
Characterizing Data Mining Algorithms and
Applications:

Do they impact processor and system design?

Speaker
Alok Choudhary

Dept. of Electrical & Computer Engineering
Northwestern University

Project Team Members
Jayaprakash Pisharath

Ying Liu
Wei-keng Liao
Gokhan Memik

Sponsored by Intel Corporation

3/15/2004 CUCIS 2

Introduction
Tremendous growth in data
Sophisticated tools to analyze data
Growth in systems not enough to keep up with it
Need for smarter systems and algorithms
Where to start?
Analyze & Attack

Investigate future mining needs
Analyze existing tools and algorithms
Identify shortcomings and try to meet it

Our current
task

3/15/2004 CUCIS 3

Analysis
Very little is known
Consistent, steady and phase-driven
analysis
Consider all domains
First step: construct a benchmark
To begin with, we look at

domains,
categories,
system features

3/15/2004 CUCIS 4

MineBench
Data mining benchmark

Application suite
Popular algorithms (domains)
Multiple categories (types) of mining

Scalability of algorithms
Data
Algorithmic

Evaluation options
Architecture
Measures of interest

Expansion?

3/15/2004 CUCIS 5

Methodology
Include things that have not been considered till
now (No TPC-H/ SPLASH/ SPEC)
Eclectic mix of algorithms

Clustering
Classification
Association Rules

If scalable, improve performance through
parallelization
Study the characteristics

3/15/2004 CUCIS 6

Benchmark

Algorithms Category Description Lang.
ScalParC Classification Decision tree classifier C
Naïve Bayesian Classification Statistical classifier based on class

conditional independence
C++

K-means Clustering Partitioning method C
Fuzzy K-means Clustering Fuzzy logic based K-means C
BIRCH Clustering Hierarchical method C++
HOP Clustering Density-based method C
Apriori ARM Horizontal database, level-wise

mining based on Apriori property
C/C++

Eclat ARM Vertical database, break large search
space into equivalence class

C++

3/15/2004 CUCIS 7

System Architecture

Processor 1 Processor 2 . . . Processor 7 Processor 8

L2 Cache

700 Mhz

1 MBL2 Cache L2 Cache L2 Cache. . .

Memory 4 GB

130 GBDisk

3/15/2004 CUCIS 8

Evaluation Setup

3/15/2004 CUCIS 9

Evaluation Metrics
Evaluation perspectives

Algorithmic
Architectural

Scalability Study
Single Processor, Multiprocessor Analysis
Scalable Data Analysis

Algorithmic
Execution Times
Operating System Overhead
I/O Overhead
Synchronization Overhead

Architectural
L1 Cache Analysis
L2 Cache Analysis
Memory Access Pattern Study
CPI Behavior
Instruction and Branch Behaviors

3/15/2004 CUCIS 10

Data Set

Clustering
HOP: ENZO data

Small: 61440 particles, Medium: 491520 particles and
Large: 3932160 particles.

K means, Fuzzy K means
Real image database of 17695 pictures
2 features: Color (9 floating points) and Edge (18 floating points)

Classification Association Rule Mining (ARM)
Dataset

Parameter DB Size(MB) Parameter DB Size(MB)

Small F26-A32-D125K 27 T10-I4-D1000K 47

Medium F26-A32-D250K 54 T20-I6-D2000K 175

Large F26-A64-D250K 108 T20-I6-D4000K 350

 Fx-Ay-DzK denotes a dataset with Function x, Attribute
size y, and Data comprising of z*1000 records.

D denotes the number of transactions, T is the
average transaction size, and I is the average size of

the maximal potentially large itemsets.

Functional Analysis

(Single Processor Analysis)

3/15/2004 CUCIS 12

ScalParC (Decision Tree Classifier)
A decision tree is a class discriminator that recursively partitions example set until
each partition consists entirely or dominantly of examples from one class. Each
non-leaf node of the tree contains a split point which is a test on one or more
attributes and determines how the data is partitioned.

