Type>::Transpose ()const;

Discussion

This function returns pointer to the transposed matrix.

GetLinearBlocks

Breaks linear matrix into blocks.

void C2DnumericDenseMatrix<Type>::GetLinearBlocks(const int *X, int
xSize,const int *blockSizes, int numBlocks, C2DNumericDenseMatrix<Type>
**matXOut, C2DNumericDenseMatrix<Type> **matYOut) const;

Arguments
X Pointer to the array of numbers of blocks that should enter matrix X.
xSize Number of blocks that should enter matrix X.

"Ttel@ 3-211

Probabilistic Network Library Reference Manual 3

blockSizes Array of block sizes.
numBlocks Number of blocks.
matXout Returned parameter. Pointer to the matrix of blocks that correspond

to their numbers in matrix x.

matYout Returned parameter. Pointer to the matrix of blocks that do not
belong to matrix x.

Discussion

This function breaks the matrix with dimension sizes 1 and v into the matrix with sizes
1 and k, 1 and M, where k+M = N.The matrix is divided into two parts which are related
to two matrices. The resulting matrices are formed by assembling all the parts
one-by-one.

by Bely s badx s v []

GetBlocks

Breaks matrix into blocks.

void C2DnumericDenseMatrix<Type>::GetBlocks(const int *X, int xSize,const int
*blockSizes, int numBlocks, C2DNumericDenseMatrix<Type> **matXOut,
C2DNumericDenseMatrix<Type> **matYOut, C2DNumericDenseMatrix<Type>
**matXYOut, C2DNumericDenseMatrix<Type> **matYXOut)const;

Arguments

X Pointer to the array of numbers of blocks that should enter matrix X.
xSize Number of blocks that should enter matrix X.

blockSizes Array of block sizes.

numBlocks Number of blocks.

matXout Returned parameter. Pointer to the matrix of blocks that correspond

to their numbers in matrix X.

| ntel e 3-212

Probabilistic Network Library

Reference Manual 3

matYout

matXYout

matYXout

Discussion

Returned parameter. Pointer to the matrix of blocks that do not
belong to matrix X.

Returned parameter. Pointer to the matrix of blocks XY.

Returned parameter. Pointer to the matrix of blocks YX.

This function breaks a flat square matrix into blocks, creates new matrices of the
resulting blocks and returns the newly created matrices as arguments matx, maty,
matxy, and matyx. Breaking of a matrix into a bigger number of blocks is carried out
similarly. Returned matrices are created by placing blocks in accordance with their

initial locations.

3-213

Probabilistic Network Library

Reference Manual 3

Figure 3-2 Breaking matrix in two blocks

X Y
5 N

Y | YX

Figure 3-3 Breaking matrix into several blocks

pnIMultiply

Creates new matrix out of two source matrices.

friend PNL API C2DNumericDenseMatrix<Type>*

C2DnumericDenseMatrix<Type>::pnlMultiply(const

C2DNumericDenseMatrix<Type>* pxMatrixl,const C2DNumericDenseMatrix<Type>*

pxMatrix2, int maximize);

intel. 3214

Probabilistic Network Library Reference Manual 3

Arguments
pxMatrixl Pointer to the first matrix.
pxMatrix2 Pointer to the second matrix.
maximize Flag index:
1 stands for the maximum value
0 stands for a pair-wise product of the values.
Discussion

This function returns the pointer to a new matrix which is created out of two source
matrices multiplied row-by-column. The source matrices should have at least one
dimension of the same length.

Reference Counter

Class CReferenceCounter

Class creferenceCounter helps to attach an object to other objects. A
CReferenceCounter object cannot be created separately because it contains neither a
public constructor nor a friendly function to call a constructor. A CReferenceCounter
class object is created with a cMatrix object ora CModelDomain object. Class
CReferenceCounter is designed to store pointers to related objects. A
CReferenceCounter object may be deleted only if it is not associated with any other
object.

There are two versions of the class: debug and release. The debug version stores
pointers to referenced objects and finds them while calling Release(). The release
version stores only the number of references, and either increases or decreases it.

AddRef

Increases number of references.

inline void CReferenceCounter:: AddRef (void* pObject);

"Ttel@ 3-215

Probabilistic Network Library Reference Manual 3

Arguments
pObject Pointer to the object referenced to the CReferenceCounter object.

Release

Decreases number of references.

inline void CReferenceCounter::Release(void* pObject);

Arguments
pObject Pointer to the object referenced to the CReferenceCounter object.
GetNumOfReferences

Returns number of referenced objects.

inline int CReferenceCounter: :GetNumberOfReferences () const;

"Ttel@ 3-216

Probabilistic Network Library Reference Manual 3

Inference Engines

PNLBase

InferenceEngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQuery JPD()

InferenceEngine

StaticGraphicalModel

Class CInfEngine

Class cInfEngine is basic for all classes that implement inference in graphical
models. The class contains functions that belong to its child classes.

"Ttel@ 3-217

Probabilistic Network Library Reference Manual 3

pnlDetermineDistributionType
Returns type of distribution.

EDistributionType CInfEngine::pnlDetermineDistributionType(int numOfAlINds,
int numOfObsNds, int *pObsNdsIndices, const CNodeType **pAllNdsTypes);

Arguments

numOfA11Nds Number of all nodes.

NumOfObsNds Number of the observed nodes.

pObsNdsTIndices Pointer to the array of indices of the observed nodes.
pAlINdsTypes Pointer to the array of pointers to all node types.
Discussion

This function returns the following node distribution types:
— dtTabular, if all non-observed, or hidden, nodes are discrete;
— dtGaussian, if all hidden nodes are continuous;
— dtCondGaussian, if some of the nodes are discrete and some are continuous.

— dtScalar, if all nodes are observed.

pniDetermineDistributionType
Returns type of distribution.

EDistributionType CInfEngine::pnlDetermineDistributionType (const CModelDomain*
pMD, int nQueryNodes, const int* query, const CEvidence* pEv);

Arguments
pMD Model domain.

nQueryNodes Number of query nodes.

"Ttel@ 3-218

Probabilistic Network Library Reference Manual 3

query Query nodes.
PEV Evidence.
Discussion

This function returns the following node distribution types:
— dtTabular, if all non-observed, or hidden, nodes are discrete;
— dtGaussian, if all hidden nodes are continuous;
— dtCondGaussian, if some of the nodes are discrete and some are continuous.

— dtScalar, ifall nodes are observed.

EnterEvidence

Starts inference in graphical model.

void CInfEngine::EnterEvidence(CEvidence *evidence, int maximize = 0, int

sumOnMixtureNode = 1) = 0;

Arguments

evidence Pointer to a cEvidence object that contains the observed
nodes and their values.

maximize Optional parameter used in Pearl Inference for selection of
message transmission type.

sumOnMixtureNode Flag of summation on the mixture node.

Discussion

This function starts inference in the graphical model. Principal operations are
performed either on call of this function or on call of the function MarginalNodes,
depending on what inference type is implemented.

"Ttel@ 3-219

Probabilistic Network Library Reference Manual 3

MarginalNodes
Calculates joint probability distribution.

void CInfEngine::MarginalNodes (const int *query, int querySize, int

nodeExpandJPD = 1) = 0;
void CInfEngine::MarginalNodes (const intVector& query, int nodeExpandJPD =
1);
Arguments
query Array of numbers of the nodes addressed for the joint
probability distribution.
querySize Number of nodes addressed for joint probability
distribution.
nodeExpandJPD Flag of the expand operation.
Discussion
This function calculates joint probability distribution for nodes addressed. In process
of calculations Most Probability Explanation (MPE) is also created as a Model
Domain object for the calculated probability distribution. To receive MPE and the
factor, special functions should be used.
GetQueryJPD
Returns const pointer to joint probability
distribution.

const CFactor* CInfEngine::GetQueryJPD() const;

"Ttel@ 3-220

Probabilistic Network Library Reference Manual 3

Discussion

This function returns to joint probability distribution calculated by using the function
MarginalNodes. The returned pointer is const, as the memory is released when the
CInfEngine object is deleted or when MarginalNodes is called again.

GetMPE
Returns MPE.

const CEvidence* CInfEngine::GetMPE () const;

Discussion

This function returns to most probability explanation calculated by using the function
MarginalNodes. The returned pointer is const, as the memory is released when the
CInfEngine object is deleted or when MarginalNodes is called again.

GetModel

Returns pointer to graphical model processed by
inference engine.

inline CStaticGraphicalModel * CInfEngine::GetModel () const;

Discussion

This function returns the pointer to the graphical model which is processed by the
infrence engine. This function is necessary for operation of learning algorithms.

"Ttel@ 3-221

Probabilistic Network Library

Reference Manual 3

GetObsGauNodeType

Returns type of observed Gaussian node.

inline static const CNodeType* CInfEngine::GetObsGauNodeType () ;

GetObsTabNodeType
Returns type of observed Tabular node.

inline static const CNodeType* CInfEngine::GetObsTabNodeType () ;

"Ttel@ 3-222

Probabilistic Network Library

Reference Manual 3

Class CNaivelnfEngine

PNLBase

InferenceEngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQuery JPD()

JNaivelnfEngine
Create()

Create

Creates class object.

static CNaiveInfEngine* CNaiveInfEngine::Create(CStaticGraphicalModel*

pGrModel) ;

Arguments

pGrModel Pointer to a model, for which inference algorithm is to be
carried out. Note, that it can either be an MRF (MRF2) or a

BNet.

"Ttel@ 3-223

Probabilistic Network Library

Reference Manual 3

Class CPearlIinfEngine

PNLBase

InferenceEngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQuery JPD()

Pearlinf Engine
Create()

GetNumOf Iterations()
SetMaxNumOf Iterations()

Create

Creates class object.

static CPearlInfEngine* CPearlInfEngine::Create(CStaticGraphicalModel*

pGrModel) ;

Arguments

pGrModel Pointer to a model, for which inference algorithm is to be
carried out. Note, that it can either be an MRF2 or a BNet. The
input BNet cannot have directed cycles in it.

intel. 3204

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a Pearl Inference algorithm object from an input graphical model
and returns a pointer to it. Note, that the result of inference is exact, if the graph of the
input model (Class CBNet or Class CMRF2) does not have undirected loops in it. If

it does, then the result is approximate.

IsinputModelValid

Checks validity of model for use in Pearl
inference.

static bool CStaticGraphicalModel::IsInputModelValid(const
CCsaticGraphicalModel *spGrModel);

Arguments
pGrModel Pointer to the graphical model.

SetMaxNumberOflterations

Sets maximum number of iterations for parallel
protocol.

inline void CPearlInfEngine::SetMaxNumberOfIterations (int maxNumOfIters);

Arguments

maxNumOfIters Maximum number of iterations.

Discussion

This function sets a maximum number of iterations for the parallel protocol.

"Ttel@ 3-225

Probabilistic Network Library Reference Manual 3

GetNumberOfProvidelterations

Returns number of iterations performed.

inline int CPearlInfEngine::GetNumberOfProvidelterations () const;

SetTolerance

Sets tolerance for convergency check.

inline wvoid CPearlInfEngine::SetTolerance(float tolerance);

Arguments

tolerance Input parameter. Precision.

"Ttel@ 3-226

Probabilistic Network Library Reference Manual 3

Class CSpecPearlinference

PNLBase

InferenceEngine
EnterEvidence()
MarginalNodes()
GetMPE() / GetQueryJPD()

SpecPearlinfEngine
Create()

GetNumOflterations()
SetMaxNumOflterations()

This class is a realisation of Pearl Inference that does not allocate memory during the
inference procedure.

Create

Creates class object.

static CSpecPearlInfEngine* CSpecPearlInfEngine: :Create (CStaticGraphicalModel*
pGrModel) ;
Arguments

pGrModel Pointer to a model, for which inference algorithm is to be
carried out. Note, that it can either be an MRF2 or a BNet. The
input BNet cannot have directed cycles in it.

"Ttel@ 3-227

Probabilistic Network Library Reference Manual 3

Discussion

This function creates a Pearl Inference algorithm object from an input graphical model
and returns a pointer to it. Note, that the result of inference is exact, if the graph of the
input model (Class CBNet or Class CMRF2) does not have undirected loops in it. If

it does, then the result is approximate.

IsinputModelValid

Checks validity of model for use in Pearl
inference.

static bool CSpecPearlInfEngine::IsInputModelValid(const
CStaticGraphicalModel* pGrModel) ;

Arguments
pGrModel Pointer to the graphical model.

SetMaxNumberOflterations

Sets maximum number of iterations for parallel
protocol.

inline void CSpecPearlInfEngine::SetMaxNumberOflIterations (int maxNumOfIters)

Arguments

maxNumOfIters Maximum number of iterations.

Discussion

This function sets a maximum number of iterations for the parallel protocol.

"Ttel@ 3-228

Probabilistic Network Library

Reference Manual 3

GetNumberOfProvidelterations

Returns number of iterations performed.

inline int CSpecPearlInfEngine: :GetNumberOfProvideIlterations ()

const;

SetTolerance

Sets tolerance for convergency check.

inline wvoid CSpecPearlInfEngine::SetTolerance(float tolerance

Arguments

tolerance Input parameter. Precision.

);

"Ttel@ 3-229

Probabilistic Network Library

Reference Manual 3

Class CJtreelnfEngine

PNLBase

InferenceEngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQuery JPD()

JTreelnfEngine
Create()
SetJTreeRootNode()
CollectEvidence()
DistributeEvidence()

3-230

Probabilistic Network Library Reference Manual 3

StaticGraphicd Modd

Create

Creates class object.

static CJtreeInfEngine* CJtreelnfEngine::Create(const CStaticGraphicalModel*
pGrModel, int numOfSubGrToConnect, const int *SubGrToConnectSizes, int
**SubGrToConnect) ;

static CJtreeInfEngine* CJtreelInfEngine::Create(const CStaticGraphicalModel
*pGrModel, const intVecVector& SubGrToConnect = intVecVector ());

staticCJtreeInfEngine*CJtreeInfEngine: :Create (constCStaticGraphicalModel
*pGrModel, CJunctionTree *pJTree);

Arguments

pGrModel Pointer to a model, for which inference algorithm is to be
carried out. Note, that it can either be an MRF2 or a BNet. The
input BNet cannot have directed cycles in it.

"Ttel@ 3-231

Probabilistic Network Library Reference Manual 3

numOfSubGrToConnect Number of subgraphs, which the user wants to appear

connected.

SubGrToConnect Nodes to be connected.

SubGrToConnectSizes Sizes of the subgraphs, which the user wants to appear
connected.

pJTree Pointer to the Junction tree.

Copy

Creates replica of CdTreeInfEngine object.

static CJtreelInfEngine* CJtreelnfEngine::Copy(const CJtreeInfEngine
*pJdTreeInfEng);

Arguments
pJTreeInfEng Pointer to the Junction tree inference engine.

GetEvidence

Returns pointer to the evidence which was
provided.

inline const CEvidence* CJtreelInfEngine::GetEvidence () const;

GetJTreeRootNode

Returns number of root node.

inline int CJtreeInfEngine::GetJTreeRootNode () const;

| ntel e 3-232

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the number of the root node of the Junctin tree.

GetClgNumsContainingSubset

Returns numbers of Junction tree cliques with
common subset of nodes.

inline void CJtreeInfEngine::GetClgNumsContainingSubset (int numOfNdsInSubset,
const int *subset, int *numOfClgs, const int **clgsContSubset) const;

inline void CJtreeInfEngine: :GetClgNumsContainingSubset (const intVectoré&
subset, intVector* clgsContSubset) const;

Arguments

numOfNdsInSubset Size of the subset.

subset Subset of nodes.

numOfClgs Returned parameter. Number of cliques with the common
subset.

clgsContSubset Returned parameter. Array of numbers of cliques with the
common subset.

