
Big Data in HPC
Applications and

Programming
Abstractions

Saba Sehrish
 Oct 3, 2012

Big Data in Computational Science - Size

Project

On-line
Data
(TBytes)

Off-line
Data
(TBytes)

Supernovae Astrophysics 100 400
Combustion in Reactive Gases 1 17

CO2 Absorption 5 15
Seismic Hazard Analysis 600 100
Climate Science 200 750
Energy Storage Materials 10 10
Stress Corrosion Cracking 12 72
Nuclear Structure and Reactions 6 30

Reactor Thermal Hydraulic
Modeling

100 100

Laser-Plasma Interactions 60 60
Vaporizing Droplets in a Turbulent
Flow

2 4

Data requirements for select 2012 INCITE
applications at ALCF (BG/P)

Top 10 data producer/consumers
instrumented with Darshan over the
month of July, 2011. Surprisingly, three of
the top producer/consumers almost
exclusively read existing data.

2

Big Data in Computational Science - Complexity
 Complexity is an artifact of science

problems and codes:
Complexity in data models -
multidimensional, hierarchical, tree-
based, graph-based, mesh-oriented,
multi-component data sets
Coupled multi-scale simulations
generate multi-component datasets
consisting of materials, fluid flows, and
particle distributions.

1

2
3

4 5

6 7
8

9 10
11

12 13

14 15

16 17

Morton order

7 6 5 4

1

2 13 12 11

14 17 16 15 3 10 9 8

Interface

Interface
Layer

Corner
variables

Edge-centered variables

Cell-centered variables

Challenges we face in the I/O World

• We are looking at capacity but smart ways to manage the
capacity to deal with not only size but complexity

• How are these data sets generated, which we need to store –

scientific simulations, observations/experiments/sensors

• How to store and retrieve data – the I/O libraries

• What to store - useful data

• What data formats – self describing data

• What data layouts – optimized way of data retrieval

What I/O Programming Abstraction
Options to use?

• Three Options
•Use existing programming abstractions and I/O frameworks
•Extend/Leverage these models
•Develop New models

• Existing I/O programming abstractions for I/O in science –
MPI-IO, PnetCDF, HDF5, ADIOS

• Abstractions in general for Big data: MapReduce (Hadoop)

• Extend/Leverage: RFSA, MRAP

• New: DAMSEL (incorporates data model of application into

file formats and data layouts for exascale science)

Our Contributions
• Leverage Hadoop framework to understand scientific data

formats and optimizations to improve performance

• Provide optimizations, etc for HPC applications with big data

through RFSA

• Develop a new data model based I/O library

MRAP – MapReduce with Access
Patterns
• MapReduce and the distributed file systems’ applicability to HPC

• Successfully used with web applications at Yahoo!, Google,

Facebook, etc

• Can it meet the requirements of I/O intensive HPC applications?

•Yes - because of a resilient framework that allows large
scale data processing.

•No - because access patterns in traditional HPC
applications do not match directly with MapReduce splits.

• In MRAP - we add these HPC data semantics to the MapReduce
framework

MRAP Design
1. APIs and templates to specify the access patterns e.g. non-

contiguous access patterns, matching patterns

MRAP Optimizations
2. MRAP Data restructuring to organize data before hand to

avoid/minimize data movement and remote data access

MRAP Optimizations
3. MRAP Scheduling to improve data locality using a weighted set

cover-based approach and virtual splits

Performance Evaluations
MRAP API MRAP Data restructuring

MRAP Scheduling

RFSA – A reduced function set
abstraction for MPI-IO
• Ways to improve MPI-IO functions

• Programmer productivity
• Reducing number of I/O calls e.g. by automatically

choosing which read/write function to choose

• Performance
• Optimizing locking mechanism by proposing a conflict

detection algorithm
• Optimizing collective I/O by a pipelining mechanism to

overlap communication and I/O

Performance Evaluation

Optimizing locking mechanism Automating selection of I/O calls

0

5

10

15

20

25

160 640 2560 10240 40960

Ba
nd

w
id

th
 in

 G
B/

s

Number of processes

Original

Pipelined Method

Ideal Overlapping

Improving collective I/O performance

DAMSEL
• Provide a set of API functions to support sophisticated data

models e.g. block structured AMR, geodesic grid, etc
• Enable exascale computational science applications to interact

conveniently and efficiently with the storage through data model
API

• Develop a data model based storage library and provide efficient
storage layouts

vertex

Edge

Cell center

Face

DAMSEL Example
 The FLASH is a modular, parallel multi-physics

simulation, developed at University of Chicago
 Uses a structured adaptive-mesh refinement grid
 The problem domain is hierarchically partitioned into

blocks of equal sizes (in array elements)

1

2
3

4 5

6 7
8

9 10
11

12 13

14 15

16 17

Morton order

7 6 5 4

1

2 13 12 11

14 17 16 15 3 10 9 8

Summary
• Too much described in very less time

• I/O Abstractions for Big data HPC applications

• MRAP

• Based on MapReduce

• RFSA
• Based on MPI-IO

• DAMSEL

• Based on data models of computational applications

Acknowledgements
• University of Central Florida

• Advisor: Jun Wang
• Grant Mackey

• Northwestern University

• Alok Choudhary
• Wei-keng Liao

• Argonne National Laboratory

• Rajeev Thakur
• Rob Ross
• Rob Latham

• Los Alamos National Laboratory/EMC

• John Bent

Questions

 Saba Sehrish
ssehrish@eecs.northwestern.edu

	Big Data in HPC Applications and Programming Abstractions
	Big Data in Computational Science - Size
	Big Data in Computational Science - Complexity
	Challenges we face in the I/O World
	What I/O Programming Abstraction Options to use?
	Our Contributions
	MRAP – MapReduce with Access Patterns
	MRAP Design
	MRAP Optimizations
	MRAP Optimizations
	Performance Evaluations
	RFSA – A reduced function set abstraction for MPI-IO
	Performance Evaluation
	DAMSEL
	DAMSEL Example
	Summary
	Acknowledgements
	Questions