Partition (Example Set S)
• if (all examples in S are of the same class) then return;
• for each attribute A do

evaluate splitting point on attribute A;
• use the best splitting found to partition S into S1 and S2;
• Partition (S1);
• Partition (S2);

* Use Gini index for splitting point selection measure:
)()(),(2121 21 SGini

n
nSGini

n
nSSGini +=∑

=
−=

c

i
piSGini

1
21)(

• Find splitting point with minimum Gini

3/15/2004 CUCIS 13

Function Profiling

Splitting procedure (ParClassify) causes the maximum
bottleneck (high resource and data stalls)
Simple GINI index calculation could get complex (second
most resource consuming, and time consuming operation)
Index comparison (VRCompare) can also be optimized
further (less instructions retired, but comparatively longer
clock ticks)
Main does just the delegation work

Resource Related L1 Misses L2 Misses Bus Transactions Bus Memory Data Memory Instructions Clockticks
Stalls Transactions References Retired

ParClassify 49.78 67.45 73.32 74.71 72.98 50.28 46.04 36.94
Calculate_Gini 33.11 22.21 15.99 14.32 15.52 27.28 31.11 35.65
VRCompare 16.96 10.33 10.68 10.96 11.47 19.62 19.66 26.15

main 0.15 0.01 0.01 0.01 0.02 2.82 3.19 1.26

Function

3/15/2004 CUCIS 14

Bayesian (Statistical Classifier)

Naïve Bayesian classifier, a statistical classifier, assumes the effect of an
attribute on a given class is independent of the other attributes. It predicts the
probability that a given example belongs to a particular class.

Suppose there are m classes, C1, C2, …, Cm,, assume P(C1) = P(C2) = … = P(Cm),
data example X = (x1,x2,…, xn), si is the number of training examples belonging
to Ci, sik is the number of training examples of class Ci having the value xk for
attribute k.

• Scan the training data set, calculate si and sik for categorical attributes, calculate
mean μCi and standard deviation σCi for continuous attributes.

• To classify an unknown example X, assign X to the class Ci with maximum
P(X|Ci)P(Ci).

3/15/2004 CUCIS 15

Functional Profiling

nbc_add is used while scanning the dataset. A tuple is read (added to the
list), an update is done to the class distribution list, and counters (sum,
mean). Even though this operation has less data ref (13%), it results in
high L1 misses (87%) and significant L2 misses. Memory is accessed too
often => room for cache optimization.
tfs_getfld retrieves fields (columns). This takes up considerable amount
of the computation time. Lot of fields are retrieved (reason for high data
references). Whereas reading attributes (as_read + att_ualadd) is much
quicker – but can be improved still (misses).

Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks
 Related Stalls Transactions Transactions References Instructions Mispredictions Retired

nbc_add 24.87 87.22 30 53.59 43.2 13.84 9.96 13.65 11.69
att_valadd 28.87 3.62 35 23.04 25.49 17.15 16.06 7.42 12.67 13.53
as_read 19.51 4.19 10 11.11 14.81 20.77 16.8 6.22 18.26 15.43
tfs_getfld 26.34 3.51 10 7.52 9.47 48.01 56.93 74.63 55.2 59.02
nbc_setup 0.01 0.79 5 0.82 0.97 0.2

Function

3/15/2004 CUCIS 16

K–Means (Clustering)
The k-means algorithm takes the input parameter, k, and partitions a set of n
objects into k clusters so that the resulting intra-cluster similarity is high but
the inter-cluster similarity is low.

• arbitrarily choose k objects as the initial cluster centers;
• repeat

for each object pi do
for each center cj do

calculate distance between pi and cj;
find the cluster center c nearest to pi;
assign pi to the cluster centered by c;

update the cluster center (calculate the mean value of objects in each cluster);
• until no change;

3/15/2004 CUCIS 17

Function Profiling

Euclidean distance calculation leads the pack.
Too many cache misses (no locality in access pattern)
Many data memory references as point coordinates are stored in memory (and
hence max bus transactions)
Lot of these instructions (68.3%)
More room for automation of distance calculation. No need for big cache.
Memory resident distance calculation would work best.

Finding nearest point (center) is cache efficient (significant data ref, but
less L2 misses). Lot of points are read at any given point of time (array).
Clustering function does the work of assigning a point to cluster and
recalculating the center. Main is just a block that delegates work.

Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks
 Related Stalls Transactions Transactions References Instructions Mispredictions Retired

euclid_dist 56.4 86.55 88.76 89.38 89.64 54.72 69.24 72.14 68.63 67.68
kmeans_clustering 28.43 6.92 10.63 10.03 9.79 27.71 19.27 27.47 21.04 21.85
find_nearest_point 15.09 6.18 0.09 0.01 0.06 17.56 11.48 0.37 10.33 10.43

main 0.06 0.27 0.25 0.34 0.31 0.01 0.04

Function

3/15/2004 CUCIS 18

Fuzzy K–Means (Clustering)

Rather than having a precise cutoff that an object is or is not a member of
a particular cluster, Fuzzy K-means assumes that an object can have a degree
of membership in each cluster.