Discussion

This function returns numbers to the Junction tree cliques that have a common subset
of nodes.

| ntel e 3-233

Probabilistic Network Library Reference Manual 3

GetNodesConnectedByUser

Returns set of connected nodes.

inline void CJtreeInfEngine: :GetNodesConnectedByUser (int nodeSetNum, int
*numOfNds, const int **nds) const;

Arguments

nodeSetNum Number of the set of nodes.

numOfNds Return parameter. Size of the set of nodes.
nds Return parameter. Pointer to the set of nodes.
Discussion

This function returns the set of nodes which were connected when the Junction tree
was created.

SetJTreeRootNode

Sets root of Junction tree.

inline virtual void CJtreelInfEngine::SetJTreeRootNode(int nodeNum) const;

Arguments

nodeNum Node number.

Discussion

This function turns a given node of the Junction tree into its root node.

intel. 3234

Probabilistic Network Library Reference Manual 3

GetLogLik
Returns logarithm of likelihood.

virtual float CJtreelInfEngine::GetLogLik () const;

MultJTreeNodePotByDistribFun

Multiplies potential of Junctin tree node by
distribution function.

virtualvoidCJtreeInfEngine: :MultJTreeNodePotByDistribFun (int clgPotNum,
const int *domainIn, const CDistribFun *pDistrFunIn);

Arguments

clgPotNum Number of a clique of the potential.
domain Numbers of domain nodes.
pDistrFun Pointer to the distribution function.
Discussion

This function multiplies the potential of a Junction tree node by the distribution
function.

DivideJTreeNodePotByDistribFun

Multiplies potential of Junctin tree node by
distribution function.

virtual void CJtreelInfEngine::DivideJTreeNodePotByDistribFun(int
clgPotNum, const int *domainIn, const CDistribFun *pDistrFunIn);

| ntel e 3-235

Probabilistic Network Library Reference Manual 3

Arguments

clgPotNum Number of a clique of the potential.
domain Numbers of domain nodes.
pDistrFun Pointer to the distribution function.
Discussion

This function divides the potential of a Junction tree node by the distribution function.

CollectEvidence

Collects evidence.

virtual void CJtreelInfEngine::CollectEvidence () ;

DistributeEvidence

Distributes evidence.

virtual void CJtreeInfEngine::DistributeEvidence () ;

ShrinkObserved

Initializes Junction tree using given evidence.

virtual void CJtreeInfEngine::ShrinkObserved(const CEvidence *pEvidence, int

maximize = 0, int sumOnMixtureNode = 1, bool bRebuildJTree = true);
Arguments
pEvidence Pointer to evidence.

| ntel e 3-236

Probabilistic Network Library Reference Manual 3

maximize Flag of maximization.
sumOnMixtureNode Flag of summation on the mixture node.
bRebuildJTree Flag of the Junction tree rebuilding.
Discussion

This function initializes a Junction tree using given evidence.

GetQueryMPE

Returns most probable distribution.

const *CPotential CJtreeInfEngine::QueryMPE () const;

Class CExInfEngine

The class is a template derived from CInfEngine.

Create

Creates class object.

static CExInfEngine< INF ENGINE, MODEL, FLAV, FALLBACK ENGINEL,
FALLBACK ENGINE2 > *CExInfEngine::Create(CStaticGraphicalModel const
*model) ;

Template arguments

INF_ENGINE Type of underlying inference engine

MODEL Type of graphical model to work with

FLAV Flavor of limitations to work around

FALLBACK ENGINEI Fallback inference engine to use for submodels of size 1

| ntel e 3-237

Probabilistic Network Library Reference Manual 3

FALLBACK ENGINEZ Fallback inference engine to use for submodels of size 2
Arguments

model Graphical model.

Discussion

Creates an object of the class.
Default values are provided for all template arguments beyond INF_ENGINE.

FLAV is the flavor of limitations to work with. It can be any combination of flags
PNI,_EX INFENGINEFLAVOUR DISCONNECTED, PNL EXINFENGINEFLAVOUR UNSORTED.

Flag pPNI EXINFENGINEFLAVOUR DISCONNECTED means that you work with the
limitation of the underlying engine that does not support disconnected models. Flag
PNL EXINFENGINEFLAVOUR UNSORTED means that you work with the limitation of the
underlying engine that does not support topologically unsorted models. Frav has the
default value of PNL EXINFENGINEFLAVOUR DISCONNECTED |

PNL EXINFENGINEFLAVOUR UNSORTED. MODEL has the default value of cBNet.
FALLBACK ENGINEI has the default value of cNaiveInferenceEngine.
FALLBACK ENGINE2 has the default value of INF_ENGINE itself.

3-238

Probabilistic Network Library

Reference Manual 3

Class CFGSumMaxInfEngine

PNLBase

InferenceEngine
EnterEvidence()
MarginalNodes()
GetMPE() / GetQueryJPD()

FGSumMaxEngine
Create()

GetNumOflterations()
SetMaxNumOflterations()

The class implements belief propagation on a factor graph model.

Create

Creates object of class.

static CFGSumMaxInfEngine* CJtreelInfEngine::Create(const

CStaticGraphicalModel *pGrModel) ;

Arguments

PGrModel Pointer to a model, for which inference is to be carried out.

| ntel e 3-239

Probabilistic Network Library Reference Manual 3

Discussion

This function creates an object of the class. Inference is carried out for FactorGraph
models only.

SetMaxNumberOflterations

Sets maximum number of iterations for inference.

void CJtreeInfEngine::SetMaxNumberOfIterations(int number);

Arguments

number Maximum number of iterations.

Discussion

This function sets the maximum number of iterations for the inference procedure.

GetNumberOfProvidelterations

Returns number of iterations provided during
inference.

inline int CJtreeInfEngine: :GetNumberOfProvidelterations () const;

SetTolerance

Sets value of tolerance used for check-up
convergence.

void CJtreeInfEngine::SetTolerance(float tolerance);

intel. 3240

Probabilistic Network Library Reference Manual 3

Arguments

tolerance Tolerance value.

Discussion

This function sets the value of tolerance which is used in the process of convergence
checking.

Class CSamplingInfEngine

PNLBase

InferenceEngine
EnterEvidence()

MarginalNodes()
GetMPE() / GetQueryJPD()

SamplingInfEngine()

SetMaxTime()
SetBurnin()
SetNumStreams()
GetMaxTime()
GetNumStreams()

Class csamplingInfEngine is a superclass for classes CGibbsSamplingInfEngine
and cGibbsWithAnnealingInfEngine that implement inference in static graphical
models using stochastic simulates technique known as Markov chain Monte Carlo.
This technique generates samples from the required posterior distribution. Inference
constructs Markov chain with stationary distributiowOn/ v.

intel. 3201

Probabilistic Network Library Reference Manual 3

Let n” “be a model state at a certain time ¢ (by the state of a model we mean values of

its hidden variables). According to the following formula the changed value of a

variable at time t+1 is: Ox,/ {x,” " '""=a,, izK0= éPDXk,) 7P=a, iz

SetMaxTime

Sets maximum number of sampling iterations.

void CSamplingInfEngine::SetMaxTime(int time);

Arguments

time Maximum number of iterations.

Discussion

This function sets the maximum number of sampling iterations.

SetBurnin

Sets number of iterations before statistics
collection.

void CSamplingInfEngine::SetBurnln (int time);

Arguments

time Number of iterations.

Discussion

This function sets the number of iterations before the statistical data is collected.

intel. 3202

Probabilistic Network Library Reference Manual 3

SetNumStreams

Sets number of streams for sampling.

void CSamplingInfEngine::SetNumStreams (int nStreams);

Arguments

nStreams Number of streams.

Discussion

This function sets the number of independent streams for sampling.

GetMaxTime

Returns maximum number of sampling iterations.

int CSamplingInfEngine::GetMaxTime () ;

Discussion

This function returns the maximum number of sampling iterations.

GetBurnin

Returns number of iterations before statistics
collection.

int CSamplingInfEngine::GetBurnIn () ;

intel. 3243

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the number of iterations before the statistical data is collected.

GetNumStreams

int CSamplingInfEngine::GetNumStreams () ;

Discussion

This function returns the number of sampling streams.

Continue

Continues sampling.

void CSamplingInfEngine::Continue(int dT);

Arguments

dr Number of additional samples.

Discussion

This function continues sampling procedure and statistics update.

intel. 3204

Probabilistic Network Library

Reference Manual 3

Class CGibbsSamplingInfEngine

PNLBase

InferenceEngine
EnterEvidence()
MarginalNodes()
GetMPE() / GetQueryJPD()

SamplingInfEngine()
SetMaxTime()
SetBurnin()
SetNumStreams()
GetMaxTime()
GetNumStreams()

GibbsSamplingInfEngine()
Create()

SetQueries()

Create

Creates class object.

static CGibbsSamplingInfEngine* CGibbsSamplingInfEngine::Create(const

CStaticGraphicalModel *pGrlModel);

| ntel . 3-245

Probabilistic Network Library Reference Manual 3

Arguments

pGrModel Pointer to a model, for which inference algorithm is to be carried out.

Discussion

This function creates either a MRF (MRF2) object or a BNet object.

SetQueries

Sets possible queries.

void CGibbsSamplingInfEngine::SetQueryes(intVecVector &queries);

Arguments

Queries Vector of possible queries.

Discussion

This function sets possible queries. This function is compulsory before calling
EnterEvidence().

UseDSeparation

Conditions d-separation use in sampling for
BNet.

void CGibbsSamplingInfEngine: :UseDSeparation(bool isUsing);

Arguments

isUsing Flag of d-separation.

intel. 326

Probabilistic Network Library Reference Manual 3

Discussion

This function conditions use of the d-separatrion in sampling for BNet.

Class CGibbsWithAnnealingInfEngine

PNLBase

InferenceEngine
EnterEvidence()
MarginalNodes()
GetMPE() / GetQueryJPD()

SamplingInfEngine()
SetMaxTime()
SetBurnin()
SetNumStreams()
GetMaxTime()
GetNumStreams()

GibbsWithAnnealingInfEnaine()
Create()

CGibbsWithAnnealingInfEngine implements Gibbs Sampler with annealing
schedulerd st
c
7(s) = ——— (1
(5) 10g[|1+5‘[()’
wherer O sl is the temperature which depends on the sampling iteration and c is a
parameter.

intel. 3247

Probabilistic Network Library Reference Manual 3

This inference finds maximum probability explanation for nodes.

For more detailed information see [Stuart Geman and Donald Geman. Stochastic
Relaxation, Gibbs Distribution, and the Bayesian Restoration of Images].

Create

Returns class object.

static CGibbsWithAnnealingInfEngine* CGibbsWithAnnealingInfEngine::Create(
const CStaticGraphicalModel *pGrlModel);

Arguments

pGrModel Pointer to a model, for which inference algorithm is to be carried
out.

Discussion

This function creates a class object.

SetAnnealingCoefficientC

Changes default coefficient C of annealing
schedule.

void CGibbsWithAnnealingInfEngine::SetAnnealingCoefficientC(float val);

Arguments

val Value of the coefficient.

Discussion

This function sets a new value for the c coefficient of the annealing schedule.

intel. 328

Probabilistic Network Library Reference Manual 3

SetAnnealingCoefficientS

Changes default coefficient S of annealing
schedule.

void CGibbsWithAnnealingInfEngine::SetAnnealingCoefficientS(float val);

Arguments

val Value of the coefficient.

Discussion

This function sets a new value for the s coefficient of the annealing schedule.

GetCurrentTemp

Returns value of current temperature.

float CGibbsWithAnnealingInfEngine::GetCurrentTemp () const;

UseAdaptation

Uses adaptation during inference.

void CGibbsWithAnnealingInfEngine: :UseAdaptation(bool isUse);

Arguments

isUse Flag of use of the adaptation.

intel. 329

Probabilistic Network Library Reference Manual 3

Class CLWSamplingInfEngine

CNaivelnfEngine

CGibbsSamplingInfEngir

CltreelnfEngine CLWSamplinglnfEngine

Class crwsamplingInfEngine implements the particle-based inference engine for
static BNet models.

Create

Creates particle-based inference engine for BNet.

static CLWSamplingInfEngine* Create(const CStaticGraphicalModel
*pGraphicalModelIn, int particleCount= 400);

Arguments
pGrModelIn Static graphical model.
nParticleCount Number of particles.

| ntel e 3-250

Probabilistic Network Library Reference Manual 3

SetParemeter

Sets parameters of LTWsamplingInfEngine.

void SetParemeter(int nParticleCount = 400)
Arguments
nParticleCount Number of particles.
Discussion

This function allows you to change particle counts of the cLwSamplingInfEngine.

LWSampling

Generates particles using observed evidence.

void LWSampling (const CEvidence* pEvidenceIn = NULL)

Arguments

pEvidenceIn The observed evidence.

Discussion

Both Lwsampling and EnterEvidence generate particles. Unlike EnterEvidence,

LWSampling cannot generate particle weights. To input particle weights you call
EnterEvidenceProbability ().

"Ttel@ 3-251

Probabilistic Network Library Reference Manual 3

EnterEvidenceProbability

Inputs likelihood of observations.

void EnterEvidenceProbability(floatVector *pEvidenceProbIn)

Arguments

pEvidenceProbIn Vector of particle weights.

Discussion

This function calculates automatically particle weights under observance.With this
function you easily calculate the likelihood wof observations.

GetCurSamples

Returns states of all current particles.

pEvidencesVector* GetCurSamples();

Discussion

This function returns all node values of particles.

GetParticleWeights

Gets weights of all current particles.

floatVector* GetParticleWieghts ()

| ntel e 3-252

Probabilistic Network Library

Reference Manual 3

Estimate

Estimates real values of nodes.

void Estimate (CEvidence *pEstimate)

Arguments

pEstimate Given the estimated nodes as input.

Discussion

This function estimates real values (states) of nodes by all generated particles. It is
similar to GetMPE but more convenient as it does not call MarginalNodes.The
estimated values are stored in pEstimate as output.

GetNeff

Gets number of current effective particles.

float GetNeff ()

Arguments

float The current number of effective particles.

Discussion

This function acquires the number of current effeclive particles. If it is small enough,
you re-initialize particle weights and values. Set by default, Lwsamp1ing detects the
number of effective particles and re-initializes the particle weight if it is too small
automatically.

3-253

Probabilistic Network Library Reference Manual 3

Class CDynamicInfEngine

Class cDynamicInfEngine is a superclass for all classes that implement inference in
dynamic graphical models. Figure 3-4 shows the underlying structure of the hierarchy

intel. 3254

Probabilistic Network Library Reference Manual 3

of cDynamicInfEngine class.

Figure 3-4 Structure of CDynamicInfEngine Class

PNLBase

DynamicInfE ngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQueryJPD()
Filtering()
Smoothing()
FixLagSmoothing()

2TBNInfEngine
Forward()

ForwardFirst()
Backward()
BackwardT()
BackwardFixLag()

1_5SlicelnfEngine

1_5SlicedtreelnfEngine
Create()

BKInfEngine
Create()

CheckClustersValidity()

| ntel e 3-255

Probabilistic Network Library Reference Manual 3

Public Member Functions

DefineProcedure
Defines type of inference procedure.

void CDynamicInfEngine::DefineProcedure (EProcedureTypes procedure, int lag);

Arguments

procedure Type of the inference procedure that can be either
itFiltering, itSmoothing, itFixLagSmoothing Or
itViterbi.

lag Integer value, which corresponds to the value of lag for the
problem of fixed-lag smoothing. Note that it must be equal
to 0 for the filtering problem. For the problem of smoothing,
this argument is the number of time slices.

Discussion

This member function defines the type of inference procedure as filtering, smoothing,
fixed-lag smoothing or Viterby decoding.

EnterEvidence

Enters evidence to engine.

void CDynamicInfEngine::EnterEvidence(const CEvidence*const* evidences, 1int
numOfEvidences) ;

void CDynamicInfEngine: :EnterEvidence (const pConstEvidenceVectoré& evidences);

| ntel e 3-256

Probabilistic Network Library Reference Manual 3

Arguments

evidences Pointer to the array of pointers to the collection of evidences
for all the slices.

numOfEvidences Size of array, that is, the number of evidences or the number

of slices.

MarginalNodes

Marginalizes joint probability distribution to
query nodes.

void CDynamicInfEngine::MarginalNodes(const int* query, int querySize, int
timeSlice = 0, int notExpandJPD = 0) = 0;

void CDynamicInfEngine: :MarginalNodes (const intVectoré& query, int timeSlice =
0, int notExpandJPD = 0);

Arguments

query Array of nodes, which the user wants to appear in the query.

querySize Number of nodes in the query.

timeSlice Query slice number, which should be equal to 0 for the
filtering and fixed-lag smoothing problems, because they
are on-line procedures.

notExpandJPD Flag of expanding.

Discussion

The call of this member function marginalizes the joint probability distribution to the
set of nodes in slice given as the query input argument, at the time times1ice. For
filtering argument times1ice must be equal to the current time and for fixed-lag
smoothing it must be equal to time-lag.

| ntel e 3-257

Probabilistic Network Library Reference Manual 3

Let the model have N nodes per slice. Then nodes in the query with the number from 0
to N - 1 belong to the slice timesiice - 1 and nodes with the number from N to 2N - 1
belong to the slice times1ice. For the prior time-slice, for example, timesiice =0,
nodes in the query must have numbers from 0 to N - 1.

GetQueryJPD

Returns joint probability distribution of query
nodes.

virtual const CPotential* CDynamicInfEngine::GetQueryJPD() = 0;

GetMPE

Returns most probable explanation of query
nodes.

virtual const CEvidence* CDynamicInfEngine::GetMPE () = 0;

Filtering

Performs filtering procedure.

void CDynamicInfEngine::Filtering(int timeSlice);

Arguments

timeSlice Current time-slice number.

Discussion

This function performs filtering procedure.

| ntel e 3-258

Probabilistic Network Library Reference Manual 3

Smoothing

Performs smoothing procedure.

void CDynamicInfEngine: :Smoothing();

Discussion

This function performs smoothing procedure.

FixLagSmoothing

Performs fixed-lag smoothing procedure.

void CDynamicInfEngine::FixLagSmoothing(int timeSlice);

Arguments

timeSlice Current time-slice number.

Discussion

This function performs fixed-lag smoothing with a lag defined in DefineProcedure.

FindMPE

Finds most probable explanation.

virtual const CEvidence* CDynamicInfEngine::GetMPE() = 0;

Discussion

This function performs the procedure of Viterbi decoding.

| ntel e 3-259

Probabilistic Network Library Reference Manual 3

GetDynamicModel

Returns given dynamic model.

const CDynamicGraphicalModel* CDynamicInfEngine::GetDynamicModel () const;

GetProcedureType

Returns type of inference procedure.

EProcedureTypes CDynamicInfEngine::GetProcedureType () const;

Discussion

This function returns one of the following inference procedures: ptFiltering,
ptSmoothing, ptFixLagSmoothing, ptViterbi.

"Ttel@ 3-260

Probabilistic Network Library Reference Manual 3

Class C2TBNInfEngine

PNLBase

DynamiclnfEngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQueryJPD()
Filtering()
Smoothing()
FixLagSmoothing()

2TBNInfEngine
Forward()

ForwardFirst()
Backward()
BackwardT ()
BackwardFixLag()

Class c2TBNInfEngine is a superclass for all dynamic inference engine classes, which
use forward-backward operations between slices. With such structure of classes an
inference procedure (filtering, smoothing, and so on) can be implemented with the
help of combination of virtual member functions ForwardFirst, Forward,
BackwardT, Backward, which are implemented in derived classes.

"Ttel@ 3-261

Probabilistic Network Library Reference Manual 3

Public Member Functions

ForwardFirst

Performs forward operation for prior slice.

void C2TBNInfEngine::ForwardFirst (CEvidence* evidence);

Arguments
evidence Pointer to evidence for the prior slice.

Forward

Performs forward operation.

void C2TBNInfEngine::Forward(CEvidence* evidence);

Arguments

evidence Pointer to evidence for any but the prior slice.
BackwardT
Performs first backward operation after last
forward operation.

void C2TBNInfEngine: :BackwardT () ;

"Ttel@ 3-262

Probabilistic Network Library Reference Manual 3

Backward

Performs backward operation.

void C2TBNInfEngine::Backward() ;

BackwardFixLag

Performs sequence of backward operations.

volid C2TBNInfEngine::BackwardFixLag () ;

Discussion

This member function performs a sequence of backward operations for the fixed-lag
smoothing problem, restoring data for the intermediate steps. The number of
operations is equal to the value of the lag.

"Ttel@ 3-263

Probabilistic Network Library

Reference Manual 3

Class C1_5SlicelnfEngine

PNLBase

DynamicInfEngine
EnterEvidence()
MarginalNodes()

GetMPE()/GetQueryJPD()

Filtering()
Smoothing()
FixLagSmoothing()

2TBNInfEngine
Forward()
ForwardFirst()
Backward()
BackwardT ()
BackwardFixLag()

1_5SlicelnfEngine

This class is basic for all inference procedures that carry out forward-backward

operations between 1.5 slices.

Probabilistic Network Library

Reference Manual 3

Class C1_5SliceJTreelnfEngine

PNLBase

DynamicInfEngine
EnterEvidence()
MarginalNodes()

GetMPE()/GetQueryJPD()

Filtering()
Smoothing()
FixLagSmoothing()

2TBNInfEngine
Forward()
ForwardFirst()
Backward()
BackwardT()
BackwardFixLag()

1_5SlicelnfEngine

1_5SliceJtreelnfEngine
Create()

"Ttel@ 3-265

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

Cl 5SliceJdtreelInfEngine * Cl 5SliceJtreeInfEngine::Create(const
CDynamicGraphicalModel *pGrModel) ;

Arguments

pGrModel Pointer to the dynamic graphical model for which inference

engine is created.

"Ttel@ 3-266

Probabilistic Network Library

Reference Manual 3

Class CBKInfEngine

DynamicInfEngine
EnterEvidence()

MarginalNodes()
GetMPE()/GetQueryJPD()
Filtering()
Smoothing()
FixLagSmoothing()

2TBNInfEngine
Forward()
ForwardFirst()
Backward()
BackwardT()
BackwardFixLag()

1_5SlicelnfEngine

Create()
CheckClustersValidity()

3-267

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

static CBKInfEngine* CBKInfEngine::Create(const CDynamicGraphicalModel
*pGrModel, bool isFF = true);

static CBKInfEngine* CBKInfEngine::Create(const CDynamicGraphicalModel
*pGrModel, intVecVectoré& clusters);

Arguments

pGrModel Pointer to the Dynamic graphical model for which inference engine
is created.

isFF Flag of factorization. The ‘true’ value means that the inference is
fully factorized, that is, each node belongs to a separate cluster. The
‘false’ value means that the inference is exact, so that nodes lie in
one clique.

clusters Array of nodes belonging to one cluster.

CheckClustersValidity
Checks validity of clusters.

static bool CBKInfEngine::CheckClustersValidity(intVecVector& clusters,
intVector& interfNds);

Arguments

clusters Vector of vectors of inference nodes. An inference node belongs only
to one cluster.

interfNds Vector of inference nodes.

"Ttel@ 3-268

Probabilistic Network Library Reference Manual 3

Discussion

This function checks if a cluster is valid. A vector of the BK inference can be
composed of vectors which contain numbers of interface model nodes. If the nodes fall
into one and the same class they are sure to lie in one clique of the Junction tree. If the
nodes belong to different clusters the inference is fully factorized, if they belong to the
same cluster the inference is exact.

Class C2TPFInfEngine

Class c2TPFIngEngine implements the particle-based inference engine for dynamical
BNet models.

Create
Creates particle-based inference for DBN model.

static C2TPFInfEngine * Create (const CDynamicGraphicalModel *pGrModelIn, int
nParticleCount = 400);

Arguments

pGrModelIn Dynamic graphical model of DBN.

nParticleCount Number of particles.
SetParemeter

Sets parameters of 2TPFInfEngine.

void SetParemeter(int nParticleCount = 400, int nLowThreshold = 30);

Arguments

nParticleCount Number of particles.

"Ttel@ 3-269

Probabilistic Network Library Reference Manual 3

nLowThreshold Minimum number of effective particles.

Discussion

This function allows you to change parameters of 2TPFInfEngine.

InitSliceOParticles

Initializes particles of first slice.

void InitSliceOParticles (CEvidence* pSliceOEvidence = NULL) ;

Arguments

pSlice0Evidence Observed evidence.

EnterEvidence

Enters observed evidence.

void EnterEvidence(const CEvidence *pEvidencelIn);

Arguments

pEvidenceln Observed evidence of the current slice.

Discussion

This function provides observed evidence of the current slice for 2TPFInfEngine ,
which updates the particle states and weights by LwSampling.

"Ttel@ 3-270

Probabilistic Network Library Reference Manual 3

LWSampling

Updates particle states using obesrved evidence.

void LWSampling(const CEvidence* pEvidenceIn = NULL) ;

Arguments

pEvidenceln Observed evidence of the current slice.

Discussion

This function updates particles in the current slice. Unlike EnterEvidence it cannot
update particle weights by itself. To input particle weights you call
EnterEvidenceProbability.

EnterEvidenceProbability

Inputs likelihood Wof observations in slice.

void EnterEvidenceProbability(floatVector *pEvidenceProbIn);

Arguments

pEvidenceProbIn The vector of particle weights

Discussion

This function calculates particle weights under observance automatically. This
interface allows you to calculate likelihood wof observations easily.

3-271

Probabilistic Network Library Reference Manual 3

GetCurSamples

Returns states of all current particles.

pEvidencesVector* GetCurSamples();

Arguments

pEvidencesVector® The returned pointer of particle states.

Discussion

This function returns node values of all particles and allows you to calculate the
likelihood wof observations.

GetParticleWeights

Gets weights of all current particles.

floatVector* GetParticleWieghts();

Arguments

floatVector® The returned pointer of particle weights.
Estimate

Estimates real values of nodes in current slice.

void Estimate (CEvidence *pEstimate);

Arguments

pEstimate Estimated nodes provided for input.

"Ttel@ 3-272

Probabilistic Network Library Reference Manual 3

Discussion

This function estimates real values (states) of nodes by all generated particles. It is
similar to GetMPE () but more convenient because ot does not call MarginalNodes ().

GetNeff

Gets number of current effective particles.

float GetNeff ();
Arguments
float The current number of effective particles.
Discussion

This function returns the number of current effective particles. If the number is too
small, you should re-initialize the particle states and the particle weights. Set by
default, Lwsampling () detects the number of effective particles and re-initializes the
particle weight, if it is too small, automatically.

"Ttel@ 3-273

Probabilistic Network Library

Reference Manual 3

Learning Engines

Figu

re 3-5 Structure of learning engines

PNLBase

LearningEngine
GetCriterionValue()
ClearStatisticData()

Staticl earningEngine DynamicLearningEngine
SetData()
AppendData()

SetTerminationTolerance()

EMLearningEngineDBN

ingEngi Create()
EML(?:Z;LF)” e Bayesl earningEngine SetMaxiterEM()
Creat o
SetMaxlterEM() reate() SetTerminationToleranceEM()

SetTerminationToleranceEM()

Class CLearningEngine

tel® 3-274

Probabilistic Network Library Reference Manual 3

Learn

Performs learning.

virtual void CLearningEngine: :Learn ()=0;

Discussion

This function trains a graphical model by using the set data. In parameter learning the
function upgrades factors using given evidences. In structure learning the function
creates a new graphical model.

GetCriterionValue

Returns array of criterion values used in learning.

virtual float CLearningEngine::GetCriterionValue(int *numOfValues, const
float **value) const;

virtual float CStaticLearningEngine::GetScore(floatVector* value) const;

Arguments

numOfvValues Returned parameter. Number of criterion values.
value Returned parameter. Array of criterion values.
Discussion

This function returns numeric values of a criterion that is to be maximized during
model learning.

"Ttel@ 3-275

Probabilistic Network Library Reference Manual 3

ClearStatisticData

Clears statistical data.

inline void CLearningEngine::ClearStatisticData();

Class CStaticLearningEngine

SetData

Sets statistical data for learning.

virtual void CStaticLearningEngine::SetData(int size, const CEvidence* const*
evidences);

virtual void CStaticLearningEngine::SetData(const pConstEvidenceVectors&

evidences);
Arguments
size Number of evidences.
evidences Array of pointers to CEvidence objects.
Discussion

This function sets statistical data for learning. When the function is called all the prior
statistical data is deleted.

"Ttel@ 3-276

Probabilistic Network Library Reference Manual 3

AppendData

Appends evidence information.

virtual void CStaticLearningEngine: :AppendData(int size, const CEvidence*
const* evidences);

virtual void CStaticLearningEngine::AppendData(const pConstEvidenceVectoré
evidences);
Arguments
size Array size, equal to the number of rows in the new table of
data.
evidences Array of pointers to CEvidence objects.
Discussion

This function appends a set of evidences to the previously obtained data.

SetMaxlterIPF

Sets maximum iteration depth for Iterative
Proportional Fitting.

void CStaticLearningEngine::SetMaxIterIPF(int maxIter = 10);

Arguments

maxIter Maximal number of iterations in Iterative Proportional
Fitting.

Discussion

This function is used in Markov networks training and sets the maximal iteration depth
allowed for IPF.

"Ttel@ 3-277

Probabilistic Network Library Reference Manual 3

SetTerminationTolerancelPF
Sets exit condition for IPF.

void CStaticLearningEngine::SetTerminationTolerancelIPF(float precision =
0.001f);

Arguments

precision Precision.

Discussion

This function sets the exit condition for IPF. IPF is over if the difference between
clique parameters at the current step and at the previous step does not exceed a given
value (precision).

GetStaticModel

Returns graphical model.

virtual inline CStaticGraphicalModel* CLearningEngine::GetStatisModal () const;

Class CEMLearningEngine

Class cEMLearningEngine is used in the learning of Bayesian networks with discrete
or multivariate Gaussian nodes and in the learning of Markov networks with discrete
nodes. The learning is based on Expectation Maximization (EM) algorithm.

"Ttel@ 3-278

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

CEMLearningEngine* CEMLearningEngine::Create (CStaticGraphicalModel* pGrModel) ;

Arguments

pGrModel Pointer to a graphical model for which the learning engine is
created.