• The Fuzzy K-means assigns each pair of object and cluster a probability
that indicates the degree of membership of the object in the cluster.

• For each object, the sum of the probabilities to all clusters equals to 1.

• The assignment iterates until the sum of all membership values converges.

The flexibility of assigning objects to multiple clusters is necessary
to generate better clustering qualities.

3/15/2004 CUCIS 19

Function Profiling
Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks

 Related Stalls Transactions Transactions References Instructions Mispredictions Retired
fuzzy_kmeans_cluster 54.21 83.04 5.22 6.42 5.36 59.97 51.48 3.67 63.69 57.61

euclid_dist 39.9 11.08 88.75 88.22 88.49 32.93 38.33 94.43 27.22 32.89
sum_fuzzy_members 5.86 5.4 5.49 4.89 5.89 7.09 10.19 1.88 9.08 9.47

main 0.01 0.39 0.36 0.23 0.08

Function

Different from K-means even though goal is the same (bottlenecks have
changed)
fuzzy_kmeans_cluster involves fuzzy membership calculation. Lot of
computation involved (high # of instructions retired) due to varying
membership of each object.
Euclid distance calculation is not the main bottleneck (but still
significant). Cache is still a bottleneck. Lot of branch mispredictions as
well – can be avoided if compiler assembles code more smartly.
Convergence and check for convergence is really not a bottleneck (as we
would expect). Implies, a lot more room for parallelization.

3/15/2004 CUCIS 20

BIRCH (Clustering)
BIRCH is an integrated hierarchical clustering method, effective for incremental
or dynamic clustering. Clustering Feature tree (CF tree) is used to summarize
cluster representations. The non-leaf node in CF tree stores the clustering feature
(CF) of its descendents.

),,(SSLSNCF =

N number of objects in the subcluster
LS linear sum on N objects
SS square sum of N objects
B branching factor
T threshold

Phase 1: for each object p in database do
insert p into the closest leaf node (subcluster) l;
if the diameter of the subcluster stored in l > T then

split l;
update the information in l and its ancestors;

Phase 2: apply a clustering algorithm (i.e. K-means) to cluster the leaf nodes
of the CF tree.

3/15/2004 CUCIS 21

Function Profiling

Software Operators (overridden in C++) are used for
distance calculation purposes. Clearly indicates that
software operators can be a considerable overhead.
Hardware optimization could help (hardware vector
processing).
Very high misses during redistribution of points to its
closest seed (to obtain a new set of clusters). Caused due
to the nature of tree access.

Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks
 Related Stalls Transactions Transactions References Instructions Mispredictions Retired

operator| 25.84 13.17 2.04 6.31 4.35 37.24 32.4 15.52 34.2 28.6
operator&& 25.69 6.32 9.6 18.81 13.18 6.64 8.58 7.15 13.28
operator& 2.62 0.74 1.29
operator|| 2.55 3.24 6.33 7.78 2.28 2.87 6.64 2.78

operator+= 1.29 0.43 0.45 0.93 4.17 2.58 2.11 2 3
operator= 0.78 14.06 23.06 17.83 17.71 1 2

RedistributeB 8.03 17.15 20.33 1.04 13.1 5.2 10.05 17.01 10.31 9.13
ClosestOne 7.6 8.48 0.57 3.76 2.94 10 6.5

distance 6.39 2.88 0.48 2.72 0.34 4.46 2.32 0.75 4 4.78
Decode 2.74 1.41 0.7 8.18 8.24 17.19 7 6.47

Function

3/15/2004 CUCIS 22

HOP (Clustering)
HOP, a clustering algorithm proposed in astrophysics, identifies groups of
particles in N-body simulation. HOP clustering can be applied to applications
involving neighborhood searching geology, astronomy, molecular pattern
Recognition, etc.

• Constructing a KD tree:
Recursively bisect the particles along the longest axis, and move nearby
particles into the same sub-domain;

• Generating density:
for each particle p do

traverse the tree to find Ndens neighbors; assign an estimated density to p;
• Hopping:

for each particle p do
associate p with its densest neighbor; hop to its densest neighbor till
p reaches a particle that is its own densest neighbor;

• Grouping:
Define particles associated to the same densest neighbor as a group;
Refine and merge groups;

3/15/2004 CUCIS 23

Function Profiling

smBallGather: Gathering densest and nearby neighbors in
(“Hopping” step) stalls for resources to the worst extent (lot of
data ref).
But execution time of smBallSearch (finding nearest neighbor
and generating density) is more than smBallGather. They are
similar in functionality. Creates maximum misses.
Density calculation takes the maximum time (used by
smBallSearch). But data efficient as such – less misses. But not
instruction efficient – lot of room for improvement in branch
mispredictions (88% of mispredictions).

Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks
 Related Stalls Transactions Transactions References Instructions Mispredictions Retired

smBallGather 38.72 27.03 13.29 12.2 11.39 48.8 4.18 0.44 6.83 22.53
smBallSearch 25.57 32.25 32.61 28.59 28.4 27.36 15.49 15.67 27.65 29.05
smDensitySym 22.48 4.23 3 2.59 2.55 8.4 77.65 81.55 61.27 38.44
kdMedianJst 6.5 24.88 32.33 35.25 36.23 2.88 2.56 2.24 4.13 9.8
PrepareKD 0.82 1.09 2.99 3.05 3.07 0.07 0.01 0.01 0.04
kdUpPass 0.53 0.99 1.95 1.74 1.75 0.09 0.03 0.03

FindGroups 0.52 2.02 2.05 3.71 3.71 0.02 0.01 0.01 0.01 0.01
main 0.86 1.38 2.82 3.74 3.78 0.24 0.01 0.01 0.01 0.01

SortGroups 0.29 3.22 3.47 3.49 0.07

Function

3/15/2004 CUCIS 24

Apriori (ARM)
Apriori is a level-wise search method to find the frequent itemsets in
database records, where k-itemsets are used to explore (k+1)-itemsets.
Apriori property, every subset of a frequent itemset has to be frequent, is
used to prune many Candidate itemsets.

• L1 = frequent 1-itemsets;
• for (k = 2; Lk-1 ≠ ∅; k++) do

Lk-1 is used to generate candidates set Ck;
eliminate those candidates c having a subset that is not frequent from Ck;
for each transaction t ∈ Database

for each c ∈ Ck do
if (c is a subset of t) c.count++;

Lk = {c ∈ Ck | c.count ≥ min_sup}
• return L= ∪kLk;

3/15/2004 CUCIS 25

Function Profiling

Database_readfrom produces the maximum stalls (lesser execution
times). Data ref are less, but still misses and stalls are a lot (due to
absence of locality as the access pattern is uniform). Even after
modifying the access to bulk-load data to the memory (instead of
contiguous access), it still remains a bottleneck.
Subset calculation is the most active routine. Max data references, but
comparatively less L2 misses.
c.count++ is implemented as a separate function (increment) – takes
up 4% of the time and considerable overheads. Even if a function is
simple, compiler overheads do arise and hit the architecture.

Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks
 Related Stalls Transactions Transactions References Instructions Mispredictions Retired

Database_readfrom 43.82 59.3 51.67 66.67 66.67 15.26 67.95 62.8 13.86 13.86
subset 18.74 21.65 18.44 52.89 22.17 28.36 57.54 57.54

main_proc 30.41 5.37 18.17 20.62 1.64 1.79 17.05 17.05
increment 2.44 3.87 3.29 4.22 1.82 2.72 4.55 4.55
find_in_list 0.54 3.95 4.06 0.68 3.91 0.05 0.73 0.73

rehash 0.01 0.08 0.01 0.01
string 33.33 33.33

Function

3/15/2004 CUCIS 26

ECLAT (ARM)
Eclat is an association rule mining algorithm based on equivalence classes.
An equivalence class is a potential maximal frequent itemset. Efficient lattice
traversal techniques are used to identify all the true maximal frequent itemsets.
All the frequent subsets of the maximal frequent itemsets are generated during
traversing.

Phase 1: finding equivalence classes
• generate frequent k-itemsets Lk (i.e. k=2);
• create equivalence classes Fk by joining itemsets in Lk, based on their

common k-1 length prefix;

Phase 2: bottom-up traversing lattice
Bottom_Up(input: Fk, Output: L= ∪Lj (j>=k))
• generate candidate set Ck+1 based on Fk;
• for each transaction t ∈ Database do

for each c ∈ Ck+1 do if (c is a subset of t) c.count++;
Lk+1 = {c ∈ Ck+1 | c.count ≥ min_sup}

create equivalence classes Fk+1;
• if (Fk+1 ≠ ∅) then Bottom_Up(Fk+1);

3/15/2004 CUCIS 27

Function Profiling

add routine creates an equivalence class (used multiple times in
both phases). Less data ref, but most stalls and misses. Better
creation of equivalence class is needed.
get_intersect involves finding common items in order to create a
longer itemset. Lot of branches and many are mispredicted as
well. Better reorganization of instructions might help.
process_invert and partition_get_lidxsup are used during the
subset calculation (not much of a bottleneck).