SetMaxlterEM

Sets maximum iteration depth for Expectation
Maximization.

void CEMLearningEngine::SetMaxIterEM(int numOfIter = 30);

Arguments

numOfIter Maximal iteration depth.

Discussion

This function sets the maximal number of iterations allowed in the learning process.

SetTerminationToleranceEM

Sets termination tolerance.

void CEMLearningEngine::SetTerminationToleranceEM(float precision = 0.001f);

"Ttel@ 3-279

Probabilistic Network Library Reference Manual 3

Arguments

precision Precision.

Discussion

This function sets the exit condition for EM. EM is over, if the difference between
logarithm of likelihood value at the current step and at the previous step does not
exceed a given value.

Class CBayesLearningEngine

Class cBayesLearningEngine is used to learn BNets, where parameters of a CPD are
not fixed and have their own probability distributions (see User Guide). The current
version of PNL supports parameters distributions only for a cTabular cpD. Both prior
and posterior parameters distributions of a tabular CPD are Dirichlet. Dirichlet table
distribution is stored in Tabular CPD in the form of a matrix of the same size as CPT.
Initial values are specified either by Al1ocMatrix or by AttachMatrix functions of
the corresponding factor. Dirichlet priors have the form (meaning) of pseudo counts
which stand for an imaginary observed number of cases and assume any non-negative
values.

Learning updates prior parameters. Updated prior parameters may be used as priors in
future learning. In the current version of PNL Bayesian parameter learning is
supported only if the input data is complete, that is, if all the BNet nodes of training
samples are observed.

Create

Creates class object.

CRBayesLearningEngine* CBayesLearningEngine::Create(CStaticGraphicalModel*
pGrModel) ;

tel.

3-280

Probabilistic Network Library Reference Manual 3

Arguments

pGrModel Pointer to the graphical model for which the learning engine is
created.

Discussion

This function creates a class object. It applies only to BNet graphical models.

Class CBICLearningEngine

Class cBICLearningEngine is used in the learning of a Bayesian network with
discrete nodes in the case when model structure is unknown and all variables are
observed. The learning is based on Bayesian Information Criterion (BIC). The result of
learning is a new Bayesian network.

Create

Creates class object.

CBICLearningEngine* CBICLearningEngine::Create(CStaticGraphicalModel*
pGrModel) ;

Arguments

pGrModel Pointer to a graphical model for which learning procedure is
to be carried out.

Discussion

This function creates an object of CBICLearningEngine class.

"Ttel@ 3-281

Probabilistic Network Library Reference Manual 3

GetGraphicalModel

Returns created graphical model.

const CStaticGraphicalModel * CBICLearningEngine::GetGraphicalModel () const;

Discussion

This function returns a topologically sorted graphical model which was created as a
result of structure learning.

GetOrder

Returns array of values corresponding to node
numbers.

void CBICLearningEngine::GetOrder (intVector* reordering) const;

Arguments

reordering Output parameter. Array of values corresponding to node numbers.

Discussion

This function returns the array of integer values. The array values correspond to node
numbers in the source graphical model, which is passed as an argument when
CBicLearningEngine is created, and the output model after the learning.

| ntel e 3-282

Probabilistic Network Library Reference Manual 3

Class CMIStaticStructLearn

......

.................

MiStaticStructLearn
- Learn()=0 y
4 GetResultBNet()
GetResultDAG()
o~ ScoreFamily() \
ScoreDAG()

Class cMIStaticStructLearn 1s a virtual class. It defines the interface for all kinds of
structure learning of a static BNet with complete data.

CreateResultBNet

Generates BNet with structure and parameters.

void CMlStaticStructLearn::CreateResultBNet (CDAG* pDAG) ;

Arguments

pPDAG Pointer to the learned pac.

| ntel e 3-283

Probabilistic Network Library

Reference Manual 3

Discussion

This function generates the result of learning, that is, a BNet object with its parameters
and structure. The learned DAG sorts the given DAG topologically and creates a BNet for.
The function computes all CPDs for the newly created Bnet. The new object is stored

in m_pResultBNet.

GetResultBNet
Gets handle of learned BN.

const CBNet* CMlStaticStructlLearn::GetResultBNet () const;

CreateResultDAG

Gets handle of learned paG

const CDAG* CMlStaticStructLearn::GetResultDAG() const;

CreateResultRenaming

Gets handle of node ID mapping of result BN and
result DAG.

const int* CMlStaticStructLearn::GetResultRenaming()const;

intel. 3284

Probabilistic Network Library Reference Manual 3

Discussion

This function carries out topological sorting of the given pDaG on the basis of the
learned pac data and creates a BNet for the sorted pac. The function computes all CPDs
for the created BNet. Node IDs of the sorted pac and the resultant BNet are different.
The renaming provides mapping between them.

ScoreDAG
Computes score of DAG.

float CMlStaticStructLearn::ScoreDAG (CDAG* pDAG, floatVector* familyScore);

Arguments
PDAG Pointer to a bAG whose score is to be computed.

familyScore Pointer to a float vector, that stores the score of a family.

Discussion

This function returns the whole score for the pac. Score metric is defined in
m_ScoreType.

ScoreFamily
Computes family score in DAG.

float CMlStaticStructlearn::ScoreFamily (intVector vFamily);

Arguments

vFamily Integer vector. Stores a family in a DaG. The last element of the vector
is the child node, all other nodes of the vector are parents of this
child node.

| ntel e 3-285

Probabilistic Network Library Reference Manual 3

Discussion

This function returns the score of a family. Score metric is defined inm ScoreType.

SetlnitGraphicalModel

Sets initial graphical model from which learning
procedure starts.

void CMlStaticStructLearn::SetInitGraphicalModel (CGraphicalModel* pGrModel) ;

Arguments

pGrModel Pointer to a cGraphicalModel.

Discussion

This function sets the initial graphical model for learning. The initial graphical model
set as the input pGrMode by default is m pGrModel.

| ntel e 3-286

Probabilistic Network Library Reference Manual 3

Class CMIStaticStructLearnHC

....................

MiStaticStructLearnHC
Learn()
LearninOneStart()
SetSingleMOve()
SetMinProgress()

This class carries out the hill-climbing structure learning for a static BNet, under the
condition that the input data is complete.

Create

Creates class object.

CMlStaticStructLearnHC* CMlStaticStructLearnHC::Create (CStaticGraphicalModel*
pGrModel, ELearningTypes LearnType, EOptimizeTypes AlgorithmType,
EScoreFunTypes ScoreType, int nMaxFanIn, intVector& vAncestor, intVectors
vDescent, int nRestarts);

| ntel e 3-287

Probabilistic Network Library

Reference Manual 3

Arguments

pGrModel

LearnType

AlgorithmType

ScoreType
nMaxFanIn

vAncestor
vDescent

nRestarts

Pointer to a cStaticGraphicalModel instance from which the
hill-climbing procedure is to start.

Type of learning.

Type of algorithm. In the current version of PNL the hill-climbing
structure learning is performed only by structLearnHc.

Score type.
Maximum number of parents of a child node.

Ancestor vector. The vector is empty when learning is carried out for
a static BNet.

Descent vector. The vector is empty when learning is carried out for
a static BNet.

Flag of hill-climbing search procedure restart with random initial
structures. If it equals to 1 the procedure does not restart.

SetMinProgress

Sets control condition for search procedure.

void CMlStaticStructLearnHC::SetMinProgress (float minProgress) ;

Arguments

minProgress

Discussion

Small float value.

This function sets the control condition for the search procedure. If the improved rate
of the best score in the current iteration is less than minProgress the search is stopped.
The default value of minProgress is 0.0001.

3-288

Probabilistic Network Library Reference Manual 3

SetSingleMove

Sets control condition for search procedure.

void CMlStaticStructLearnHC: :SetSingleMove (bool SingleMove) ;

Arguments

SingleMove Boolean value.

Discussion

This function sets control conditions for the search procedure. The ‘true’ value for
SingleMove in every iteration of the hill-climbing search means that the change of one
edge of the structure is permitted. The ‘false’ value of the same parameter means that
numerous changes to the current structure are permitted. If singiemove is set to ‘true’
only one edge of the structure is changed, if it is set to ‘false’ multiply changes to the
structure are permitted. The default value is ‘true’.

Class CDynamicLearningEngine

Class cDynamicLearningEngine is a superclass for all classes that implement learning
for dynamic graphical models. The class contains functions that belong to its child
classes.

Public Member Functions

SetData

Sets statistical data for learning.

virtual void CDynamicLearningEngine::SetData(int numOfTimeSeries, int
numOfSlices, const CEvidence const* evidences);

| ntel e 3-289

Probabilistic Network Library Reference Manual 3

virtual void CDynamicLearningEngine::SetData(const pEvidencesVecVectors

evidences);

Arguments

numOfTimeSeries Input argument. Array size, which is equal to the number of
rows in the table of data.

numOfSlices Input argument. Pointer to the array of numbers of slices for
each time series.

evidences Input argument. Sets of evidences for DBN slices.

Discussion

This function sets statistical data for learning. Data is represented as an array in which
the number of rows is equal to the number of series and the number of elements in a
row is equal to the number of time slices for each series.

GetDynamicModel

Returns pointer to model of learning engine.

virtual inline CDynamicGraphicalModel* GetDynamicModel () const;

Class CEMLearningEngineDBN

Class CEMLearningEngineDBN is used in the learning of Dynamic Bayesian Networks.
The learning is based on Expectation Maximization (EM) algorithm.

Create

Creates class object.

static CEMLearningEngineDBN: :Create(CDBN* pDBN) ;

| ntel e 3-290

Probabilistic Network Library Reference Manual 3

Arguments

PDBN Graphical model to be trained.

SetTerminationToleranceEM

Sets termination tolerance.

void CEMLearningEngineDBN::SetTerminationToleranceEM(float precision =

0.001f);

Arguments

precision Float value of precision, with which the difference between
logarithms of likelihoods for two neighboring steps is
compared to determine the breakpoint of the learning
procedure.

Discussion

This function sets the exit condition for EM. EM procedure stops, if the difference
between the logarithm of likelihood value at the current step and at the previous step
does not exceed the input value of precision.

SetMaxlterEM

Sets maximum iteration depth for EM.

void CEMLearningEngineDBN: :SetMaxIterEM(int nIter = 30);

Arguments

nIter Maximal iteration depth.

"Ttel@ 3-201

Probabilistic Network Library Reference Manual 3

Discussion

This function sets the maximal number of iterations allowed in the learning process.

Class CMIDynamicStructLearn

.........................

}
{ DynamicLearningE nqinég
~ L MIDynamicStructLearn

MIDynamicStructLearn
Learn()
SetLearnPriorSlice()
SetMinProgress()
GetResultDAG()

This class allows to learn the structure of DBN under the condition that the input data
is complete. In the current version only the hill-climbing search algorithm is available.
In the process of learning the algorithm creates one or two M1StaticStructLearn
objects.

| ntel e 3-292

Probabilistic Network Library Reference Manual 3

Create

Creates class object.

CM1DynamicStructLearn* CMlDynamicStructLearn::Create (CDBN*
pGrModel,ELearningTypes LearnType, EOptimizeTypes AlgorithmType,
EScoreFunTypes ScoreType, int nMaxFanIn, int nRestarts, int nMaxIters);

Arguments

pGrModel Pointer to a cDynamicGraphicalModel instance from which the
hill-climbing procedure is to start.

LearnType Type of learning which is defined in ppnlLearningEngine.hpp.

AlgorithmType Algorithm type. In the current version the hill-climbing structure
learning is performed by structLearnHC.

ScoreType Score type.

nMaxFanIn Maximum number of parents of a child node. Includes inter and intra
slice-connections.

nRestarts Flag of the hill-climbing search procedure restart with different
random initial structures. If it equals to 1 the search procedure does
not restart.

nMaxIters Maximum number of iterations for the hill-climbing search
procedure.

SetMinProgress

Sets control condition for search procedure.

void CMlDynamicStructLearn::SetMinProgress (float minProgress) ;

Arguments

minProgress Small float value.

| ntel e 3-293

Probabilistic Network Library Reference Manual 3

Discussion

This function sets the control condition for the search procedure. If the improved rate
of the best score in the current iteration is less than minProgress, the search is
stopped. The default value of minProgress is 0.0001.

CreateResultDAG

Gets handle of trained paG

const CDAG* CMlDynamicStructLearn::GetResultDAG() const;

SetLearnPriorSlice

Sets different structure for prior slice to be
trained.

void CMlDynamicStructLearn: :SetLearnPriorSlice (bool learnPriorSlice);

Arguments
learnPriorSlice Flag of prior slice structure.

Discussion

This function sets a structure for a trained prior slice which is different from structures
of other slices. The ‘true’ value means that the structure of the slice is different. The
default value is ‘false’.

Random Number Generation

Random number generation (RNG) is widely used in pnr. In the current version of
PNL it has the following structure.

intel. 3204

Probabilistic Network Library Reference Manual 3

The principle element of RNG is the basic generator of uniform distributions (BG).
This generator is a static variable, accessed from any part of the library. To generate
samples of distributions which are not uniform, corresponding functions also use BG.

The current implementation of RNG is not thread safe because it uses a static variable
and does not feature access control. It is designed for internal use. You can reach it
through the corresponding API formed of a number of global functions. The current
version of PNL generates distributed numbers uniformely and normally.

Linking PNL to Intel Math Kernel Library.

To increase the speed of RNG you may use Intel MKL. The quality of RNG will be
different because PNL and MKL use for RNG different maths.

To use MKL in PNL you should:

* define USE_VSL key in the compiler settings;
* link PNL to MKL (see MKL notes);

* rebuild PNL.

pnilSeed

Reinitializes random number generator.

void pnlSeed(int s);

Arguments

s Integer that reinitializes the internal state of the basic random
number generator.

Discussion

This function reinitializes the random number generator. As RNG is initialised
automatically on loading the library this function is called only if there are special need
for it, such as, for example, the necessity to perform non-repeatable experiments in
different calls of application.

3-295

Probabilistic Network Library Reference Manual 3

Uniform distributions

pnlRand

Generates random numbers uniformly distributed
over specified numerical interval.

int pnlRand(int left, int right);

void pnlRand(int numElem, int* vec, int left, int right);

float pnlRand(float Ieft, float right);

void pnlRand (int numElem, float* vec, float left, float right);
double pnlRand(double left, double right);

void pnlRand(int numElem, double* vec, double left, double right);

Arguments

left Left boundary of the interval.

right Right boundary of the interval.

numElem Number of random numbers to be generated.

vec Pointer to the array of random numbers to be generated. The array
should be allocated externally and should contain not less than
numElem elements.

Discussion

This function generates random numbers distributed uniformly over a specified
numerical interval. pn1Rand is a set of overloaded functions for generating uniformly
distributed random numbers, both integer and floating point. In case of integer
generation the function generates numbers on the interval [1eft,right] with
boundaries of the interval included. In case of floating point generation the function
generates numbers on the interval (left,right) with boundaries of the interval
excluded.

| ntel e 3-296

Probabilistic Network Library Reference Manual 3

There are two types of interfaces of the function: vector and scalar. In case of the
scalar interface the function generates and returns only one random number. In case of
the vector interface the function fills input array with specified number of random
numbers.

Normal distributions

pnlRandNormal

Generates normally distributed random numbers.

float pnlRandNormal (float mean, float sigma);
double pnlRandNormal (double mean, double sigma);
void pnlRandNormal (int numElem, float* vec, float mean, float sigma);

void pnlRandNormal (int numElem, double* vec, double mean, double sigma);

Arguments

mean Mean of the normal distribution.

sigma Standard deviation of the normal distribution.

numElem Number of random numbers to be generated.

vec Pointer to the array of random numbers to be generated. The array
should be allocated externally and is to contain no less than numeIem
elements.

Discussion

This function generates random numbers normally distributed over the interval.
pnlRandNormal is a set of overloaded functions for generating normally distributed
random floating point numbers either with single or with double precision. A normal
distribution is calculated according to the following formula:

. 1 Ox+pd
Ox0= exp U
J21d P 25

| ntel e 3-297

Probabilistic Network Library Reference Manual 3

There are two types of interfaces of the function — vector and scalar. In case of the
scalar interface the function generates and returns only one random number. In case of
the vector interface the function fills input array with specified number of random
numbers.

pnlIRandNormal

Generates normally distributed multidimensional
vector.

void pnlRandNormal (floatVector* vls, floatVector &mean, floatVector &sigma);

Arguments

mean Mean of the multivariate normal distribution.
sigma Covariance matrix of the normal distribution.
vls Pointer to the output vector.

Discussion

This function generates a vector from a multivariate normal distribution.
Basic Data Structures

Class Value

This class stores inhomogeneous scalar data.

| ntel e 3-298

Probabilistic Network Library Reference Manual 3

Setint

Sets integer value to object.

void SetInt (int ivl);

Arguments

ivl Integer value to be set to the value object.

Getlint

Gets integer value from object.

int GetInt () const;

SetFIlt

Sets float value to object.

void SetFlt (float fvi);

Arguments

fvl Float value to be set to the value object.

| ntel e 3-299

Probabilistic Network Library Reference Manual 3

GetFlt

Gets float value from object.

int GetFlt () const;

Class pnlVector

template<class Type, class Allocator = GeneralAllocator<Type> >
class pnlVector: public std::vector<Type, Allocator>
This class is a template intended to store the vector data for PNL. Its implementation is

based on vector object from STL. For the sake of brevity a number of pnivector
specializations was renamed in PNL.

Class valueVector

typedef pnlVector<Value> valueVector;
Class pValueVector
typedef pnlVector<Value*> pValueVector;

Class valueVecVector

typedef pnlVector<valueVector> valueVecVector;
Class pConstValueVector

typedef pnlVector<const Value*> pConstValueVector;
Class intVector

typedef pnlVector<int> intVector;

Class intPVector

typedef pnlVector<int *> intPVector;
Class pConstIntVector
typedef pnlVector<const int*> pConstIntVector;

Class intVec Vector

typedef pnlVector< intVector> intVecVector;

| ntel e 3-300

Probabilistic Network Library

Reference Manual 3

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

typedef

Class intVecPVector

pnlVector< intVector* >
Class floatVector
pnlVector<float>

Class doubleVector
pnlVector<double>

Class floatVecVector
pnlVector< floatVector>
Class boolVector
pnlVector<bool>

Class nodeTypeVector
pnlVector< CNodeType>
Class pNodeTypeVector
pnlVector< CNodeType*>
Class pConstNodeTypeVector
pnlVector< const CNodeType*>
Class pEvidencesVector
pnlVector< CEvidence*>
Class pConstEvidenceVector

pnlVector< const CEvidence*>

Class pConstEvidencesVecVector

pnlVector<pConstEvidenceVector>

Class pEvidencesVecVector
pnlVector< pEvidencesVector>
Class pFactorVector

pnlVector<CFactor*>

Class pConstFactorVector

pnlVector<const CFactor*>

intVecPVector;

floatVector;

doubleVector;

floatVecVector;

boolVector;

nodeTypeVector;

pNodeTypeVector;

pConstNodeTypeVector;

pEvidencesVector;

pConstEvidenceVector;

pConstEvidencesVecVector;

pEvidencesVecVector;

pFactorVector;

pConstFactorVector;

intel.

3-301

Probabilistic Network Library Reference Manual 3

Class potsPVector

typedef pnlVector< CPotential*> potsPVector;
Class potsPVecVector

typedef pnlVector< potsPVector> potsPVecVector;
Class pConstCPDVector

typedef pnlVector<const CCPD *> pConstCPDVector;
Class pGaussianCPDVector

typedef pnlVector<CGaussianCPD *> pGaussianCPDVector;

| ntel e 3-302

Probabilistic Network Library Reference Manual 3

Error Handling

Class CException

Class cException and its child classes are used to generate different types of
exceptions.

Figure 3-6 Structure of Error Handling Classes

Internal
Error

/ Exception
Exception(std::string file =

Num eric "unknown" , int line = -1, std::string .----
& Exception = = Inconsistent

description = "error")
int GetCode() S
const char* GetMessage()

Size

NotEnough
Memory

Memory
Exception

NULL
-« Pointer
Algorithmic
E xception

BadConst
Damaged
Memory

Invalid
Operation

Each class in this hierarchy corresponds to a specific type of exception:

NumericException — One of the values exceeds its range, overflow and underflow
respectively.

MemoryException — Possible memory problems:

NotEnoughMemory: available memory size is not enough for
allocation.

DamagedMemory: the addressed memory location is damaged.

| ntel e 3-303

Probabilistic Network Library

Reference Manual 3

BadPointer: addressing the memory location at the given pointer
address is invalid, memory is reserved for private
purposes.

AlgorithmicException — Problems arising during algorithmic computations:

NotConverged: the iterative process has not converged within the
maximal iteration depth.

InvalidOperation: the function called is not applicable to the
calling object.
InconsistentState: the state of the object is not applicable for

further computations. For example, a function for
the object requires some of the object fields that are

not specified.

BadArg — Function receives invalid arguments:

NULLPointer: a null pointer.

BadConst: enumeration fields pass as an argument a number that
exceeds the enumeration size.

outOfRange: numeric field is out of range, for example, negative
counter value.

InconsistentType: argument type is inconsistent with the function,
for example, when a function of a different class is
called.

InconsistentSize: sizes of the input arguments are inconsistent
with each, for example, in matrix multiplication.

InternalError: Exceptions related to incompleteness of the library:

NotImplemented: the called member function is not implemented.

The underlying class CException contains the functions that return exceptions. All
child classes have no functions of their own, they are introduced only to track all
exceptions of a certain type.

3-304

Probabilistic Network Library Reference Manual 3

GetCode

Returns exception code.

int CException::GetCode () const;

Discussion

This function returns exception codes given in the file pgmError.h.

GenMessage

Generates exception message.

void CException::GenMessage () ;

Discussion

This function generates an exception message that contains the exception type, the file
name, and the number of the line in the file where this exception was thrown.

GetMessage

Returns pointer to exception message.

const char* CEcxeption::GetMessage () const;

Discussion

This function returns pointer to an exception message that contains the exception type,
the file name, and the number of the line in the file where this exception was thrown.

| ntel e 3-305

Probabilistic Network Library

Reference Manual 3

Log Subsystem

The subtasks of Log Subsystem fall into four categories:

* Decorating output;

* Optimizing output;

* Filtering control;

* Addition/substraction of output devices.

There are three classes to achieve these subtasks:

Log — decorates and optimizes the output;

LogMultiplexor — filters the output and configuring;

LogDriver — outputting device.

Interobject Data

Flow

A Log object forms a string and passes it to LogMultiplexor. The latter passes the

string to a corresponding driver.

Log Log Log
LogMultiplexor

N N

LogDriver

LogDriver

Level is a bitwise combination of the following values:

eLOG_RESULT Resulting value.
eLOG_SYSERR System error.

eLOG_PROGERR Program error.

3-306

Probabilistic Network Library Reference Manual 3

eLOG_WARNING Warning message.

eLOG NOTICE Message that does not contain error conditions, but indicates that the
information should possibly be handled specially.

eLOG_INFO Information message.
eLOG_DEBUG Message used in debugging.
eLOG_ALL Combination of all the preceding values.

Service is a bitwise combination of the following values:
eLOGSRV_LOG Log system.

eLOGSRV_EXCEPTION HANDLING Exception handling.

eLOGSRV_PNL POTENTIAL CPotential and derived classes.
eLOGSRV_ALL Bitwise combination of all the preceding values.
eLOGSRV_PNL Bitwise combination of eLOGSRV PNL_*.

enum LogDriver::EConfCmd holds command to configure filtering.

eADD Addition.

eDELETE Subtraction.

eSET Clearing of the old value and setting a new value.
Class Log

Methods of thie class serve as the dumping interface.

Log

Constructs class object.

Log::Log(const char *prefix, int level, int service);

Arguments

prefix Prefix for each line dumped with this object.

| ntel e 3-307

Probabilistic Network Library Reference Manual 3

level Bitwise combination of levels.

service Bitwise combination of services.

Log

Constructs object by signature.

Log::Log(const char *signature);

Arguments

signature Signature string.

Discussion

This function constructs an object by signiture. To use a signature, you should register
it with the Register () function. If the function finds no signiture, default signiture is
used. You can change the default signature by registering it with an empty signature.

Register

Registres Log creating options.

void Log::Register(const char *signature) const;

Arguments

signature Signature string.

| ntel e 3-308

Probabilistic Network Library

Reference Manual 3

flush

Flushes output.

void Log::flush();

Discussion

Output is flushed automatically either during *\n’ output or during Log destruction.

operator <<
Dumps primitive types.

inline
inline
inline
inline
inline
inline
inline
inline
inline
inline

inline

Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:
Logé& Log:

:operator<<(const char*);
:operator<<(const unsigned char¥*);
:operator<<(char);

:operator<< (unsigned char);
:operator<< (unsigned long) ;
:operator<< (long);

:operator<< (unsigned short);
:operator<< (short);

:operator<< (unsigned int);
:operator<< (int);

:operator<< (double) ;

3-309

Probabilistic Network Library Reference Manual 3

printf

Dumps as printf function.

void Log::printf(const char* pFmt, ...);

Discussion

This function is similar to the print £ function from Standard C Library.

Level

Returns current value of 1evel.

int Log::Level () const;

Service

Returns current value of service.

int Log::Service() const;

SetlLevel

Sets new value to level.

void Log::SetLevel (int newLevel) ;

| ntel e 3-310

Probabilistic Network Library Reference Manual 3

Arguments

newLevel New value of Ilevel.

SetService

Sets new value to service.

void Log::SetService (int newService);

Arguments

newService New value of service.

Class LogMultiplexor

Class LogMultiplexor is the main commutator. Each of classes Log and LogDriver is
linked with multiplexor. The multiplexor born to be single object. It is used for group
configuration of drivers. Generally you do not create or delete this object.

Configure
Configures filtering of logged information.

void LogMultiplexor::Configure (EConfCmd command, int level = eLOG ALL,
int service = eLOGSRV_ALL);

Arguments

command Points at an operation (see description of EConfCmd).
level Bitwise combination of levels.

service Bitwise combination of services.

"Ttel@ 3-311

Probabilistic Network Library Reference Manual 3

Discussion

This function configures filtering of logged information and is applied to all attached
drivers.

WriteConfiguration

Dumps out configuration of attached driver to all
other attached drivers.

void LogMultiplexor::WriteConfigure () const;

Discussion

This function dumps out configuration of an attached driver to all other attached
drivers. It is intended for debugging purposes only.

StdMultiplexor

Gets standard multiplexor.

static LogMultiplexor& LogMultiplexor::StdMultiplexor();

SetStdMultiplexor

Sets standard multiplexor.

static void LogMultiplexor::SetStdMultiplexor (LogMultiplexor *pMultiplexor);

Arguments

pMultiplexor Multiplexor to become standard.

| ntel e 3-312

Probabilistic Network Library Reference Manual 3

Discussion
This function sets the standard multiplexor.

The following member functions of LogMultiplexor are used by log subsystem
internally.

LogMultiplexor

Constructs multiplexor.

LogMultiplexor::LogMultiplexor () ;

AttachDriver

Attaches driver to multiplexor.

int LogMultiplexor::AttachDriver (LogDriver* pDriver);

Arguments

pDriver Driver to be attached.

Discussion

This function returns the identificator that must be an argument of the corresponding
DetachDriver call.

AttachLogger

Attaches Log object to multiplexor.

int LogMultiplexor::AttachLogger (Log* pLog);

| ntel e 3-313

Probabilistic Network Library Reference Manual 3

Arguments
pLog Log to be attached.

Discussion

This function returns the identificator that must be an argument of the corresponding
DetachLogger call.

DetachDriver

Detaches driver from multiplexor.

void LogMultiplexor::DetachDriver (LogDriver* pDriver, int iDriver);

Arguments

pDriver Driver to be detached.

iDriver Identificator returned by AttachDriver ().
DetachLogger

Detaches 1.0g object from multiplexor.

void LogMultiplexor::DetachLogger (Log* pLog, int iLogger);

Arguments
pLog Log to be detached.
iLogger Id returned by AttachLogger () .

intel. 3314

Probabilistic Network Library Reference Manual 3

IUpdate

Gets updated identificator.

int LogMultiplexor::iUpdate () const;

Discussion

This function gets the updated identificator. The identificator changes when there is a
change of the configuration. The latter changes after it is configured or after a driver is
attached to/detached from: it.

GetBDenyOutput

Returns TRUE if output is possible with given
level and service.

bool LogMultiplexor::GetBDenyOutput (int *piUpdate, int level, int service);

Arguments

piUpdate Pointer to integer, where update id will be stored.
level Bitwise combination of levels.

service Bitwise combination of services.

Discussion

The function returns ‘true’ if the output is allowed within the given level and
service, returns ‘false’ otherwise.

Returned value is valid if the ‘update id’ is not changed.

| ntel e 3-315

Probabilistic Network Library Reference Manual 3

DriverReconfigured

Notifies multiplexor that driver was reconfigured.

void LogMultiplexor::DriverReconfigured (LogDriver *pDriver);

Arguments

pDriver Driver was reconfigured.

WriteString

Writes string to drivers that allow output with
given level and service.

void LogMultiplexor::WriteString(int level, int service, const char* pStr, int

strLen = -1);
Arguments
level Bitwise combination of levels.
service Bitwise combination of services.
pStr String.
strLen Length of the string. The length is calculated if it equals to - 1.
Discussion

This function writes a string to the drivers that allow output with the given 1evel and
service. This function is called by Log: :WriteString.

Class LogDriver

Class LogDriver is a basic class. It the interface for dumping out logged strings.

| ntel e 3-316

Probabilistic Network Library Reference Manual 3

Configure
Configures filtering of logged information.

virtual void LogDriver::Configure (EConfCmd command, int Ievel = eLOG_ALL,

int service = eLOGSRV_ALL);

Arguments

command Type of a set operation (see description of EConfCmd).
level Bitwise combination of levels.

service Bitwise combination of services.

iIsAllowedWriting

Returns true if writing is allowed by filtering for
given level and service.

bool LogDriver::isAllowedWriting(int level, int service) const;

Arguments

level Bitwise combination of levels.

service Bitwise combination of services.
LogDriver

Constructs object.

LogDriver::LogDriver (int levelMask = 0, int serviceMask = 0)

| ntel e 3-317

Probabilistic Network Library Reference Manual 3

Arguments
levelMask Bitwise combination of levels.

serviceMask Bitwise combination of services.

Discussion

LogDriver is a purely virtual class.