Resource L1 Misses L2 Misses Bus Bus Memory Data Memory Branch Branch Instructions Clockticks
 Related Stalls Transactions Transactions References Instructions Mispredictions Retired

add 30.7 28.82 29.49 33.26 34.22 8.37 4.18 0.44 6.83 22.53
get_intersect 26.34 21.06 23.5 22.53 22.34 55.5 77.65 81.55 61.27 38.44

process_invert 12.36 8.77 15.62 16.47 16.39 5.57 2.56 2.24 4.13 9.8
partition_get_lidxsup 0.04 0.05 0.04 0.04 0.03 0.01 0.01 0.04

Function

Scalability Analysis

Multiprocessor, Scalable Data Analysis

3/15/2004 CUCIS 29

Parallelization
Goal: to test the scalability of data mining
applications on SMPs
Parallel versions of our benchmark applications.
Currently 5 parallel applications (out of 8)

ScalParC (Zaki’s SMP algorithm),
K-means (data parallelism),
Fuzzy K-means (data parallelism),
HOP (data parallelism), and
Apriori (common candidate partitioned database
strategy).

Data sets – as described earlier (Small, Medium,
Large).

3/15/2004 CUCIS 30

Execution Times

ScalParC scales very well, Fuzzy K-Means performs well.
Balanced partitioning of data in ScalParC => very less memory
contention (for shared variables). SMP architecture is utilized.
Apriori has issues with SMP: hash tree is common and is accessed
too frequently.

P1 P4 P8 P1 P4 P8 P1 P4 P8
HOP 6.30 3.50 5.25 52.70 1.92 6.06 435.30 3.40 5.34

K-means 5.70 2.85 4.38 12.90 3.91 4.96 -
Fuzzy

K-means 164.10 3.01 6.22 146.80 3.44 5.42 -
BIRCH 3.50 31.70 172.60

ScalParC 51.00 3.78 4.90 110.60 3.88 5.12 225.90 4.02 6.19
Bayesian 12.60 25.10 51.50
Apriori 6.10 2.03 2.35 102.70 2.66 3.37 200.20 2.76 3.18
Eclat 11.80 81.50 127.80

Program
Data set = S Data set = M Data set = L

Seconds Seconds SecondsSpeedups Speedups Speedups

3/15/2004 CUCIS 31

OS Overheads (%)

Overheads increase on parallelization to more processors.
Mainly from OpenMP overheads, program locks.
OpenMP programming environment adds extra execution
cycles => affects execution times. Unless speedup is good,
OpenMP could be destructive.

0

5

10
15

20

25

30
35

40

45

HOP K-means Fuzzy K-means BIRCH ScalParC Bayesian Apriori Eclat

P1 P4 P8

3/15/2004 CUCIS 32

I/O Time (%)

0.00

0.05

0.10

0.15

0.20

0.25

0.30

HOP K-means Fuzzy K-means

0

10

20

30

40

50

60

70

BIRCH ScalParC Bayesian Apriori Eclat

S M L

Very small I/O overheads in the program – Bayesian is an
exception.
Bulk read (ScalParC) vs. Character based (Bayesian) read
operation. Character reads prove to be costlier in terms of I/O.
I/O overheads increase with data size

3/15/2004 CUCIS 33

Synchronization Time (cycles)

0.E+00

1.E+07

2.E+07

3.E+07

4.E+07

5.E+07

6.E+07

HOP K-means
0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

7.E+08

8.E+08

Fuzzy K-means ScalParC Apriori

P1 P4 P8

0.E+00
5.E+07
1.E+08

2.E+08
2.E+08
3.E+08
3.E+08

4.E+08
4.E+08

HOP K-means Fuzzy K-means
0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

ScalParC Apriori

S M L

Synchronization time in CPU cycles for all applications for different datasets. The synchronization time
increases when data size is increased (as shared data also relatively increases).

Synchronization time in CPU cycles for all applications. The synchronization time increases when
computation is scaled to multiple processors due to increased contention for shared variables.