WriteConfigure

Dumps out configuration of driver to dumping
device.

void LogDriver::WriteConfigure (const char *prefix, const LogDriver &driver);

Arguments

prefix Prefix for each line.

driver Driver whose configuration is dumped.
WriteString

Writes string.

virtual void LogDriver::WriteString(const char* pStr, int strLen = -1);
Arguments
pStr String.
strLen Length of the string. The length is calculated if it equals to -1.
Discussion

This function writes a string. This function is designed for the internal use.

| ntel e 3-318

Probabilistic Network Library Reference Manual 3

Class LogDrvStream

This class is the implementation of the Logbriver class which is associated with a
stream.

LogDrvStream

Constructs object by stream.

LogDrvStream: :LogDrvStream (std: :ostream* pStream, int levelMask = 0, int
serviceMask = 0);

Arguments
pStream Pointer to the stream.
levelMask Bitwise combination of levels.

serveceMask Bitwise combination of services.

Discussion

This function constructs a class object by a stream.The stream is not deleted after
theobject is deleted.

LogDrvStream

Constructs object by file name.

LogDrvStream: :LogDrvStream (const char *pFilename, int levelMask = 0, int
serviceMask = 0);

Arguments
bafflement Name of the file.
levelMask Bitwise combination of levels.

| ntel e 3-319

Probabilistic Network Library Reference Manual 3

serviceMask Bitwise combination of services.

Discussion

This function creates a class object by the file name. The stream is created by the file
name and is deleted after deleting the object.

Redirect
Redirects dumping to file.

void LogDrvStream: :Redirect (const char *fname);

Arguments

fname Name of the file.

Discussion

This function redirects dumping to a file. The stream is created by the file name and is
deleted after deleting the object.

Redirect

Redirects dumping to stream.

void LogDrvStream: :Redirect (std::ostream* pStream);

Arguments

pStream Stream.

Discussion

This function redirects dumping to a stream. The stream is not deleted after the object
is deleted.

| ntel e 3-320

Probabilistic Network Library Reference Manual 3

WriteString

Implements 1L.ogDriver method.

virtual void LogDrvStream::WriteString(const char* pStr, int strLen = 0);
Arguments
pStr String.
strLen Length of the string (the length is calculated if it equals to - 1).
Discussion

This function implements the LogDriver method. It is intended for use in the logging
subsystem only.

Class LogDrvSystem

This class is the implementation of the Logbriver class which is associated with a
stream. [t resembles the Logbrvstream but is configured through
ConfigureSystem (), not through configure ().

LogDrvSystem

Constructs object by stream.

LogDrvSystem: : LogDrvSystem(std: :ostream* pStream, int levelMask = 0, int
serviceMask = 0);

Arguments
pStream Pointer to the stream.
levelMask Bitwise combination of levels.

serviceMask Bitwise combination of services.

"Ttel@ 3-321

Probabilistic Network Library Reference Manual 3

LogDrvSystem

Constructs object by file name.

LogDrvSystem: : LogDrvSystem (const char *pFilename, int levelMask = 0, int
serviceMask = 0);

Arguments
pFilename Name of the file.
levelMask Bitwise combination of levels.

serviceMask Bitwise combination of services.

ConfigureSystem
Configures filtering of logged information.

void LogDrvSystem::ConfigureSystem (EConfCmd command, int level = eLOG_ALL,

int service = eLOGSRV_ALL);

Arguments

command Type of a set operation (see description of EConfCmd).
level Bitwise combination of levels.

service Bitwise combination of services.

Discussion

This function configures filtering of logged information. This function is identical to
LogDriver::Configure.

| ntel e 3-322

Probabilistic Network Library Reference Manual 3

Configure

Performs no action, intended for
LogMultiplexor::Configureonbz

virtual void LogDrvSystem::Configure (EConfCmd command, int level = eLOG_ALL,
int service = eLOGSRV_ALL);

Arguments

command Type of a set operation.(see description of EConfCmd).
level Bitwise combination of levels.

service Bitwise combination of services.

Saving Models to File/Loading Models from File

Class cContextPersistence serves as the interface for saving a model to a file and
for loading a model from a file. You can save following types of models: BNet, DBN,
MNet, MRF2, if they do not contain one or more tree distribution functions. You cannot
save following types of models: FactorGraph, JunctionTree.

* To save a model to a file put it into a CContextPersistence object by calling put
and call saveasxur, indicating the name of the file.

Example 3-1 Saving a model to afile

CContextPersistence xmlContext;
xmlContext.Put (pGraphicalModel, “MyModel”) ;

if (!xmlContext.SaveAsXML (“myFavoriteObjects.xml”))
{

}

// something goes wrong — can’t create file, disk full or ..

To load a model from the file call the LoadxML function and request the context objects
by their names.

| ntel e 3-323

Probabilistic Network Library Reference Manual 3

Example 3-2 Loading model from file

CContextPersistence xmlContext;

if (xmlContext.LoadXML (“myFavoriteObjects.xml”))
{

}

// can’t open file or bad file content

CBNet *pGrModel = static cast<CBNet*>(xmlContext.Get (“MyModel”));

Class CContextPersistence

This class serves as the external interface for the subsystem of saving and loading.

CContextPersistence

Creates class object.

CContextPersistence: :CContextPersistence();

SaveAs XML
Saves object to XML file.

bool CContextPersistence::SaveAsXML (const std::string &filename) const;

Arguments
filename Name of the file where an object is to be saved.
Discussion

This function saves a contextual object into a xvr file. The function returns ‘true’ if
saving is successful, returns ‘false’ otherwise.

intel. 3324

Probabilistic Network Library Reference Manual 3

Load XML
Loads object from XML file.

bool CContextPersistence::LoadXML (const std::string &filename);

Arguments
filename Name of the file from which the object is to be loaded.

Discussion

This function loads a PNL object from an XML file. The function returns ‘true’ if
loading is successful, returns ‘false’ otherwise.

Class CContext

This is a basic class for all contexts. Stores the tree corresponding to object structures.
Traverses a tree of objects.

CContext

Creates class object.

CContext::CContext () ;

Put

Puts object into context.

void CContext::Put (CPNLBase *pObj, const char *name, bool bAutoDelete =
false);

| ntel e 3-325

Probabilistic Network Library

Reference Manual 3

Arguments
pObj
name

bAutoDelete

Discussion

Pointer to the object.
Object name.

Flag of automatic deletion. If it is set to ‘true’ The object is to be
deleted on deletion of the context.

This function puts the object into the context by name. The object is requested from the
context by the name through the Get () function.

Get

Returns pointer to object found by name.

CPNLBase *CContext::Get (const char *name);

Arguments

name

Discussion

Name of the object.

This function requests for a contextual object by name and returns the pointer to the
first object found. If there is no object in the context the function returns NULL.

3-326

Bibliography

[BKUAI9S]
[BKNIPS98]

[CDLS]

[Dempster]|

[H]

[Introd]

[Jirousek]

[JorBish]

X. Boyen and D. Koller. Tractable Inference for Complex
Stochastic Processes, UAI 98

X. Boyen and D. Koller. Approximate learning of dynamic
models, NIPS 98

R.G. Cowell, A. P. Dawid, S. L. Lauritzen, and D. J.
Spiegelhalter. Probabilistic Networks and Expert Systems.
Springer-Verlag New York, 1999.

A. Dempster, N. Laird, D. Rubin. Maximum Likelihood
From Incomplete Data via the EM Algorithm. Journal of
the Royal Statistical Society, B 39: 1-38, 1977.

G. B. Horn. lterative Decoding and Pseudocodewords.
Ph.D. thesis, Department of Electrical Engineering,
California Institute of Technology, Pasadena, CA, May
1999.

A Brief Introduction to Graphical Models and Bayesian
Networks.
http://www.ai.mit.edu/~murphyk/Bayes/bnintro.html

R. Jirousek and S. Preucil. On the Effective Implementation
of the Iterative Proportional Fitting Procedure.
Computational Statistics Quarterly, 4: 269-282, 1990.

M. Jordan, C. Bishop. An Introduction to Graphical
Models.

Bibliography-1

http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html
http://www.cs.berkeley.edu/~murphyk/Bayes/bayes.html

Probabilistic Network Library

Bibliography

[Jordan]

[LS]

[Murphy98]

[Murphy02]

[MWJ]

[P1]

[WF2000]

[WEF2001]

M.I. Jordan, editor. Learning in Graphical Models. MIT
Press, 1999.

S. L. Lauritzen and D. J. Spiegelhalter. Local
Computations With Probabilities on Graphical Structures
and Their Applications to Expert Systems. J. Roy. Stat.
Soc. B, 50, 157-224, 1988.

K. Murphy. Inference and Learning in Hybrid Bayesian
Networks. EECS, University of California, 1998.

K. P. Murphy. Dynamic Bayesian Networks:
Representation, Inference and Learning, PhD thesis. UC
Berkeley, Computer Science Division, July 2002.

K. P. Murphy, Y. Weiss, and M. 1. Jordan. Loopy Belief
Propagation for Approximate Inference: An Empirical
Study. Uncertainty in Artificial Intelligence, to appear.

J. Pearl. Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann, 1988.

Y. Weiss, and W. T. Freeman. Correctness of Belief
Propagation in Gaussian Graphical Models of Arbitrary
Topology. In S. Solla, T. K. Lean, and K.R. Muller, editors,
Advances in Neural Information Processing Systems, 12,
2000.

Y. Weiss, and W. T. Freeman. On the Optimality of
Solutions of the Max-Product Belief Propagation
Algorithm in Arbitrary Graphs. IEEE Transactions on
Information Theory, 47:2, 723-735, 2001.

Bibliography-2

Index

Numerics

2TNB. See two-slice Bayesian temporal network

B

Bayesian Information Criterion, 3-29
Bayesian Networks, 3-2

Bayesian networks, 3-21

Belief Propagation See Pearl Inference
BIC. See Bayesian Information Criterion
BNet. See Bayesian Networks

C

C1_5SlicelJtreelnfEngine
Create, 4-266

C1_S5SliceJTreeInfEngine Subclass, 4-265

C2DNumericDenseMatrix
Copy, 4-208
Create, 4-207
CreateldentityMatrix, 4-209
Determinant, 4-210
GetBlocks, 4-212
GetLinearBlocks, 4-211
Inverse, 4-211
IsIliConditioned, 4-210
IsSymmetric, 4-209
pnlMultiply, 4-214
Trace, 4-210
Transpose, 4-211

C2TBNInfEngine
Backward, 4-263

BackwardFixLag, 4-263

BackwardT, 4-262

C1_ SSlicelnfEngine, 4-264

Forward, 4-262

ForwardFirst, 4-262
C2TBNInfEngine Class, 4-261
C2TPFInfEngine, 4-269

Create, 4-269

EnterEvidence, 4-270

EnterEvidenceProbability, 4-271

Estimate, 4-272

GetCurSamples, 4-272

GetNeff, 4-273

GetParticleWeights, 4-272

InitSliceOParticles, 4-270

LWSampling, 4-271

SetParemeter, 4-269
CBayesLearningEngine, 4-280

Create, 4-280
CBKInfEngine, 4-267

CheckClustersValidity, 4-268

Create, 4-268
CCondGaussianDistribFun, 4-132

Cpoy, 4-133

Create, 4-133, 4-140

EnterDiscreteEvisence, 4-134

EnterFullContinuousEvidence, 4-134

GetContinuousParentsIndices, 4-135

GetDiscreteParentsIndices, 4-135

GetMatrixNumEvidences, 4-137

GetMatrixWithDistribution, 4-136
CContext

CContext, 4-325

intel.

Index-1

Probabilistic Network Library

Index

Get, 4-326
Put, 4-325
CContextPersistence, 4-324
CContextPersistence, 4-324
LoadXML, 4-325
SaveAsXML, 4-324
CCPD
CGaussianCPD
AllocDistribution, 4-165, 4-168, 4-171
Copy, 4-165, 4-167, 4-171
Create, 4-165, 4-167, 4-171
GetCoefficient, 4-166, 4-169, 4-171
SetCoefficient, 4-166, 4-168, 4-171
CTabularCPD
Copy, 4-162, 4-164, 4-171,4-178
Create, 4-161, 4-170, 4-178
CreateUnitFunctionCPD, 4-162, 4-164,

4-171, 4-179
CTabularCPD Class, 4-161
CDAG
Change, 4-24
ClearContent, 4-24
Clone, 4-25
Create, 4-23

CreateAncestorMatrix, 4-25
CreatMinimalSpanningTree, 4-25
DoMove, 4-26
GetAllEdges, 4-26
GetAllNeighbors, 4-27
GetAllValidMove, 4-28
GetEdgeDirection, 4-28
GetMaxFanln, 4-29
GetSubDAG, 4-29
IsValidMove, 4-30
RandomCreateADAG, 4-31
SetSubDAG, 4-31
SymmetricDifference, 4-32
TopologicalCreateDAG, 4-32
TopologicalSort, 4-33
CDenseMatrix, 4-200
ConvertMultiDimIndex, 4-203
Copy, 4-201
Create, 4-200

GetElementByOffset, 4-203
GetRawData, 4-201
GetRawDatalength, 4-202
GetVector, 4-203

SetData, 4-202
SetElementByOffset, 4-204

CDistribFun, 4-100

AllocMatrix, 4-102
AttachMatrix, 4-103
ClearStatisticalData, 4-109
Clone, 4-112

CloneWithSharedMatrices, 4-112
ConvertCPDDistribFunToPot, 4-113

ConvertToDense, 4-116, 4-153
ConvertToSparse, 4-116
CPD_to lambda, 4-114
CPD to pi, 4-113
CreateDefaultMatrices, 4-118
DividelnSelfData, 4-107
Dump, 4-118

ExpandData, 4-108
GetDistributionType, 4-115
GetMatrices ValidityFlag, 4-118
GetMatrix, 4-103

GetMPE, 4-116
GetMultipliedDelta, 4-112
GetNodeTypesVector, 4-101
GetNormalized, 4-111, 4-157
GetNumberOfNodes, 4-104
GetStatisticalMatrix, 4-105
IsDense, 4-117, 4-154
IsDistributionSpecific, 4-104
IsEqual, 4-115

IsSparsse, 4-117, 4-153
IsValid, 4-102
MarginalizeData., 4-105
MultiplyInSelfData, 4-106
Normalize, 4-114

operator=, 4-100

ProcessingStatisticalData, 4-111, 4-157

ResetNodeTypes, 4-117

SetStatistics, 4-110, 4-156, 4-157

SetVariableType, 4-101
ShrinkObservedNodes, 4-107

intel.

Index-2

Probabilistic Network Library

Index

UpdateStatisticsEM, 4-109

UpdateStatisticsML, 4-110, 4-156
CDynamicGraphicalModel

CDBN, 4-98

Create, 4-99

GetlnterfaceNodes, 4-97

GetStaticModel, 4-98

UnrollDynamicModel, 4-97
CDynamicInfEngine

C2TBNInfEngine Class, 4-261

C1_5SliceJTreeIlnfEngine Subclass, 4-265

DefineProcedure, 4-256
EnterEvidence, 4-256
Filtering, 4-258
FixLagSmoothing, 4-259
GetModel, 4-258
MarginalNodes, 4-257
Smoothing, 4-259
CDynamicInfEngine Class, 4-254
CDynamicLearningEngine
CEMLearningEngineDBN
Create, 4-290
CEMLearningEngineDBN Class, 4-290

CDynamicLearningEngine Class, 4-289
CEMLearningEngine Class, 4-278
CEMLearningEngineDBN Class, 4-290

CEvidence
Create, 4-50
Dump, 4-55
GetAllObsNodes, 4-52
GetObsNodesWithValues, 4-54
GetValue, 4-52
IsNodeObserved, 4-53
Load, 4-56, 4-57
MakeNodeHidden, 4-54
MakeNodeObserved, 4-53
Save, 4-55, 4-56
ToggleNodeState, 4-51

CEvidence Class, 4-49

CException Class, 4-303

CFactor
AllocMatrix, 4-143

AttachMatrix, 4-144
CCPD
ConvertToFactor, 4-159

ConvertWithEvidenceToPotential, 4-160

CCPD Class, 4-159
CFactors
Create, 4-183
GetFactor, 4-184
GetNumberOfFactors, 4-184
CFactors Class, 4-183
Clone, 4-150
CloneWithSharedMartices, 4-151
CopyWithNewDomain, 4-150
CPotencial
MarginalizelnPlace, 4-177
CPotential
Divide, 4-176
Dumplt, 4-176
ExpandObservedNodes, 4-175
GetMultiplyedDelta, 4-175
Marganalize, 4-173
Multiply, 4-171
Normalize, 4-173
NormalizePotential, 4-173
operator *=, 4-172
operator /=, 4-172
ShrinkObservedNodes, 4-174
CPotential Class, 4-171
GenerateSamples, 4-149
GetDistributionType, 4-145
GetDomain, 4-145
GetDomainSize, 4-146
GetFactorType, 4-145
GetMatrix, 4-146
IsDistributionSpecific, 4-149
IsFactorsDistribFunEqual, 4-148
IsValid, 4-147
operator =, 4-147
TieDistribFun, 4-148
CFactor Class, 4-143

CFactorCPotential
GetMPE, 4-177

CFactorGraph, 4-82

intel.

Index-3

Probabilistic Network Library

Index

COnvertFromBNet, 4-85
ConvertFromMNet, 4-85
Copy, 4-84
Create, 4-83
GetNbrFactors, 4-86
GetNumPFactorsAllocated, 4-85
IsValid, 4-86
Shrink, 4-84
CGaussianDistribFun, 4-125
CheckCanonicalFormValidity, 4-129
CheckMomentForm Validity, 4-129
ComputeProbability, 4-131
Copy, 4-128
CreateDeltaDistribution, 4-126
CreateDeltaDsitribution, 4-127
CreateInCanonicalForm, 4-125, 4-126
CreateInMomentForm, 4-125
CreateUnitFunctionDistribution, 4-128
GetCanonicalFormFlag, 4-129
GetCoefficient, 4-131
GetFactorFlag, 4-130
GetMomentFormFlag, 4-130
SetCoefficient, 4-130
UpdateCanonicalForm, 4-131
UpdateMomentForm, 4-131
CGibbsSamplingInEngine, 4-245
CGibbsSamplingInfEngine
Create, 4-245
SetQueries, 4-246
UseDSeparation, 4-246
CGibbsWithAnnealingInfEngine
GetCurrentTemp, 4-249
SetAnnealingCoefficientS, 4-249
UseAdaptation, 4-249
CGraph
AddEdge, 4-4
CDAG, 4-22
ChangeEdgeDirection, 4-5
ClearGraph, 4-11
Copy, 4-3
Create, 4-2
Dump, 4-16
FormCliqueFromSubgraph, 4-9

GetAdjacencyMatrix, 4-11
GetChildren, 4-13
GetConnectivityComponents, 4-15
GetNeighbors, 4-5
GetNumberOfChildren, 4-10
GetNumberOfEdges, 4-6
GetNumberOfNeighbors, 4-6
GetNumberOfNodes, 4-6
GetNumberOfParents, 4-10
GetParents, 4-13
GetTopologicalOrder, 4-3
IsChangeAllowed, 4-7
IsCompleteSubgraph, 4-7
IsDAG, 4-14

IsDirected, 4-10
IsExistingEdge, 4-8
IsTopologicallySorted, 4-14
IsUndirected, 4-11
MoralizeGraph, 4-4

operator !=, 4-12

operator =, 4-16

operator ==, 4-12
ProhibitChange, 4-9
RemoveEdge, 4-8
SetNeighbors, 4-8

CGraph Class, 4-1

CGraphicalModel, 4-57
AllocParameter, 4-58
AllocParameters, 4-59
AttachParameter, 4-59
AttachParameters, 4-60
CMNet

GetClique, 4-74
GetNumberOfCliques, 4-78
GetFactor, 4-63
GetFactors, 4-63
GetGraph, 4-60
GetModelDomain, 4-64
GetModelType, 4-60
GetNodeAssociations, 4-61
GetNodeType, 4-61
GetNodeTypes, 4-61
GetNumberOfNodes, 4-62
GetNumberOfNodeTypes, 4-62

intel.

Index-4

Probabilistic Network Library

Index

GetNumberOfParameters, 4-62
IsValid, 4-64

ClnfEngine

CFGSumMaxInfEngine Class, 4-239

CltreeInfEngine

Create, 4-231
CltreelnfEngine Class, 4-230
CNaivelnfEngine

Create, 4-223
CPearlInfEngine

Create, 4-224, 4-227
CPearlInfEngine Class, 4-224
Create, 4-219
GetModel, 4-221
GetMPE, 4-221
GetQueryJPD, 4-220
MarginalNodes, 4-220

pnlDetermineDistributionType, 4-218

CinfEngine
CNaivelnfEngine Class, 4-223
ClInfEngine Class, 4-217

CJunctionTree
ClearCharge, 4-94
Cpoy, 4-89
Create, 4-89
DumpNodeContents, 4-95

GetClgsNumsContainingSubset, 4-93
GetFactorAssignmentToClique, 4-91

GetNodeContent, 4-90
GetNodePotential, 4-92
GetNodesConectedByUser, 4-90
GetNumberOfNodes, 4-95
GetSeparatorDomain, 4-91
GetSeparatorPotential, 4-92
InitCharge, 4-93
operator=, 4-94

Class C2DNumericDenseMatrix, 4-207

Class CContext, 4-325

Class CFactorGraph, 4-82

Class CFGSumMaxInfEngine
Create, 4-239

GetNumberOfProvidelterations, 4-240

SetMaxNumberOflterations, 4-240

SetTolerance, 4-240
Class CGraphicalModel, 4-57
Class CNumericDenseMatrix, 4-206
Class CNumericSparseMatrix, 4-207
Class CSparseMatrix, 4-204
CLearningEngine
CDynamicLearningEngine
AppendData, 4-290
GetDynamicModel, 4-290
SetData, 4-289
SetMaxIterEM, 4-291

SetTerminationToleranceEM, 4-291

ClearStatisticData, 4-276

CStaticLearningEngine
AppendData, 4-277
SetData, 4-276
SetMaxlterIPF, 4-277
SetPrecisionIPF, 4-278

SetTerminationTolerancelPF, 4-278

GetCriterionValue, 4-275
Learn, 4-275
CLearningEngine Class, 4-274
clique, 3-1
CLWSamplingInfEngine, 4-250
Create, 4-250
EnterEvidenceProbability, 4-252
Estimate, 4-253
GetCurSamples, 4-252
GetNeff, 4-253
GetParticleWeights, 4-252
LWSampling, 4-251
CMatrix, 4-186
ClearData, 4-194
Clone, 4-188
ConvertToDense, 4-189
ConvertToSparse, 4-190
CreateEmptyMatrix, 4-187
DivideInSelf, 4-196
ExpandDims, 4-193
GetClampValue, 4-195
GetElementBylIndices, 4-190
GetIndicesOfMaxValue, 4-197

intel.

Probabilistic Network Library

Index

GetMatrixClass, 4-189

GetNumberDims, 4-188

GetRanges, 4-188

Initlterator, 4-198

Next, 4-199

Normalize, 4-198

NormalizeAll, 4-197

ReduceOp, 4-191

SetClamp, 4-194

SetDataFromOtherMatrix, 4-187

SetElementBylIndices, 4-191

SetUnitData, 4-194

SumAll, 4-198

Value, 4-199
CMixtureGaussianCPD, 4-167
CMIDynamicStructLearn, 4-292

Create, 4-293

CreateResultDAG, 4-294

SetLearnPriorSlice, 4-294

CMIStaticStructLearn, 4-283
CreateResultBNet, 4-283
CreateResultDAG, 4-284
CreateResultRenaming, 4-284
GetResultBNet, 4-284

CMIStaticStructLearnHC, 4-287
Create, 4-287
SetMinProgress, 4-288

CMNet
ComputeLogLik, 4-77
ConvertFromBNet, 4-75
ConvertFromBNetUsingEvidence, 4-75
Copy, 4-76
Create, 4-73
CreateTabularPotential, 4-76
CreateWithRandomMatrices, 4-74
GenerateSamples, 4-78
GetClgsNumsForNode, 4-77

CModelDomain, 4-37, 4-55
AttachFactor, 4-38
GetNumberOfVariableTypes, 4-41
GetNumberVariables, 4-42
GetObsGauVarType, 4-40
GetObsTabVarType, 4-41

GetVariableAssociation, 4-43
GetVariableAssociations, 4-42
GetVariableType, 4-40
GetVariableTypes, 4-40, 4-41
IsAFactorOwner, 4-39
Model Domain, 4-36
ReleaseFactor, 4-39

CNodeType, 4-34
GetNodeSize, 4-35
IsDiscrete, 4-34
operator!=, 4-36
operator==, 4-35
SetType, 4-35

CNodeValues
Class CEvidence, 4-36
Create, 4-44
GetNodeTypes, 4-47
GetNumberObsNodes, 4-45
GetObsNodesFlags, 4-46
GetOffset, 4-46
GetRawData, 4-46
GetValueBySerialNumber, 4-45
MakeNodeHiddenBySerialNum, 4-48
MakeNodeObservedBySerialNum, 4-48
SetData, 4-47
ToggleNodeStateBySerialNumber, 4-48

CNodeValues Class, 4-43
CNumericDenseMatrix, 4-206
Create, 4-206
CNumericSparseMatrix
Create, 4-207
conditional probability distribution, 3-2
conditional probability distributions, 3-21
conventions
font, 2-2
naming, 2-2
Copy, 4-201, 4-205
CPD. See conditional probability distribution
CPotential
CGaussianPotential
Copy, 4-180
Create, 4-179

intel.

Index-6

Probabilistic Network Library

Index

CreateDeltaFunction, 4-181
CreateUnitFunctionDistribution, 4-182
GetCoefficient, 4-183
SetCoefficient, 4-182
CGaussianPotential Class, 4-179
CTabularPotential
Create, 4-179
CTabularPotential Class, 4-178
CreateldentityMatrix, 4-209
CReferenceCounter, 4-215
CSamplingInfEngine
Continue, 4-244
GetBurnln, 4-243
GetMaxTime, 4-243
GetNumStreams, 4-244
SetBurnln, 4-242
SetMaxTime, 4-242
SetNumStreams, 4-243

CSparseMatrix
Copy, 4-205
Create, 4-204
GetDefaultValue, 4-205
IsExistingElement, 4-205
CSpecPearlInference, 4-227
CStaticGraphicalModel, 4-65
ClunctionTree, 4-88
CMNet, 4-72
CMNet Subclass
CMREF?2 Subclass, 4-79
GenerateSamples, 4-99

CStaticLearningEngine

CBICLearningEngine, 4-281

Create, 4-281

GetGraphicalModel, 4-282

GetOrder, 4-282
CBICLearningEngine Class, 4-281
CEMLearningEngine, 4-278

Create, 4-279

SetMaxlIterEM, 4-279

SetTerminationToleranceEM, 4-279

BayesUpdateFactor, 4-121

Copy, 4-121

CPDToLambda, 4-123

CPDToPi, 4-122

Create, 4-120
CreateUnitFunctionDistribution, 4-120
IsMatrixNormalizedForCPD, 4-123
PriorToCPD, 4-122

CTreeCPD, 4-170

CTreeDistribFun, 4-140
Copy, 4-141

D

DAG. See directed acyclic graph
DBN. See Dynamic Bayesian network
Determinant, 4-210

directed acyclic graph, 3-2

Dynamic Bayesian network, 3-7
Dynamic Graphical Models, 3-7

E

EM. See Expectation Maximization

Error Handling, 4-303
CException
GenMessage, 4-305
GetCode, 4-305
GetMessage, 4-305
Evidences, 4-43
Expectation Maximization, 3-26, 4-278, 4-290
E-step, 3-26
M-step, 3-26

E
factor, 3-1, 3-2
factor domain, 3-1

Factors
CStaticLearningEngine Class, 4-276 CFactor
CTabularDistribFun, 4-119 GetMatrix, 4-146, 4-148
I ntel € Index-7

Probabilistic Network Library

Index

CPotential
Marginalize, 4-173

font conventions, 2-2

G

GetBurnln, 4-243

GetMaxTime, 4-243

GetRawDataLength, 4-202

Graph, 4-1

CGraph Member Functions

GetAncestralClosure, 4-17, 4-18
GetAncestry, 4-17
GetDConnectionList, 4-19
GetDConnectionTable, 4-19
GetReachableSubgraph, 4-20

GetSubgraphConnectivityComponents, 4-18

Class CModelDomain
Create, 4-38
NumberOfConnectivityComponents, 4-15

Graphical Models, 3-1

H

Hidden Markov models, 3-7
HMM. See Hidden Markov models

I

Inference Algorithms for Bayesian and Markov
Networks, 3-10

Inference Algorithms for DBNSs, 3-15

Inference Engines
EnterEvidence, 4-219

IPF. See Iterarive Proportional Fitting
IsExistingElement, 4-205
IsIllConditioned, 4-210

IsValueHere, 4-199

Iterative Proportional Fitting, 3-24

J
joint probability distribution, 3-1, 3-10
Junction Tree Inference, 3-14, 3-16

K

Kalman Filter models, 3-7
KMEF. See Kalman Filter models

L

Learning Algorithms, 3-17
Learning Engines, 4-274
Learning for DBNs, 3-31

Log Subsystem, 3-33

Loopy Belief Propagation, 3-14

M

marginal distribution See joint probability distribution

marginal See joint probability distribution
Markov networks, 3-21

Markov networks. See also Markov Random Fields, 3-1

Markov Random Fields. See also Markov networks, 3-1

Maximum Likelihood Estimation, 3-22
for Bayesian Network, 3-22
for Markov Network, 3-24

MLE. See Maximum Likelihood Estimation
MIiStaticStructLearn, 4-283

MNet. See Markov Networks

model domain, 3-1

MREF. See Markov Random Fields

N

notational conventions, 2-2

P
Pearl Inference, 3-14, 3-16

intel.