3/15/2004 CUCIS 34

L1 Cache Misses (%)

0

1

2

3

4

5

6

7

8

HOP ScalParC Apriori
0

0.1

0.2

0.3

0.4

0.5

0.6

K-means Fuzzy K-means

P1 P4 P8

0

1

2

3

4

5

6

7

8

9

HOP BIRCH ScalParC Apriori Eclat
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

K-means Fuzzy K-means Bayesian

S M L

Applications are drastically different in their L1 cache behavior (two
types). Random data distribution is seen.
Individual processor study suggested master processor is at times
overloaded.
Data size is proportional to data misses (due to limited size of L1).

3/15/2004 CUCIS 35

L2 Cache Misses (%)

0
5

10
15
20
25
30
35
40
45
50

HOP Fuzzy K-means Apriori
0

10

20

30

40

50

60

70

80

90

K-means ScalParC

P1 P4 P8

0

1

2

3

4

5

6

HOP BIRCH Bayesian
0

10
20
30
40
50
60
70
80
90

K-means Fuzzy K-
means

ScalParC Apriori Eclat

S M L

Erratic behavior
Data distribution is random as we use dynamic scheduling for parallelization of
our applications.
Load is also unbalanced

Misses increase as data sizes are increased (cache not evenly used). There
is a lot of contention.

3/15/2004 CUCIS 36

Memory References (cycles)

0.E+00

1.E+08

2.E+08

3.E+08

4.E+08

5.E+08

6.E+08

HOP K-means ScalParC
0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

1.E+09

1.E+09

Fuzzy K-means Apriori

P1 P4 P8

Memory access times increase when more processors are used
due to the repeated data accesses arising from

Locks
L2 cache misses
Synch time

3/15/2004 CUCIS 37

CPI
Programs P1 P4 P8

HOP 1.53 1.36 1.45
K-means 1.82 1.56 1.72
Fuzzy K-means 1.36 1.53 1.61
BIRCH 1.29 - -
ScalParC 2.96 2.63 2.61
Bayesian 1.20 - -
Apriori 3.83 2.66 3.44
Eclat 9.59 - -

CPI is less for some applications. Attributed to contentions
(program locks, OMP barriers).
Some applications are able to overcome it by reducing total synch
times.

3/15/2004 CUCIS 38

Preliminary Conclusions
MineBench is representative.
MineBench is diverse: two association rule mining algorithms, two
classification algorithms, and four clustering algorithms.
Data mining algorithms are scalable (SMP).
OS overhead, the synchronization overhead, and the I/O time are
usually small in MineBench applications.
L1 data cache miss rates are small.
L2 cache miss rates are high, which results in small instruction-
level parallelism (measured in CPI).
Improvements in the performance of processors are likely to have
a significant impact on the overall performance of data mining
systems.
Data fetch techniques like prefetching should also improve the
performance of the processor considerably.
Lot of room for algorithmic and architectural optimizations
(targeting emerging scenarios) in existing data mining algorithms.

3/15/2004 CUCIS 39

What more is needed?
More evaluation – more architectures
Newer measurement tools, measures of
interest
More algorithms
More domains, categories

3/15/2004 CUCIS 40

Where do we go after this?
Function profiling
Kernel identification

Individual
Common ones across categories/domains

Kernel optimizations. Also, individual
kernel parallelization.
More detailed characterization

More measures of interest
More innovative evaluation schemes/tools

Questions?
Thank you

	Characterizing Data Mining Algorithms and Applications: �Do they impact processor and system design?
	Introduction
	Analysis
	MineBench
	Methodology
	Benchmark
	System Architecture
	Evaluation Setup
	Evaluation Metrics
	Data Set
	Functional Analysis ��(Single Processor Analysis)
	ScalParC (Decision Tree Classifier)
	Function Profiling
	Bayesian (Statistical Classifier)
	Functional Profiling
	K–Means (Clustering)
	Function Profiling
	Fuzzy K–Means (Clustering)
	Function Profiling
	BIRCH (Clustering)
	Function Profiling
	HOP (Clustering)
	Function Profiling
	Apriori (ARM)
	Function Profiling
	ECLAT (ARM)
	Function Profiling
	Scalability Analysis��Multiprocessor, Scalable Data Analysis
	Parallelization
	Execution Times
	OS Overheads (%)
	I/O Time (%)
	Synchronization Time (cycles)
	L1 Cache Misses (%)
	L2 Cache Misses (%)
	Memory References (cycles)
	CPI
	Preliminary Conclusions
	What more is needed?
	Where do we go after this?
	Questions?