Index-8

Probabilistic Network Library

Index

PGM. See probabilistic graphical model
pnlVector, 4-300

potential, 3-2

potentials, 3-21

probabilistic graphical model, 3-1
protocol, 3-14

S

Sampling Inference Engine
CGibbsSamplingInEngine Class, 4-245
CSamplingInfEngine Class, 4-241

ScalarDistribFun, 4-138
SetBurnln, 4-242

SetData, 4-202

SetNumStreams, 4-243

Structure Comparison Metric, 3-29
Structure Search Method, 3-29

T

Trace, 4-210
two-slice Bayesian temporal network, 3-7

Vv

Value, 4-298
GetFlt, 4-300
Getlnt, 4-299
SetFlt, 4-299
Setlnt, 4-299

W
Water-Sprinkler Model, 3-3

Intelc Index-9

	Probabilistic Network Library
	Contents
	Overview
	About This Library
	About This Software
	About This Manual
	Notational Conventions
	Font Conventions
	Naming Conventions

	User Guide
	Graphical Models
	Dynamic Graphical Models

	Inference Algorithms for Bayesian and Markov Networks
	Inference Algorithms for DBNs
	Learning for Bayesian and Markov Networks
	Type 1
	Type 2
	Type 3

	Learning for DBNs
	Log Subsystem

	Reference Manual
	Graph
	Class CGraph
	Create
	Copy
	GetTopologicalOrder
	MoralizeGraph
	AddEdge
	ChangeEdgeDirection
	GetNeighbors
	GetNumberOfNeighbors
	GetNumberOfNodes
	GetNumberOfEdges
	IsCompleteSubgraph
	IsChangeAllowed
	IsExistingEdge
	RemoveEdge
	SetNeighbors
	ProhibitChange
	FormCliqueFromSubgraph
	GetNumberOfParents
	GetNumberOfChildren
	IsDirected
	IsUndirected
	GetAdjacencyMatrix
	ClearGraph
	operator ==
	operator !=
	GetParents
	GetChildren
	IsDAG
	IsTopologicallySorted
	NumberOfConnectivityComponents
	GetConnectivityComponents
	operator =
	Dump
	GetAncestry
	GetAncestralClosure
	GetAncestralClosure
	GetSubgraphConnectivityComponents
	GetDConnectionList
	GetDConnectionTable
	GetReachableSubgraph

	Class CDAG
	Create
	Change
	ClearContent
	Clone
	CreateAncestorMatrix
	CreateMinimalSpanningTree
	DoMove
	GetAllEdges
	GetAllNeighbours
	GetAllValidMove
	GetEdgeDirection
	GetMaxFanIn
	GetSubDAG
	IsEquivalent
	IsValidMove
	MarkovBlanket
	RandomCreateADAG
	SetSubDAG
	SymmetricDifference
	TopologicalCreateDAG
	TopologicalSort

	Node Types
	Class CNodeType
	IsDiscrete
	GetNodeSize
	SetType
	operator==
	operator!=

	Model Domain
	Class CModelDomain
	Create
	AttachFactor
	ReleaseFactor
	IsAFactorOwner
	GetVariableType
	Get Variable Types
	GetObsGauVarType
	GetObsTabVarType
	GetNumberOfVariableTypes
	GetVariableTypes
	GetNumberVariables
	GetVariableAssociations
	GetVariableAssociation

	Evidences
	Class CNodeValues
	Create
	GetValueBySerialNumber
	GetNumberObsNodes
	GetObsNodesFlags
	GetRawData
	GetOffset
	SetData
	GetNodeTypes
	MakeNodeHiddenBySerialNum
	MakeNodeObservedBySerialNum
	ToggleNodeStateBySerialNumber

	Class CEvidence
	Create
	ToggleNodeState
	GetValue
	GetAllObsNodes
	IsNodeObserved
	MakeNodeObserved
	MakeNodeHidden
	GetObsNodesWithValues
	CModelDomain
	Dump
	Save
	Save
	Load
	Load

	Graphical Models
	Class CGraphicalModel
	AllocFactor
	AllocFactors
	AttachFactor
	AttachFactors
	GetGraph
	GetModelType
	GetNodeAssociations
	GetNodeType
	GetNodeTypes
	GetNumberOfNodes
	GetNumberOfNodeTypes
	GetNumberOfFactors
	GetFactor
	GetFactors
	GetModelDomain
	IsValid

	Class CStaticGraphicalModel
	IsValid

	Class CBNet
	Create
	Copy
	CreateWithRandomMatrices
	ConvertToSparse
	ConvertToDense
	CreateTabularCPD
	FindMixtureNodes
	GenerateSamples
	IsValid

	Class CMNet
	Create
	CreateWithRandomMatrices
	GetClique
	ConvertFromBNet
	ConvertFromBNetUsingEvidence
	Copy
	CreateTabularPotential
	ComputeLogLik
	GetClqsNumsForNode
	GetNumberOfCliques
	GenerateSamples

	Class CMRF2
	Create
	CreateWithRandomMatrices

	Class CFactorGraph
	Create
	Create
	Copy
	Shrink
	GetNumFactorsAllocated
	ConvertFromBNet
	ConvertFromMNet
	IsValid
	GetNbrFactors
	GetNbrFactors
	GetNumNbrFactors

	Class CJunctionTree
	Create
	Copy
	GetNodeContent
	GetNodesConnectedByUser
	GetFactorAssignmentToClique
	GetSeparatorDomain
	GetNodePotential
	GetSeparatorPotential
	GetClqNumsContainingSubset
	InitCharge
	ClearCharge
	operator=
	GetNumberOfNodes
	DumpNodeContents

	Class CDynamicGraphicalModel
	CreatePriorSliceGrModel
	UnrollDynamicModel
	GetInterfaceNodes
	GetStaticModel

	Class CDBN
	Create
	GenerateSamples

	Distribution Functions
	Class CDistribFun
	operator=
	GetNodeTypesVector
	SetVariableType
	IsValid
	AllocMatrix
	AttachMatrix
	GetMatrix
	GetNumberOfNodes
	IsDistributionSpecific
	GetStatisticalMatrix
	MarginalizeData
	MultiplyInSelfData
	DivideInSelfData
	ShrinkObservedNodes
	ExpandData
	ClearStatisticalData
	UpdateStatisticsEM
	UpdateStatisticsML
	SetStatistics
	GetNormalized
	ProcessingStatisticalData
	Clone
	CloneWithSharedMartices
	GetMultipliedDelta
	ConvertCPDDistribFunToPot
	CPD_to_pi
	CPD_to_lambda
	Normalize
	GetDistributionType
	IsEqual
	GetMPE
	ConvertToSparse
	ConvertToDense
	IsSparse
	IsDense
	ResetNodeTypes
	CreateDefaultMatrices
	GetMatricesValidityFlag
	Dump
	Create
	CreateUnitFunctionDistribution
	Copy
	BayesUpdateFactor
	PriorToCPD
	CPDToPi
	CPDToLambda
	IsMatrixNormalizedForCPD
	Marginalize

	Class CGaussianDistribFun
	CreateInMomentForm
	CreateInCanonicalForm
	CreateDeltaDistribution
	CreateUnitFunctionDistribution
	Copy
	CheckMomentFormValidity
	CheckCanonicalFormValidity
	GetCanonicalFormFlag
	GetMomentFormFlag
	SetCoefficient
	GetFactorFlag
	UpdateMomentForm
	UpdateCanonicalForm
	1ComputeProbability

	Class CCondGaussianDistribFun
	Create
	Copy
	EnterDiscreteEvidence
	EnterFullContinuousEvidence
	GetDiscreteParentsIndices
	GetContinuousParentsIndices
	GetMatrixWithDistribution
	SetCoefficient
	GetCoefficient
	GetMatrixNumEvidences
	Dump

	Class ScalarDistribFun
	Create
	Copy
	Dump

	Class CTreeDistribFun
	Create
	Copy

	Factors
	Class CFactor
	AllocMatrix
	AttachMatrix
	GetFactorType
	GetDistributionType
	GetDomain
	GetDomainSize
	GetMatrix
	operator =
	IsValid
	IsFactorsDistribFunEqual
	TieDistribFun
	IsDistributionSpecific
	GenerateSample
	CopyWithNewDomain
	Clone
	CloneWithSharedMartices
	CreateAllNecessaryMatrices
	GetNumInHeap
	ChangeOwnerToGraphicalModel
	IsOwnedByModelDomain
	GetModelDomain
	GetArgType
	ConvertToSparse
	ConvertToDense
	IsSparse
	IsDense
	GetObsPositions
	GetDistribFun
	SetDistribFun
	MakeUnitFunction
	ConvertStatisticToPot
	UpdateStatisticsEM
	UpdateStatisticsML
	SetStatistics
	ProcessingStatisticalData
	GetLogLik
	AreThereAnyObsPositions

	Class CCPD
	ConvertToPotential
	ConvertWithEvidenceToPotential
	NormalizeCPD

	Class CTabularCPD
	Create
	Copy
	CreateUnitFunctionCPD

	Class CGaussianCPD
	Create
	CreateUnitFunctionCPD
	Copy
	AllocDistribution
	SetCoefficient
	GetCoefficient

	Class CMixtureGaussianCPD
	Create
	Copy
	AllocDistributionVec
	SetCoefficient
	GetCoefficient
	SetCoefficientVec
	GetCoefficientVec
	GetProbabilities

	Class CTreeCPD
	Create
	Copy

	Class CPotential
	Multiply
	operator *=
	operator /=
	GetNormalized
	Normalize
	Marginalize
	ShrinkObservedNodes
	ExpandObservedNodes
	GetMultiplyedDelta
	Divide
	Dump
	MarginalizeInPlace
	GetMPE

	Class CTabularPotential
	Create
	Copy
	CreateUnitFunctionDistribution

	Class CGaussianPotential
	Create
	Copy
	CreateDeltaFunction
	CreateUnitFunctionDistribution
	SetCoefficient
	GetCoefficient

	Class CFactors
	Create
	GetNumberOfFactors
	GetFactor
	AddFactor
	ShrinkObsNdsForAllFactors

	Class CMatrix
	CreateEmptyMatrix
	SetDataFromOtherMatrix
	Clone
	GetNumberDims
	GetRanges
	GetMatrixClass
	ConvertToDense
	ConvertToSparse
	GetElementByIndices
	SetElementByIndices
	ReduceOp
	ExpandDims
	ClearData
	SetUnitData
	SetClamp
	GetClampValue
	MultiplyInSelf
	DivideInSelf
	GetIndicesOfMaxValue
	NormalizeAll
	Normalize
	SumAll
	InitIterator
	Next
	Value
	IsValueHere
	Index
	Class CDenseMatrix
	Create
	Copy
	GetRawData
	GetRawDataLength
	SetData
	GetVector
	ConvertMultiDimIndex
	GetElementByOffset
	SetElementByOffset

	Class CSparseMatrix
	Create
	Copy
	GetDefaultValue
	IsExistingElement

	Class CNumericDenseMatrix
	Create

	Class CNumericSparseMatrix
	Create

	Class C2DNumericDenseMatrix
	Create
	Copy
	CreateIdentityMatrix
	IsSymmetric
	Trace
	IsIllConditioned
	Determinant
	Inverse
	Transpose
	GetLinearBlocks
	GetBlocks
	pnlMultiply

	Reference Counter
	Class CReferenceCounter
	AddRef
	Release
	GetNumOfReferences

	Inference Engines
	Class CInfEngine
	pnlDetermineDistributionType
	pnlDetermineDistributionType
	EnterEvidence
	MarginalNodes
	GetQueryJPD
	GetMPE
	GetModel
	GetObsGauNodeType
	GetObsTabNodeType

	Class CNaiveInfEngine
	Create

	Class CPearlInfEngine
	Create
	IsInputModelValid
	SetMaxNumberOfIterations
	GetNumberOfProvideIterations
	SetTolerance

	Class CSpecPearlInference
	Create
	IsInputModelValid
	SetMaxNumberOfIterations
	GetNumberOfProvideIterations
	SetTolerance

	Class CJtreeInfEngine
	Create
	Copy
	GetEvidence
	GetJTreeRootNode
	GetClqNumsContainingSubset
	GetNodesConnectedByUser
	SetJTreeRootNode
	GetLogLik
	MultJTreeNodePotByDistribFun
	DivideJTreeNodePotByDistribFun
	CollectEvidence
	DistributeEvidence
	ShrinkObserved
	GetQueryMPE

	Class CExInfEngine
	Create

	Class CFGSumMaxInfEngine
	Create
	SetMaxNumberOfIterations
	GetNumberOfProvideIterations
	SetTolerance

	Class CSamplingInfEngine
	SetMaxTime
	SetBurnIn
	SetNumStreams
	GetMaxTime
	GetBurnIn
	GetNumStreams
	Continue

	Class CGibbsSamplingInfEngine
	Create
	SetQueries
	UseDSeparation

	Class CGibbsWithAnnealingInfEngine
	Create
	SetAnnealingCoefficientC
	SetAnnealingCoefficientS
	GetCurrentTemp
	UseAdaptation

	Class CLWSamplingInfEngine
	Create
	SetParemeter
	LWSampling
	EnterEvidenceProbability
	GetCurSamples
	GetParticleWeights
	Estimate
	GetNeff

	Class CDynamicInfEngine
	DefineProcedure
	EnterEvidence
	MarginalNodes
	GetQueryJPD
	GetMPE
	Filtering
	Smoothing
	FixLagSmoothing
	FindMPE
	GetDynamicModel
	GetProcedureType

	Class C2TBNInfEngine
	ForwardFirst
	Forward
	BackwardT
	Backward
	BackwardFixLag

	Class C1_ 5SliceInfEngine
	Class C1_5SliceJTreeInfEngine
	Create

	Class CBKInfEngine
	Create
	CheckClustersValidity

	Class C2TPFInfEngine
	Create
	SetParemeter
	InitSlice0Particles
	EnterEvidence
	LWSampling
	EnterEvidenceProbability
	GetCurSamples
	GetParticleWeights
	Estimate
	GetNeff

	Learning Engines
	Class CLearningEngine
	Learn
	GetCriterionValue
	ClearStatisticData

	Class CStaticLearningEngine
	SetData
	AppendData
	SetMaxIterIPF
	SetTerminationToleranceIPF
	GetStaticModel

	Class CEMLearningEngine
	Create
	SetMaxIterEM
	SetTerminationToleranceEM

	Class CBayesLearningEngine
	Create

	Class CBICLearningEngine
	Create
	GetGraphicalModel
	GetOrder

	Class CMlStaticStructLearn
	CreateResultBNet
	GetResultBNet
	CreateResultDAG
	CreateResultRenaming
	ScoreDAG
	ScoreFamily
	SetInitGraphicalModel

	Class CMlStaticStructLearnHC
	Create
	SetMinProgress
	SetSingleMove

	Class CDynamicLearningEngine
	SetData
	GetDynamicModel

	Class CEMLearningEngineDBN
	Create
	SetTerminationToleranceEM
	SetMaxIterEM

	Class CMlDynamicStructLearn
	Create
	SetMinProgress
	CreateResultDAG
	SetLearnPriorSlice

	Random Number Generation
	pnlSeed
	pnlRand
	pnlRandNormal
	pnlRandNormal

	Basic Data Structures
	Class Value
	SetInt
	GetInt
	SetFlt
	GetFlt

	Class pnlVector

	Error Handling
	Class CException
	GetCode
	GenMessage
	GetMessage

	Log Subsystem
	Class Log
	Log
	Log
	Register
	flush
	operator <<
	printf
	Level
	Service
	SetLevel
	SetService

	Class LogMultiplexor
	Configure
	WriteConfiguration
	StdMultiplexor
	SetStdMultiplexor
	LogMultiplexor
	AttachDriver
	AttachLogger
	DetachDriver
	DetachLogger
	iUpdate
	GetBDenyOutput
	DriverReconfigured
	WriteString

	Class LogDriver
	Configure
	isAllowedWriting
	LogDriver
	WriteConfigure
	WriteString

	Class LogDrvStream
	LogDrvStream
	LogDrvStream
	Redirect
	Redirect
	WriteString

	Class LogDrvSystem
	LogDrvSystem
	LogDrvSystem
	ConfigureSystem
	Configure

	Saving Models to File/Loading Models from File
	Class CContextPersistence
	CContextPersistence
	SaveAsXML
	LoadXML

	Class CContext
	CContext
	Put
	Get

	Bibliography
	Index

